1
|
Mcloughlin C, Lee WH, Carson A, Stone J. Iatrogenic harm in functional neurological disorder. Brain 2025; 148:27-38. [PMID: 39241111 PMCID: PMC11706287 DOI: 10.1093/brain/awae283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/18/2024] [Accepted: 08/17/2024] [Indexed: 09/08/2024] Open
Abstract
Functional neurological disorder (FND) is continuing to gain increasing recognition globally as a valid and potentially treatable disorder. Iatrogenic harm towards patients with FND is significant, however, and has been around for centuries. Despite advances in our understanding around the aetiology, pathophysiology and treatment of FND, many aspects of such harm continue to persist. Avoidance of iatrogenic harm has been highlighted by clinicians as one of the most important therapeutic considerations in FND; however, the sources and range of potential harms, or indeed ways to mitigate them, have not previously been summarized. Using a combination of clinical and research experience and scoping review methodology, this review aims to describe the main sources of iatrogenic harm towards patients with FND, including harm from misdiagnosis, delayed diagnosis and treatment, direct harm from professional interactions, other stigma-related harms, harm related to diagnostic overshadowing and over-diagnosis of FND. We also describe some potential ways to address and prevent such harms, such as ways to reduce misdiagnosis with a focus on rule in signs, optimizing teaching and communication, ensuring parity of FND with other medical conditions and continued integration of patient and professional organizations.
Collapse
Affiliation(s)
- Caoimhe Mcloughlin
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh Bioquarter, Edinburgh E16 4SB, Scotland, UK
| | - Wei Hao Lee
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh Bioquarter, Edinburgh E16 4SB, Scotland, UK
| | - Alan Carson
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh Bioquarter, Edinburgh E16 4SB, Scotland, UK
| | - Jon Stone
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh Bioquarter, Edinburgh E16 4SB, Scotland, UK
| |
Collapse
|
2
|
Park SW, Oh J, Shin M, Lee JY, Lee KM, Ryu JK, Sternad D. Changes of upper-limb kinematics during practice of a redundant motor task in patients with Parkinson's disease. Sci Rep 2024; 14:26958. [PMID: 39505955 PMCID: PMC11542016 DOI: 10.1038/s41598-024-76015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
The ability to learn novel motor skills is essential for patients with Parkinson's disease (PD) to regain activities of daily living. However, the underlying mechanisms of motor learning in PD remain unclear. To identify motor features that are distinctively manifested in PD during motor learning, we quantified a rich set of variables reflecting various aspects of the learning process in a virtual throwing task. While the performance outcome improved similarly over 3 days of practice for both PD patients and age-matched controls, further analysis revealed distinct learning processes between the two groups. PD patients initially performed with a slow release velocity and gradually increased it as practice progressed, whereas the control group began with an unnecessarily rapid release velocity, which they later stabilized at a lower value. Performance characteristics related to the timing of ball release and the inter-release interval did not show significant group differences, although they were modulated across practice in both groups. After one week, both groups retained the performance outcomes and underlying kinematics developed over practice. This study underscores the importance of analyzing the multi-faceted learning process to characterize motor skill learning in PD. The findings may provide insights into PD pathophysiology and inform rehabilitation strategies.
Collapse
Affiliation(s)
- Se-Woong Park
- Department of Kinesiology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA.
| | - Jinseok Oh
- Division of Developmental-Behavioral Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Minjung Shin
- Department of Physical Education, Dongguk University, Seoul, Korea
- Interdisciplinary Program in Cognitive Science, Seoul National University, Seoul, Korea
| | - Jee-Young Lee
- SMG-SNU Boramae Medical Center, Seoul, Korea.
- Department of Neurology, Seoul National University Medical College, Seoul, Korea.
| | - Kyoung-Min Lee
- Interdisciplinary Program in Cognitive Science, Seoul National University, Seoul, Korea
- Department of Neurology, Seoul National University Medical College, Seoul, Korea
| | - Jeh-Kwang Ryu
- Department of Physical Education, Dongguk University, Seoul, Korea
| | - Dagmar Sternad
- Department of Biology, Electrical & Computer Engineering, and Physics, Northeastern University, Boston, MA, USA
| |
Collapse
|
3
|
Rybak IA, Shevtsova NA, Markin SN, Prilutsky BI, Frigon A. Operation regimes of spinal circuits controlling locomotion and the role of supraspinal drives and sensory feedback. eLife 2024; 13:RP98841. [PMID: 39401073 PMCID: PMC11473106 DOI: 10.7554/elife.98841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Locomotion in mammals is directly controlled by the spinal neuronal network, operating under the control of supraspinal signals and somatosensory feedback that interact with each other. However, the functional architecture of the spinal locomotor network, its operation regimes, and the role of supraspinal and sensory feedback in different locomotor behaviors, including at different speeds, remain unclear. We developed a computational model of spinal locomotor circuits receiving supraspinal drives and limb sensory feedback that could reproduce multiple experimental data obtained in intact and spinal-transected cats during tied-belt and split-belt treadmill locomotion. We provide evidence that the spinal locomotor network operates in different regimes depending on locomotor speed. In an intact system, at slow speeds (<0.4 m/s), the spinal network operates in a non-oscillating state-machine regime and requires sensory feedback or external inputs for phase transitions. Removing sensory feedback related to limb extension prevents locomotor oscillations at slow speeds. With increasing speed and supraspinal drives, the spinal network switches to a flexor-driven oscillatory regime and then to a classical half-center regime. Following spinal transection, the model predicts that the spinal network can only operate in the state-machine regime. Our results suggest that the spinal network operates in different regimes for slow exploratory and fast escape locomotor behaviors, making use of different control mechanisms.
Collapse
Affiliation(s)
- Ilya A Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel UniversityPhiladelphiaUnited States
| | - Natalia A Shevtsova
- Department of Neurobiology and Anatomy, College of Medicine, Drexel UniversityPhiladelphiaUnited States
| | - Sergey N Markin
- Department of Neurobiology and Anatomy, College of Medicine, Drexel UniversityPhiladelphiaUnited States
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de SherbrookeSherbrookeCanada
| |
Collapse
|
4
|
Münchau A, Klein C, Beste C. Rethinking Movement Disorders. Mov Disord 2024; 39:472-484. [PMID: 38196315 DOI: 10.1002/mds.29706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/16/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
At present, clinical practice and research in movement disorders (MDs) focus on the "normalization" of altered movements. In this review, rather than concentrating on problems and burdens people with MDs undoubtedly have, we highlight their hidden potentials. Starting with current definitions of Parkinson's disease (PD), dystonia, chorea, and tics, we outline that solely conceiving these phenomena as signs of dysfunction falls short of their complex nature comprising both problems and potentials. Such potentials can be traced and understood in light of well-established cognitive neuroscience frameworks, particularly ideomotor principles, and their influential modern derivatives. Using these frameworks, the wealth of data on altered perception-action integration in the different MDs can be explained and systematized using the mechanism-oriented concept of perception-action binding. According to this concept, MDs can be understood as phenomena requiring and fostering flexible modifications of perception-action associations. Consequently, although conceived as being caught in a (trough) state of deficits, given their high flexibility, people with MDs also have high potential to switch to (adaptive) peak activity that can be conceptualized as hidden potentials. Currently, clinical practice and research in MDs are concerned with deficits and thus the "deep and wide troughs," whereas "scattered narrow peaks" reflecting hidden potentials are neglected. To better delineate and utilize the latter to alleviate the burden of affected people, and destigmatize their conditions, we suggest some measures, including computational modeling combined with neurophysiological methods and tailored treatment. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
5
|
Reinshagen A. Grid cells: the missing link in understanding Parkinson's disease? Front Neurosci 2024; 18:1276714. [PMID: 38389787 PMCID: PMC10881698 DOI: 10.3389/fnins.2024.1276714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
The mechanisms underlying Parkinson's disease (PD) are complex and not fully understood, and the box-and-arrow model among other current models present significant challenges. This paper explores the potential role of the allocentric brain and especially its grid cells in several PD motor symptoms, including bradykinesia, kinesia paradoxa, freezing of gait, the bottleneck phenomenon, and their dependency on cueing. It is argued that central hubs, like the locus coeruleus and the pedunculopontine nucleus, often narrowly interpreted in the context of PD, play an equally important role in governing the allocentric brain as the basal ganglia. Consequently, the motor and secondary motor (e.g., spatially related) symptoms of PD linked with dopamine depletion may be more closely tied to erroneous computation by grid cells than to the basal ganglia alone. Because grid cells and their associated central hubs introduce both spatial and temporal information to the brain influencing velocity perception they may cause bradykinesia or hyperkinesia as well. In summary, PD motor symptoms may primarily be an allocentric disturbance resulting from virtual faulty computation by grid cells revealed by dopamine depletion in PD.
Collapse
|
6
|
Fearon C, Bhowmick SS, Tosserams A, Di Luca DG, Liao J, Nonnekes J, Bloem BR, Lang AE. Arm Swing while Walking and Running: A New Clinical Feature to Separate Parkinson's Disease from Functional Parkinsonism. Mov Disord Clin Pract 2024; 11:166-170. [PMID: 38169144 PMCID: PMC10883393 DOI: 10.1002/mdc3.13952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/05/2023] [Accepted: 11/26/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Functional parkinsonism is an important differential diagnosis of Parkinson's disease (PD). Based on anecdotal experience, we hypothesized that arm swing while walking and running could differentiate these two conditions, but this assumption has not been previously explored systematically. OBJECTIVES To examine differences in arm swing while walking and running between patients with PD and functional parkinsonism. METHODS We analyzed blinded video assessments of arm swing and other gait parameters in patients with asymmetrical PD (n = 81) and functional parkinsonism (n = 8) while walking and running. The groups were matched for age, sex and disease duration. RESULTS In contrast to those with PD, patients with functional parkinsonism (i) were more likely to have a marked asymmetry in arm swing while walking (5/8 vs. 25/81; P = 0.06), (ii) were less likely to improve arm swing while running with full effort (3/8 vs. 72/81; P < 0.001) and (iii) demonstrated normal passive arm swing even when asymmetry of arm swing was marked during running/walking (6/6 vs. 9/33; P = 0.002). CONCLUSIONS Assessment of arm swing while walking and running and passive arm swing could be important differentiating clinical features between functional parkinsonism and PD.
Collapse
Affiliation(s)
- Conor Fearon
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital–UHN, Division of NeurologyUniversity of TorontoTorontoOntarioCanada
| | - Suvorit S. Bhowmick
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital–UHN, Division of NeurologyUniversity of TorontoTorontoOntarioCanada
| | - Anouk Tosserams
- Department of Neurology, Center of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CentreNijmegenThe Netherlands
| | - Daniel G. Di Luca
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital–UHN, Division of NeurologyUniversity of TorontoTorontoOntarioCanada
| | - Jane Liao
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital–UHN, Division of NeurologyUniversity of TorontoTorontoOntarioCanada
| | - Jorik Nonnekes
- Department of Rehabilitation, Center of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CentreNijmegenThe Netherlands
- Sint Maartenskliniek, Department of RehabilitationNijmegenThe Netherlands
| | - Bastiaan R. Bloem
- Department of Neurology, Center of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CentreNijmegenThe Netherlands
| | - Anthony E. Lang
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital–UHN, Division of NeurologyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
7
|
Ercoli T, Solla P, Stone J, Defazio G. Functional neurological disorders and Parkinson's disease - A new research agenda? Parkinsonism Relat Disord 2024; 118:105904. [PMID: 37925240 DOI: 10.1016/j.parkreldis.2023.105904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 10/21/2023] [Indexed: 11/06/2023]
Affiliation(s)
- Tommaso Ercoli
- Neurological Unit, AOU Sassari, University of Sassari, 07100 Sassari, SS, Italy.
| | - Paolo Solla
- Neurological Unit, AOU Sassari, University of Sassari, 07100 Sassari, SS, Italy
| | - Jon Stone
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Giovanni Defazio
- Department of Translational Biomedicine and Neuroscience, University of Bari, 70121 Bari, BA, Italy
| |
Collapse
|
8
|
Pareés I, Kurtis MM. Functional comorbidity in Parkinson disease: A window of opportunity. Parkinsonism Relat Disord 2024; 118:105937. [PMID: 38087736 DOI: 10.1016/j.parkreldis.2023.105937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 11/18/2023] [Indexed: 01/08/2024]
Affiliation(s)
- Isabel Pareés
- Functional Movement Disorders Unit, Movement Disorders Program, Neurology Department, Hospital Ruber Internacional, Madrid, Spain; Neurology Department, Hospital Ramon y Cajal, Madrid, Spain
| | - Monica M Kurtis
- Functional Movement Disorders Unit, Movement Disorders Program, Neurology Department, Hospital Ruber Internacional, Madrid, Spain.
| |
Collapse
|
9
|
Melo-Thomas L, Schwarting RKW. Paradoxical kinesia may no longer be a paradox waiting for 100 years to be unraveled. Rev Neurosci 2023; 34:775-799. [PMID: 36933238 DOI: 10.1515/revneuro-2023-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/10/2023] [Indexed: 03/19/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder mainly characterized by bradykinesia and akinesia. Interestingly, these motor disabilities can depend on the patient emotional state. Disabled PD patients remain able to produce normal motor responses in the context of urgent or externally driven situations or even when exposed to appetitive cues such as music. To describe this phenomenon Souques coined the term "paradoxical kinesia" a century ago. Since then, the mechanisms underlying paradoxical kinesia are still unknown due to a paucity of valid animal models that replicate this phenomenon. To overcome this limitation, we established two animal models of paradoxical kinesia. Using these models, we investigated the neural mechanisms of paradoxical kinesia, with the results pointing to the inferior colliculus (IC) as a key structure. Intracollicular electrical deep brain stimulation, glutamatergic and GABAergic mechanisms may be involved in the elaboration of paradoxical kinesia. Since paradoxical kinesia might work by activation of some alternative pathway bypassing basal ganglia, we suggest the IC as a candidate to be part of this pathway.
Collapse
Affiliation(s)
- Liana Melo-Thomas
- Experimental and Biological Psychology, Behavioral Neuroscience, Faculty of Psychology, Philipps-University of Marburg, Gutenbergstraße 18, 35032 Marburg, Germany
- Marburg Center for Mind, Brain, and Behavior (MCMBB), Hans-Meerwein-Straße 6, 35032 Marburg, Germany
- Behavioral Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, 14050-220, São Paulo, Brazil
| | - Rainer K W Schwarting
- Experimental and Biological Psychology, Behavioral Neuroscience, Faculty of Psychology, Philipps-University of Marburg, Gutenbergstraße 18, 35032 Marburg, Germany
- Marburg Center for Mind, Brain, and Behavior (MCMBB), Hans-Meerwein-Straße 6, 35032 Marburg, Germany
| |
Collapse
|
10
|
Duysens J, Smits-Engelsman B. Freezing as Seen from the Inside. Mov Disord 2023; 38:1598-1601. [PMID: 37166110 DOI: 10.1002/mds.29444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/28/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023] Open
Affiliation(s)
- Jacques Duysens
- Department of Movement Sciences, Motor Control Laboratory, Movement Control and Neuroplasticity Research Group KU Leuven, Leuven, Belgium
| | - Bouwien Smits-Engelsman
- Department of Health and Rehabilitation Sciences, Faculty of Health Sciences, Division of Physiotherapy, Cape Town University, Cape Town, South Africa
- Department of Physical Activity, Sport and Recreation, Faculty Health Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
11
|
Tosserams A, Bloem BR, Nonnekes J. Compensation Strategies for Gait Impairments in Parkinson's Disease: From Underlying Mechanisms to Daily Clinical Practice. Mov Disord Clin Pract 2023; 10:S56-S62. [PMID: 37637990 PMCID: PMC10448134 DOI: 10.1002/mdc3.13616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/22/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Anouk Tosserams
- Department of Rehabilitation, Center of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CentreNijmegenThe Netherlands
- Department of Neurology, Center of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CentreNijmegenThe Netherlands
| | - Bastiaan R. Bloem
- Department of Neurology, Center of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CentreNijmegenThe Netherlands
| | - Jorik Nonnekes
- Department of Rehabilitation, Center of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CentreNijmegenThe Netherlands
- Department of RehabilitationSint MaartenskliniekNijmegenThe Netherlands
| |
Collapse
|
12
|
Liao JY, Bohnen NI. Is heart rate variability the heart of the matter for freezing of gait? Parkinsonism Relat Disord 2023:105763. [PMID: 37468360 DOI: 10.1016/j.parkreldis.2023.105763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Affiliation(s)
- James Y Liao
- Center for Neurological Restoration, Cleveland Clinic Neurological Institute, Cleveland, OH, USA.
| | - Nicolaas I Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA; VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Tosserams A, Bloem BR, Ehgoetz Martens KA, Helmich RC, Kessels RPC, Shine JM, Taylor NL, Wainstein G, Lewis SJG, Nonnekes J. Modulating arousal to overcome gait impairments in Parkinson's disease: how the noradrenergic system may act as a double-edged sword. Transl Neurodegener 2023; 12:15. [PMID: 36967402 PMCID: PMC10040128 DOI: 10.1186/s40035-023-00347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/28/2023] [Indexed: 03/28/2023] Open
Abstract
In stressful or anxiety-provoking situations, most people with Parkinson's disease (PD) experience a general worsening of motor symptoms, including their gait impairments. However, a proportion of patients actually report benefits from experiencing-or even purposely inducing-stressful or high-arousal situations. Using data from a large-scale international survey study among 4324 people with PD and gait impairments within the online Fox Insight (USA) and ParkinsonNEXT (NL) cohorts, we demonstrate that individuals with PD deploy an array of mental state alteration strategies to cope with their gait impairment. Crucially, these strategies differ along an axis of arousal-some act to heighten, whereas others diminish, overall sympathetic tone. Together, our observations suggest that arousal may act as a double-edged sword for gait control in PD. We propose a theoretical, neurobiological framework to explain why heightened arousal can have detrimental effects on the occurrence and severity of gait impairments in some individuals, while alleviating them in others. Specifically, we postulate that this seemingly contradictory phenomenon is explained by the inherent features of the ascending arousal system: namely, that arousal is related to task performance by an inverted u-shaped curve (the so-called Yerkes and Dodson relationship). We propose that the noradrenergic locus coeruleus plays an important role in modulating PD symptom severity and expression, by regulating arousal and by mediating network-level functional integration across the brain. The ability of the locus coeruleus to facilitate dynamic 'cross-talk' between distinct, otherwise largely segregated brain regions may facilitate the necessary cerebral compensation for gait impairments in PD. In the presence of suboptimal arousal, compensatory networks may be too segregated to allow for adequate compensation. Conversely, with supraoptimal arousal, increased cross-talk between competing inputs of these complementary networks may emerge and become dysfunctional. Because the locus coeruleus degenerates with disease progression, finetuning of this delicate balance becomes increasingly difficult, heightening the need for mental strategies to self-modulate arousal and facilitate shifting from a sub- or supraoptimal state of arousal to improve gait performance. Recognition of this underlying mechanism emphasises the importance of PD-specific rehabilitation strategies to alleviate gait disability.
Collapse
Affiliation(s)
- Anouk Tosserams
- Department of Neurology, Center of Expertise for Parkinson and Movement Disorders, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Rehabilitation, Center of Expertise for Parkinson and Movement Disorders, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Department of Neurology, Center of Expertise for Parkinson and Movement Disorders, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | | | - Rick C Helmich
- Department of Neurology, Center of Expertise for Parkinson and Movement Disorders, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Roy P C Kessels
- Department of Neuropsychology and Rehabilitation Psychology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Medical Psychology and Radboudumc Alzheimer Center, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Vincent Van Gogh Institute for Psychiatry, Venray, The Netherlands
- Klimmendaal Rehabilitation Center, Arnhem, The Netherlands
| | - James M Shine
- Brain and Mind Centre, Parkinson's Disease Research Clinic, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
- Centre for Complex Systems, The University of Sydney, Camperdown, NSW, Australia
| | - Natasha L Taylor
- Brain and Mind Centre, Parkinson's Disease Research Clinic, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Gabriel Wainstein
- Brain and Mind Centre, Parkinson's Disease Research Clinic, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Simon J G Lewis
- Brain and Mind Centre, Parkinson's Disease Research Clinic, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Jorik Nonnekes
- Department of Rehabilitation, Center of Expertise for Parkinson and Movement Disorders, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
- Department of Rehabilitation, Sint Maartenskliniek, Nijmegen, The Netherlands.
| |
Collapse
|
14
|
Waku I, Reimer AE, de Oliveira AR. Effects of Immediate Aversive Stimulation on Haloperidol-Induced Catalepsy in Rats. Front Behav Neurosci 2022; 16:867180. [PMID: 35481243 PMCID: PMC9036068 DOI: 10.3389/fnbeh.2022.867180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/17/2022] [Indexed: 11/30/2022] Open
Abstract
In animal models, the administration of the dopaminergic D2 antagonist haloperidol affects the nigrostriatal pathway, inducing catalepsy, a state of immobility similar to Parkinson’s disease (PD) bradykinesia and akinesia. In PD, the motor impairments are due to difficulties in selecting and executing motor actions, associated with dopamine loss in basal ganglia and cortical targets. Motor and affective limbic networks seem to be integrated via a striato-nigro-striatal network, therefore, it is not surprising that the motor impairments in PD can be influenced by the patient’s emotional state. Indeed, when exposed to aversive stimuli or life-threatening events, immobile patients are capable of performing sudden movements, a phenomenon known as paradoxical kinesia. Thus, the present study investigated the effects of unconditioned and conditioned aversive stimulation on haloperidol-induced catalepsy in rats. First, male Wistar rats received intraperitoneal administration of saline or haloperidol (1 or 2 mg/kg) and were evaluated in the catalepsy bar test to assess the cataleptic state induced by the different doses of haloperidol over time. Next, we evaluated the effects of two types of unconditioned aversive stimuli–100 lux light (1 and 20 s) or 0.6 mA footshock (1 s)–on the catalepsy. Finally, we evaluated the effects of light conditioned stimuli (Light-CS), previously paired with footshocks, on the cataleptic state. Catalepsy was observed following haloperidol 1 and 2 mg/kg administration. Exposure to footshocks, but not to light, significantly reduced step-down latency during the catalepsy test. Although unconditioned light did not affect catalepsy, paired Light-CS did reduce step-down latency. Here, we have provided evidence of face validity for the study of paradoxical kinesia. In addition to demonstrating that immediate exposure to an aversive stimulus is capable of disrupting the cataleptic state, our findings show that haloperidol-induced catalepsy seems to be differently influenced depending on the modality of aversive stimulation. Our data suggest that the selective recruitment of threat response systems may bypass the dysfunctional motor circuit leading to the activation of alternative routes to drive movement.
Collapse
Affiliation(s)
- Isabelle Waku
- Department of Psychology, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Adriano E. Reimer
- Department of Psychology, Federal University of São Carlos (UFSCar), São Carlos, Brazil
- Institute of Neuroscience and Behavior (INeC), Ribeirão Preto, Brazil
| | - Amanda R. de Oliveira
- Department of Psychology, Federal University of São Carlos (UFSCar), São Carlos, Brazil
- Institute of Neuroscience and Behavior (INeC), Ribeirão Preto, Brazil
- *Correspondence: Amanda R. de Oliveira,
| |
Collapse
|
15
|
Tosserams A, Weerdesteyn V, Bal T, Bloem BR, Solis‐Escalante T, Nonnekes J. Cortical correlates of gait compensation strategies in Parkinson's disease. Ann Neurol 2022; 91:329-341. [PMID: 35067999 PMCID: PMC9306676 DOI: 10.1002/ana.26306] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/07/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022]
Abstract
Objective Gait impairment in persons with Parkinson disease is common and debilitating. Compensation strategies (eg, external cues) are an essential part of rehabilitation, but their underlying mechanisms remain unclear. Using electroencephalography (EEG), we explored the cortical correlates of 3 categories of strategies: external cueing, internal cueing, and action observation. Methods Eighteen participants with Parkinson disease and gait impairment were included. We recorded 126‐channel EEG during both stance and gait on a treadmill under 4 conditions: (1) uncued, (2) external cueing (listening to a metronome), (3) internal cueing (silent rhythmic counting), and (4) action observation (observing another person walking). To control for the effects of sensory processing of the cues, we computed relative power changes as the difference in power spectral density between walking and standing for each condition. Results Relative to uncued gait, the use of all 3 compensation strategies induced a decrease of beta band activity in sensorimotor areas, indicative of increased cortical activation. Parieto‐occipital alpha band activity decreased with external and internal cueing, and increased with action observation. Only internal cueing induced a change in frontal cortical activation, showing a decrease of beta band activity compared to uncued gait. Interpretation The application of compensation strategies resulted in changed cortical activity compared to uncued gait, which could not be solely attributed to sensory processing of the cueing modality. Our findings suggest there are multiple routes to control gait, and different compensation strategies seem to rely on different cortical mechanisms to achieve enhanced central motor activation in persons with Parkinson disease. ANN NEUROL 2022;91:329–341
Collapse
Affiliation(s)
- Anouk Tosserams
- Department of Neurology Radboud University Medical Centre, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour; Center of Expertise for Parkinson & Movement Disorders
- Department of Rehabilitation Radboud University Medical Centre, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour; Center of Expertise for Parkinson & Movement Disorders
| | - Vivian Weerdesteyn
- Department of Rehabilitation Radboud University Medical Centre, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour; Center of Expertise for Parkinson & Movement Disorders
| | - Tess Bal
- Department of Rehabilitation Radboud University Medical Centre, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour; Center of Expertise for Parkinson & Movement Disorders
| | - Bastiaan R. Bloem
- Department of Neurology Radboud University Medical Centre, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour; Center of Expertise for Parkinson & Movement Disorders
| | - Teodoro Solis‐Escalante
- Department of Rehabilitation Radboud University Medical Centre, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour; Center of Expertise for Parkinson & Movement Disorders
| | - Jorik Nonnekes
- Department of Rehabilitation Radboud University Medical Centre, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour; Center of Expertise for Parkinson & Movement Disorders
- Department of Rehabilitation Sint Maartenskliniek, Nijmegen The Netherlands
| |
Collapse
|
16
|
Sintini I, Kaufman K, Botha H, Martin PR, Loushin SR, Senjem ML, Reid RI, Schwarz CG, Jack CR, Lowe VJ, Josephs KA, Whitwell JL, Ali F. Neuroimaging correlates of gait abnormalities in progressive supranuclear palsy. Neuroimage Clin 2021; 32:102850. [PMID: 34655905 PMCID: PMC8527041 DOI: 10.1016/j.nicl.2021.102850] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/24/2021] [Accepted: 10/02/2021] [Indexed: 11/20/2022]
Abstract
Progressive supranuclear palsy is a neurodegenerative disorder characterized primarily by tau inclusions and neurodegeneration in the midbrain, basal ganglia, thalamus, premotor and frontal cortex. Neurodegenerative change in progressive supranuclear palsy has been assessed using MRI. Degeneration of white matter tracts is evident with diffusion tensor imaging and PET methods have been used to assess brain metabolism or presence of tau protein deposits. Patients with progressive supranuclear palsy present with a variety of clinical syndromes; however early onset of gait impairments and postural instability are common features. In this study we assessed the relationship between multimodal imaging biomarkers (i.e., MRI atrophy, white matter tracts degeneration, flortaucipir-PET uptake) and laboratory-based measures of gait and balance abnormalities in a cohort of nineteen patients with progressive supranuclear palsy, using univariate and multivariate statistical analyses. The PSP rating scale and its gait midline sub-score were strongly correlated to gait abnormalities but not to postural imbalance. Principal component analysis on gait variables identified velocity, stride length, gait stability ratio, length of gait phases and dynamic stability as the main contributors to the first component, which was associated with diffusion tensor imaging measures in the posterior thalamic radiation, external capsule, superior cerebellar peduncle, superior fronto-occipital fasciculus, body and splenium of the corpus callosum and sagittal stratum, with MRI volumes in frontal and precentral regions and with flortaucipir-PET uptake in the precentral gyrus. The main contributor to the second principal component was cadence, which was higher in patients presenting more abnormalities on mean diffusivity: this unexpected finding might be related to compensatory gait strategies adopted in progressive supranuclear palsy. Postural imbalance was the main contributor to the third principal component, which was related to flortaucipir-PET uptake in the left paracentral lobule and supplementary motor area and white matter disruption in the superior cerebellar peduncle, putamen, pontine crossing tract and corticospinal tract. A partial least square model identified flortaucipir-PET uptake in midbrain, basal ganglia and thalamus as the main correlate of speed and dynamic component of gait in progressive supranuclear palsy. Although causality cannot be established in this analysis, our study sheds light on neurodegeneration of brain regions and white matter tracts that underlies gait and balance impairment in progressive supranuclear palsy.
Collapse
Affiliation(s)
- Irene Sintini
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Kenton Kaufman
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Peter R Martin
- Department of Health Science Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Stacy R Loushin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; Department of Information Technology, Mayo Clinic, Rochester MN 55905, USA
| | - Robert I Reid
- Department of Information Technology, Mayo Clinic, Rochester MN 55905, USA
| | | | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Farwa Ali
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
17
|
Smith MD, Brazier DE, Henderson EJ. Current Perspectives on the Assessment and Management of Gait Disorders in Parkinson's Disease. Neuropsychiatr Dis Treat 2021; 17:2965-2985. [PMID: 34584414 PMCID: PMC8464370 DOI: 10.2147/ndt.s304567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/25/2021] [Indexed: 12/31/2022] Open
Abstract
Gait dysfunction is a key defining feature of Parkinson's disease (PD), and is associated with symptoms of freezing and an increased risk of falls. In this narrative review, we cover the putative mechanisms of gait dysfunction in PD, the assessment of gait abnormalities, and the management of symptoms caused by the inherent difficulty in walking. Our understanding of the causes of gait problems in PD has progressed in recent times, moving from neurocognitive theory to correlates of affected neuronal pathways. In particular, this can be shown to correspond with abnormalities in responses to dual-task paradigms and dysfunction in cholinergic signaling. Great progress has been made in the sophistication and precision of gait assessment; however, it has firmly remained in the research domain. There is significant momentum behind wearable technologies that can be used by patients in their own environment, acting as digital biomarkers that can not only reflect progression but also independently discriminate PD from non-PD individuals. The treatment of gait dysfunction has historically relied on physical therapies and training combined with a view to mitigating the impact of such consequences as falls. Pharmacological therapies that are the mainstay of treatment in PD have tended to address symptoms like bradykinesia; however, optimization of dopaminergic therapies likely has a positive effect on quality of gait. Other targets have been assessed with the goal of improving gait, of which medications that improve cholinergic signaling appear most promising. Neuromodulation techniques are increasingly used in the form of deep-brain stimulation; however, standard targets, such as the globus pallidus interna, have a modest effect on gait. Considerable benefit has been seen through targeting the pedunculopontine nucleus, and a dual-target approach may be warranted. Stimulation of the spinal cord and brain through direct or magnetic approaches has been assessed, but requires further evidence.
Collapse
Affiliation(s)
- Matthew D Smith
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.,Older People's Unit, Royal United Hospital NHS Foundation Trust, Bath, UK
| | - Danielle E Brazier
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Emily J Henderson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.,Older People's Unit, Royal United Hospital NHS Foundation Trust, Bath, UK
| |
Collapse
|