1
|
Tang CC, Nakano Y, Vo A, Nguyen N, Schindlbeck KA, Mattis PJ, Poston KL, Gagnon JF, Postuma RB, Niethammer M, Ma Y, Peng S, Dhawan V, Eidelberg D. Longitudinal network changes and phenoconversion risk in isolated REM sleep behavior disorder. Nat Commun 2024; 15:10797. [PMID: 39737936 DOI: 10.1038/s41467-024-54695-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/18/2024] [Indexed: 01/01/2025] Open
Abstract
Isolated rapid eye movement sleep behavior disorder is a prodrome of α-synucleinopathies. Using positron emission tomography, we assessed changes in Parkinson's disease-related motor and cognitive metabolic networks and caudate/putamen dopaminergic input in a 4-year longitudinal imaging study of 13 male subjects with this disorder. We also correlated times to phenoconversion with baseline network expression in an independent validation sample. Expression values of both Parkinson's disease-related networks increased over time while dopaminergic input gradually declined in the longitudinal cohort. While abnormal functional connections were identified at baseline in both networks, others bridging these networks appeared later. These changes resulted in compromised information flow through the networks years before phenoconversion. We noted an inverse correlation between baseline network expression and times to phenoconversion to Parkinson's disease or dementia with Lewy bodies in the validation sample. Here, we show that the rate of network progression is a useful outcome measure in disease modification trials.
Collapse
Affiliation(s)
- Chris C Tang
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Yoshikazu Nakano
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - An Vo
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Nha Nguyen
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Katharina A Schindlbeck
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, München, Germany
| | - Paul J Mattis
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Kathleen L Poston
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jean-François Gagnon
- Centre d'Études Avancées en Médecine du Sommeil, Hôpital du Sacré-Cœur de Montréal, Montréal, QC, Canada
- Department of Psychology, Université du Québec à Montréal, Montréal, QC, Canada
| | - Ronald B Postuma
- Centre d'Études Avancées en Médecine du Sommeil, Hôpital du Sacré-Cœur de Montréal, Montréal, QC, Canada
- Department of Psychology, Université du Québec à Montréal, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| | - Martin Niethammer
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Yilong Ma
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Shichun Peng
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Vijay Dhawan
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - David Eidelberg
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.
- Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
2
|
Yoo HS, Lee YG, Sohn YH, Yun M, Cha J, Lee PH. Association of Relative Brain Hyperperfusion Independent of Dopamine Depletion With Motor Dysfunction in Patients With Parkinson Disease. Neurology 2024; 103:e210077. [PMID: 39602666 DOI: 10.1212/wnl.0000000000210077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/25/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Parkinson disease (PD) exhibits a characteristic pattern of brain perfusion or metabolism, thereby being considered network disorder. Using dual-phase N-(3-fluoropropyl)-2β-carbomethoxy-3β-(4-iodophenyl) nortropane (18F-FP-CIT) PET, we investigated the role of brain perfusion in motor symptoms and disease progression, independent of striatal dopamine depletion. METHODS We recruited patients with de novo PD and healthy controls (HCs) who underwent dual-phase 18F-FP-CIT PET and brain MRI. All patients underwent the Unified PD Rating Scale (UPDRS) and were followed up for ≥5 years. A subset of patients (n = 51) underwent follow-up UPDRS and brain MRI. Early-phase images evaluated brain perfusion, while delayed-phase images evaluated dopamine transporter availability. We compared early-phase 18F-FP-CIT uptakes (SUVRE) between PD and HC groups. Then, we investigated the association of SVURE and delayed-phase 18F-FP-CIT uptakes (SUVRD) with motor symptoms in PD. Standardized residuals (SRs) of the SUVRE in the hyperperfusion region (SUVRE-HYPER) were obtained from the linear regression of the SUVRD in the posterior putamen (SUVRD-PP), the main region of dopamine deficit. Subsequently, we investigated the association of the SR with baseline and longitudinal motor symptoms and brain atrophy. RESULTS Compared with HC (n = 30), patients with PD (n = 168) showed relative hyperperfusion in the primary motor cortex, thalamus, pons, hippocampus, and cerebellum and relative hypoperfusion in the prefrontal and temporo-parieto-occipital cortices, which is consistent with a PD-related metabolic pattern. Motor symptoms were negatively correlated with SUVRD-PP (standardized β = 0.402, p < 0.001) and positively correlated with SUVRE-HYPER (standardized β = 0.292, p < 0.001), but not with SUVRE in the hypoperfusion regions. Regardless of SUVRD-PP, SUVRE-HYPER was independently associated with motor dysfunction, especially rigidity (standardized β = 0.214, p = 0.012). The SR of SUVRE-HYPER was significantly associated with the UPDRS part III total score. Longitudinally, the baseline SR of SUVRE-HYPER was not associated with long-term motor complications but with an increase in the UPDRS part III total score (p = 0.017) and a decrease in brain volume. DISCUSSION These results suggest that aberrant relative brain hyperperfusion, independent of striatal dopamine depletion, was associated with baseline and longitudinal motor deficits and progression of neurodegeneration in PD.
Collapse
Affiliation(s)
- Han Soo Yoo
- From the Department of Neurology (H.S.Y.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (Y.L.), Ilsan Paik Hospital, Inje University College of Medicine, Goyang; Department of Neurology (Y.H.S., P.H.L.), and Department of Nuclear Medicine (M.Y.), Yonsei University College of Medicine, Seoul, South Korea; and Nash Family Center for Advanced Circuit Therapeutics (J.C.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Young-Gun Lee
- From the Department of Neurology (H.S.Y.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (Y.L.), Ilsan Paik Hospital, Inje University College of Medicine, Goyang; Department of Neurology (Y.H.S., P.H.L.), and Department of Nuclear Medicine (M.Y.), Yonsei University College of Medicine, Seoul, South Korea; and Nash Family Center for Advanced Circuit Therapeutics (J.C.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Young H Sohn
- From the Department of Neurology (H.S.Y.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (Y.L.), Ilsan Paik Hospital, Inje University College of Medicine, Goyang; Department of Neurology (Y.H.S., P.H.L.), and Department of Nuclear Medicine (M.Y.), Yonsei University College of Medicine, Seoul, South Korea; and Nash Family Center for Advanced Circuit Therapeutics (J.C.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mijin Yun
- From the Department of Neurology (H.S.Y.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (Y.L.), Ilsan Paik Hospital, Inje University College of Medicine, Goyang; Department of Neurology (Y.H.S., P.H.L.), and Department of Nuclear Medicine (M.Y.), Yonsei University College of Medicine, Seoul, South Korea; and Nash Family Center for Advanced Circuit Therapeutics (J.C.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jungho Cha
- From the Department of Neurology (H.S.Y.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (Y.L.), Ilsan Paik Hospital, Inje University College of Medicine, Goyang; Department of Neurology (Y.H.S., P.H.L.), and Department of Nuclear Medicine (M.Y.), Yonsei University College of Medicine, Seoul, South Korea; and Nash Family Center for Advanced Circuit Therapeutics (J.C.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Phil Hyu Lee
- From the Department of Neurology (H.S.Y.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (Y.L.), Ilsan Paik Hospital, Inje University College of Medicine, Goyang; Department of Neurology (Y.H.S., P.H.L.), and Department of Nuclear Medicine (M.Y.), Yonsei University College of Medicine, Seoul, South Korea; and Nash Family Center for Advanced Circuit Therapeutics (J.C.), Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
3
|
Yoo HS, Kim HK, Na HK, Kang S, Park M, Ahn SJ, Lee JH, Ryu YH, Lyoo CH. Association of Striatal Dopamine Depletion and Brain Metabolism Changes With Motor and Cognitive Deficits in Patients With Parkinson Disease. Neurology 2024; 103:e210105. [PMID: 39602663 DOI: 10.1212/wnl.0000000000210105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/30/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Parkinson disease (PD) shows degeneration of dopaminergic neurons in the substantia nigra and characteristic changes in brain metabolism. However, how they correlated and affect motor and cognitive dysfunction in PD has not yet been well elucidated. METHODS In this single-site cross-sectional study, we enrolled patients with PD who underwent N-(3-[18F]fluoropropyl)-2β-carbomethoxy-3β-(4-iodophenyl)nortropane (18F-FP-CIT) PET, 18F-fluorodeoxyglucose (18F-FDG) PET, the Movement Disorder Society-sponsored Unified PD Rating Scale examination, and detailed neuropsychological testing. General linear models and mediation analyses were implemented to investigate the association between striatal dopamine transporter availability, brain metabolism, and parkinsonian motor subscores or domain-specific cognitive scores. Healthy controls (HCs) who underwent 18F-FP-CIT and 18F-FDG PET were also enrolled. RESULTS Compared with HCs (n = 38, mean age 67.3 ± 5.9 years; 19 women), patients with PD (n = 143, mean age 69.0 ± 9.0 years; 69 women) characteristically showed relative brain hypermetabolism and hypometabolism that correlated with striatal dopamine transporter availability. As the loss of putaminal dopamine transporter availability increased, brain metabolism relatively increased from the paracentral lobule, pons, and limbic system to the cerebellum and anterior cingulate cortex, whereas brain metabolism relatively decreased from the lateral temporal and frontal cortices to the occipital and inferior parietal cortices. Reduced putaminal dopamine was associated with a higher rigidity subscore by the mediation of relative hypermetabolism in the paracentral lobule (standardized indirect effect, β = -0.070, p = 0.025) and directly associated with a higher bradykinesia subscore (β = -0.274, p = 0.011). Reduced caudate dopamine was associated with a higher axial subscore (β = -0.125, p = 0.004) and lower executive (β = 0.229, p = 0.004), visuospatial (β = 0.139, p = 0.006), and memory (β = 0.140, p = 0.004) domain scores by the mediation of relative brain hypometabolism. The tremor subscore and language and attention scores were not associated with striatal dopamine availability or brain metabolism. DISCUSSION Our findings suggest that in PD, striatal dopamine depletion and altered brain metabolism are closely linked, that changes in brain metabolism occur in specific spatial patterns depending on the degree of dopamine depletion, and that both differentially affect motor and cognitive dysfunction depending on each symptom.
Collapse
Affiliation(s)
- Han Soo Yoo
- From the Department of Neurology (H.S.Y., H.K.N., S.K., C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.-K.K.), Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine; Department of Radiology (M.P., S.J.A.), and Department of Nuclear Medicine (J.-H.L., Y.H.R.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Han-Kyeol Kim
- From the Department of Neurology (H.S.Y., H.K.N., S.K., C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.-K.K.), Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine; Department of Radiology (M.P., S.J.A.), and Department of Nuclear Medicine (J.-H.L., Y.H.R.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Han Kyu Na
- From the Department of Neurology (H.S.Y., H.K.N., S.K., C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.-K.K.), Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine; Department of Radiology (M.P., S.J.A.), and Department of Nuclear Medicine (J.-H.L., Y.H.R.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Sungwoo Kang
- From the Department of Neurology (H.S.Y., H.K.N., S.K., C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.-K.K.), Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine; Department of Radiology (M.P., S.J.A.), and Department of Nuclear Medicine (J.-H.L., Y.H.R.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Mina Park
- From the Department of Neurology (H.S.Y., H.K.N., S.K., C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.-K.K.), Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine; Department of Radiology (M.P., S.J.A.), and Department of Nuclear Medicine (J.-H.L., Y.H.R.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Jun Ahn
- From the Department of Neurology (H.S.Y., H.K.N., S.K., C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.-K.K.), Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine; Department of Radiology (M.P., S.J.A.), and Department of Nuclear Medicine (J.-H.L., Y.H.R.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae-Hoon Lee
- From the Department of Neurology (H.S.Y., H.K.N., S.K., C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.-K.K.), Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine; Department of Radiology (M.P., S.J.A.), and Department of Nuclear Medicine (J.-H.L., Y.H.R.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Hoon Ryu
- From the Department of Neurology (H.S.Y., H.K.N., S.K., C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.-K.K.), Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine; Department of Radiology (M.P., S.J.A.), and Department of Nuclear Medicine (J.-H.L., Y.H.R.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Chul Hyoung Lyoo
- From the Department of Neurology (H.S.Y., H.K.N., S.K., C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.-K.K.), Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine; Department of Radiology (M.P., S.J.A.), and Department of Nuclear Medicine (J.-H.L., Y.H.R.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
4
|
Orso B, Mattioli P, Yoon EJ, Kim YK, Kim H, Shin JH, Kim R, Famà F, Brugnolo A, Massa F, Chiaravalloti A, Fernandes M, Spanetta M, Placidi F, Pardini M, Bauckneht M, Morbelli S, Lee JY, Liguori C, Arnaldi D. Progression trajectories from prodromal to overt synucleinopathies: a longitudinal, multicentric brain [ 18F]FDG-PET study. NPJ Parkinsons Dis 2024; 10:200. [PMID: 39448609 PMCID: PMC11502916 DOI: 10.1038/s41531-024-00813-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
The phenoconversion trajectory from idiopathic/isolated Rapid eye movement (REM) sleep behavior disorder (iRBD) towards either Parkinson's Disease (PD) or Dementia with Lewy Bodies (DLB) is currently uncertain. We investigated the capability of baseline brain [18F]FDG-PET in differentiating between iRBD patients eventually phenoconverting to PD or DLB, by deriving the denovoPDRBD-related pattern (denovoPDRBD-RP) from 32 de novo PD patients; and the denovoDLBRBD-RP from 30 de novo DLB patients, both with evidence of RBD at diagnosis. To explore [18F]FDG-PET phenoconversion trajectories prediction power, we applied these two patterns on a group of 115 iRBD patients followed longitudinally. At follow-up (25.6 ± 17.2 months), 42 iRBD patients progressed through overt alpha-synucleinopathy (21 iRBD-PD and 21 iRBD-DLB converters), while 73 patients remained stable at the last follow-up visit (43.2 ± 27.6 months). At survival analysis, both patterns were significantly associated with the phenoconversion trajectories. Brain [18F]FDG-PET is a promising biomarker to study progression trajectories in the alpha-synucleinopathy continuum.
Collapse
Grants
- MNESYS (PE0000006) Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- PRIN 2022, Protocol N. 20228XKKCM_001 Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- MNESYS (PE0000006) Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- Fondi per la Ricerca Corrente Ministero della Salute (Ministry of Health, Italy)
- PNRR POC Ministero della Salute (Ministry of Health, Italy)
- 5x1000 founding scheme Ministero della Salute (Ministry of Health, Italy)
- NRF-2022R1A2C4001834 National Research Foundation of Korea (NRF)
Collapse
Affiliation(s)
- Beatrice Orso
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.
| | - Pietro Mattioli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Neurophysiopathology Unit, IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - Eun-Jin Yoon
- Memory Network Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine and Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Heejung Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine and Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Jung Hwan Shin
- Department of Neurology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ryul Kim
- Department of Neurology, Inha University Hospital, Incheon, Republic of Korea
| | - Francesco Famà
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Neurophysiopathology Unit, IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - Andrea Brugnolo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Clinical Psychology Unit, IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - Federico Massa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Clinical Neurology Unit, IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - Agostino Chiaravalloti
- IRCCS Neuromed, Pozzilli, Italy
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Mariana Fernandes
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Fabio Placidi
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
- Sleep Medicine Center, Neurology Unit, University Hospital "Tor Vergata", Rome, Italy
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Clinical Neurology Unit, IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - Matteo Bauckneht
- Department of Health Science (DISSAL), University of Genoa, Genoa, Italy
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - Silvia Morbelli
- Nuclear Medicine Unit, AOU Città Della Salute e Della Scienza di Torino, Torino, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Jee-Young Lee
- Department of Neurology, Seoul National University College of Medicine and Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
- Sleep Medicine Center, Neurology Unit, University Hospital "Tor Vergata", Rome, Italy
| | - Dario Arnaldi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Neurophysiopathology Unit, IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| |
Collapse
|
5
|
Churchill L, Chen YC, Lewis SJG, Matar E. Understanding REM Sleep Behavior Disorder through Functional MRI: A Systematic Review. Mov Disord 2024; 39:1679-1696. [PMID: 38934216 DOI: 10.1002/mds.29898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/08/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Neuroimaging studies in rapid eye movement sleep behavior disorder (RBD) can inform fundamental questions about the pathogenesis of Parkinson's disease (PD). Across modalities, functional magnetic resonance imaging (fMRI) may be better suited to identify changes between neural networks in the earliest stages of Lewy body diseases when structural changes may be subtle or absent. This review synthesizes the findings from all fMRI studies of RBD to gain further insight into the pathophysiology and progression of Lewy body diseases. A total of 32 studies were identified using a systematic review conducted according to PRISMA guidelines between January 2000 to February 2024 for original fMRI studies in patients with either isolated RBD (iRBD) or RBD secondary to PD. Common functional alterations were detectable in iRBD patients compared with healthy controls across brainstem nuclei, basal ganglia, frontal and occipital lobes, and whole brain network measures. Patients with established PD and RBD demonstrated decreased functional connectivity across the whole brain and brainstem nuclei, but increased functional connectivity in the cerebellum and frontal lobe compared with those PD patients without RBD. Finally, longitudinal changes in resting state functional connectivity were found to track with disease progression. Currently, fMRI studies in RBD have demonstrated early signatures of neurodegeneration across both motor and non-motor pathways. Although more work is needed, such findings have the potential to inform our understanding of disease, help to distinguish between prodromal PD and prodromal dementia with Lewy bodies, and support the development of fMRI-based outcome measures of phenoconversion and progression in future disease modifying trials. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Lachlan Churchill
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Yu-Chi Chen
- Brain Dynamic Centre, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Simon J G Lewis
- Macquarie Medical School and Macquarie University Centre for Parkinson's Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Elie Matar
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Centre for Integrated Research and Understanding of Sleep (CIRUS), Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Arnaldi D, Iranzo A, Nobili F, Postuma RB, Videnovic A. Developing disease-modifying interventions in idiopathic REM sleep behavior disorder and early synucleinopathy. Parkinsonism Relat Disord 2024; 125:107042. [PMID: 38943771 DOI: 10.1016/j.parkreldis.2024.107042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/01/2024]
Abstract
Alpha-synucleinopathies are prevalent neurological disorders that cause significant disability, leading to progressive clinical deterioration that is currently managed solely through symptomatic treatment. Efforts to evaluate disease-modifying therapies during the established stage of the disease have not yielded positive outcomes in terms of clinical or imaging efficacy endpoints. However, alpha-synucleinopathies have a long prodromal phase that presents a promising opportunity for intervention with disease-modifying therapies. The presence of polysomnography-confirmed REM sleep behavior disorder (RBD) is the most reliable risk factor for identifying individuals in the prodromal stage of alpha-synucleinopathy. This paper discusses the rationale behind targeting idiopathic/isolated RBD in disease-modifying trials and outlines possible study designs, including strategies for patient stratification, selection of biomarkers to assess disease progression and patient eligibility, as well as the identification of suitable endpoints. Additionally, the potential targets for disease-modifying treatment in alpha-synucleinopathies are summarized.
Collapse
Affiliation(s)
- Dario Arnaldi
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy; Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Alex Iranzo
- Neurology Service, Sleep Disorder Centre, Hospital Clinic Barcelona, Universitat de Barcelona, IDIBAPS, CIBERNED: CB06/05/0018-ISCIII, Barcelona, Spain
| | - Flavio Nobili
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| | - Ronald B Postuma
- Department of Neurology, McGill University, Montreal Neurological Institute, Montreal, Canada; Centre d'Études Avancées en Médecine du Sommeil, Hôpital du Sacré-Cœur de Montréal, Montréal, Canada
| | - Aleksandar Videnovic
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Park K, Shin JH, Byun JI, Jeong E, Kim HJ, Jung KY. Electroencephalographic spectro-spatial covariance patterns related to phenoconversion in isolated rapid eye movement sleep behavior disorder and their longitudinal trajectories in α-synucleinopathies. Sleep 2024; 47:zsae052. [PMID: 38482885 DOI: 10.1093/sleep/zsae052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/05/2024] [Indexed: 06/14/2024] Open
Abstract
STUDY OBJECTIVES This study aimed to identify electroencephalographic (EEG) spectro-spatial covariance patterns associated with phenoconversion in isolated rapid eye movement sleep behavior disorder (iRBD) patients and explore their longitudinal trajectories within α-synucleinopathies. METHODS We assessed 47 participants, including 35 patients with iRBD and 12 healthy controls (HC), through baseline eye-closed resting EEGs. Patients with iRBD underwent follow-up EEG assessments and 18 patients with iRBD converted (12 to Parkinson's disease (PD), 6 to dementia with Lewy bodies [DLB]) during follow-up. We derived EEG spectro-spatial covariance patterns for PD-RBD and DLB-RBD from converters and HC. Correlations with motor and cognitive function, baseline distinctions among iRBD converters and nonconverters, and longitudinal trajectories were examined. RESULTS At baseline, converters exhibited higher PD-RBD and DLB-RBD beta2 pattern scores compared to nonconverters (each area under curve [AUC] = 0.7751). The delta and alpha spatial patterns effectively distinguished both PD and DLB converters from HC, with the alpha pattern showing high discriminative power (AUC = 0.9097 for PD-RBD, 0.9306 for DLB-RBD). Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale part III scores correlated positively with PD-RBD and DLB-RBD delta patterns (Spearman's rho = 0.688, p = 0.00014; rho = 0.539, p = 0.0055, respectively), with age and sex as cofactors. Distinct trajectories emerged during follow-up among PD converters, DLB converters, and iRBD nonconverters. CONCLUSIONS Unique EEG spectro-spatial patterns specific to PD-RBD and DLB-RBD offer potential as predictive markers for phenoconversion to α-synucleinopathies in iRBD.
Collapse
Affiliation(s)
- Kyoungeun Park
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, South Korea
| | - Jung Hwan Shin
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung-Ick Byun
- Department of Neurology, Kyung Hee University Hospital at Gangdong, Seoul, South Korea
| | - El Jeong
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, South Korea
| | - Han-Joon Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Ki-Young Jung
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, South Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
8
|
Eidelberg D, Tang C, Nakano Y, Vo A, Nguyen N, Schindlbeck K, Poston K, Gagnon JF, Postuma R, Niethammer M, Ma Y, Peng S, Dhawan V. Longitudinal Network Changes and Phenoconversion Risk in Isolated REM Sleep Behavior Disorder. RESEARCH SQUARE 2024:rs.3.rs-4427198. [PMID: 38853923 PMCID: PMC11160876 DOI: 10.21203/rs.3.rs-4427198/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Isolated rapid eye movement sleep behavior disorder (iRBD) is a prodromal syndrome for Parkinson's disease (PD) and related α-synucleinopathies. We conducted a longitudinal imaging study of network changes in iRBD and their relationship to phenoconversion. Expression levels for the PD-related motor and cognitive networks (PDRP and PDCP) were measured at baseline, 2 and 4 years, along with dopamine transporter (DAT) binding. PDRP and PDCP expression increased over time, with higher values in the former network. While abnormal functional connections were identified initially within the PDRP, others bridging the two networks appeared later. A model based on the rates of PDRP progression and putamen dopamine loss predicted phenoconversion within 1.2 years in individuals with iRBD. In aggregate, the data suggest that maladaptive reorganization of brain networks takes place in iRBD years before phenoconversion. Network expression and DAT binding measures can be used together to assess phenoconversion risk in these individuals.
Collapse
Affiliation(s)
| | - Chris Tang
- The Feinstein Institutes for Medical Research
| | | | - An Vo
- The Feinstein Institutes for Medical Research
| | | | | | | | | | | | | | - Yilong Ma
- Center for Neurosciences, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Shichun Peng
- Center for Neurosciences, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | | |
Collapse
|
9
|
Donzuso G, Cicero CE, Giuliano L, Squillaci R, Luca A, Palmucci S, Basile A, Lanza G, Ferri R, Zappia M, Nicoletti A. Neuroanatomical findings in isolated REM sleep behavior disorder and early Parkinson's disease: a Voxel-based morphometry study. Brain Imaging Behav 2024; 18:83-91. [PMID: 37897654 PMCID: PMC10844466 DOI: 10.1007/s11682-023-00815-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2023] [Indexed: 10/30/2023]
Abstract
Isolated rapid eye movement (REM) sleep behavior disorder (iRBD) is a parasomnia characterized by loss of physiological atonia of skeletal muscles with abnormal behaviors arising during REM sleep. RBD is often the early manifestation of neurodegenerative diseases, particularly alpha-synucleinopathies, such as Parkinson's disease (PD). Both structural and functional neuroimaging studies suggest that iRBD might share, or even precede, some of the features commonly found in PD, although without a definitive conclusion. Aim of the study is to evaluate the presence of structural abnormalities involving cortical and subcortical areas in PD patients with RBD and iRBD. Patients with video-polysomnographic (VPSG)-confirmed iRBD, and patients with a diagnosis of PD were recruited. In all PD patients, the presence of probable RBD was assessed during the follow-up visits (PD/pRBD). A group of healthy controls (HC) subjects was also recruited. Each subject underwent a structural brain MRI using a 3-D T1-weighted spoiled gradient echo sequence. Twenty-three patients with iRBD, 24 PD/pRBD, and 26 HC were enrolled. Voxel-based morphometry-AnCOVA analysis revealed clusters of grey matter changes in iRBD and PD/pRBD compared to HC in several regions, involving mainly the frontal and temporal regions. The involvement of cortical brain structures associated to the control of sleep cycle and REM stage both in PD/pRBD and iRBD might suggest the presence of a common structural platform linking iRBD and PD, although this pattern may not underlie exclusively RBD-related features. Further longitudinal studies are needed to clarify the patterns of changes occurring at different time points of RBD-related neurodegeneration.
Collapse
Affiliation(s)
- Giulia Donzuso
- Department of Medical, Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Calogero E Cicero
- Department of Medical, Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Loretta Giuliano
- Department of Medical, Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Raffaele Squillaci
- Department of Medical, Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Antonina Luca
- Department of Medical, Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Stefano Palmucci
- Radiodiagnostic and Radiotherapy Unit, University Hospital "Policlinico-San Marco", Via Santa Sofia 78, 95123, Catania, Italy
| | - Antonello Basile
- Radiodiagnostic and Radiotherapy Unit, University Hospital "Policlinico-San Marco", Via Santa Sofia 78, 95123, Catania, Italy
| | - Giuseppe Lanza
- Sleep Research Center, Department of Neurology IC, Oasi Research Institute - IRCCS, Troina, Italy
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95123, Catania, Italy
| | - Raffaele Ferri
- Sleep Research Center, Department of Neurology IC, Oasi Research Institute - IRCCS, Troina, Italy
| | - Mario Zappia
- Department of Medical, Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Alessandra Nicoletti
- Department of Medical, Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via Santa Sofia 78, 95123, Catania, Italy.
| |
Collapse
|
10
|
Rahayel S, Postuma R, Baril AA, Misic B, Pelletier A, Soucy JP, Montplaisir J, Dagher A, Gagnon JF. 99mTc-HMPAO SPECT Perfusion Signatures Associated With Clinical Progression in Patients With Isolated REM Sleep Behavior Disorder. Neurology 2024; 102:e208015. [PMID: 38315966 PMCID: PMC10890831 DOI: 10.1212/wnl.0000000000208015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/03/2023] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Idiopathic/isolated REM sleep behavior disorder (iRBD) is associated with dementia with Lewy bodies and Parkinson disease. Despite evidence of abnormal cerebral perfusion in iRBD, there is currently no pattern that can predict whether an individual will develop dementia with Lewy bodies or Parkinson disease. The objective was to identify a perfusion signature associated with conversion to dementia with Lewy bodies in iRBD. METHODS Patients with iRBD underwent video-polysomnography, neurologic and neuropsychological assessments, and baseline 99mTc-HMPAO SPECT to assess relative cerebral blood flow. Partial least squares correlation was used to identify latent variables that maximized covariance between 27 clinical features and relative gray matter perfusion. Patient-specific scores on the latent variables were used to test the association with conversion to dementia with Lewy bodies compared with that with Parkinson disease. The signature's expression was also assessed in 24 patients with iRBD who underwent a second perfusion scan, 22 healthy controls, and 19 individuals with Parkinson disease. RESULTS Of the 137 participants, 93 underwent SPECT processing, namely 52 patients with iRBD (67.9 years, 73% men), 19 patients with Parkinson disease (67.3 years, 37% men), and 22 controls (67.0 years, 73% men). Of the 47 patients with iRBD followed up longitudinally (4.5 years), 12 (26%) developed a manifest synucleinopathy (4 dementia with Lewy bodies and 8 Parkinson disease). Analysis revealed 2 latent variables between relative blood flow and clinical features: the first was associated with a broad set of features that included motor, cognitive, and perceptual variables, age, and sex; the second was mostly associated with cognitive features and RBD duration. When brought back into the patient's space, the expression of the first variable was associated with conversion to a manifest synucleinopathy, whereas the second was associated with conversion to dementia with Lewy bodies. The expression of the patterns changed over time and was associated with worse motor features. DISCUSSION This study identified a brain perfusion signature associated with cognitive impairment in iRBD and transition to dementia with Lewy bodies. This signature, which can be derived from individual scans, has the potential to be developed into a biomarker that predicts dementia with Lewy bodies in at-risk individuals.
Collapse
Affiliation(s)
- Shady Rahayel
- From the Department of Medicine (S.R., A.-A.B.), University of Montreal; Centre for Advanced Research in Sleep Medicine (S.R., R.P., A.-A.B., A.P., J.M., J.-F.G.), CIUSSS-NÎM - Hôpital du Sacré-Cœur de Montréal; Department of Neurology (R.P., A.P.), Montreal General Hospital; The Neuro (Montreal Neurological Institute-Hospital) (B.M., J.-P.S., A.D.), McGill University; Department of Psychiatry (J.M.), University of Montreal; and Department of Psychology (J.-F.G.), Université du Québec à Montréal, Canada
| | - Ronald Postuma
- From the Department of Medicine (S.R., A.-A.B.), University of Montreal; Centre for Advanced Research in Sleep Medicine (S.R., R.P., A.-A.B., A.P., J.M., J.-F.G.), CIUSSS-NÎM - Hôpital du Sacré-Cœur de Montréal; Department of Neurology (R.P., A.P.), Montreal General Hospital; The Neuro (Montreal Neurological Institute-Hospital) (B.M., J.-P.S., A.D.), McGill University; Department of Psychiatry (J.M.), University of Montreal; and Department of Psychology (J.-F.G.), Université du Québec à Montréal, Canada
| | - Andrée-Ann Baril
- From the Department of Medicine (S.R., A.-A.B.), University of Montreal; Centre for Advanced Research in Sleep Medicine (S.R., R.P., A.-A.B., A.P., J.M., J.-F.G.), CIUSSS-NÎM - Hôpital du Sacré-Cœur de Montréal; Department of Neurology (R.P., A.P.), Montreal General Hospital; The Neuro (Montreal Neurological Institute-Hospital) (B.M., J.-P.S., A.D.), McGill University; Department of Psychiatry (J.M.), University of Montreal; and Department of Psychology (J.-F.G.), Université du Québec à Montréal, Canada
| | - Bratislav Misic
- From the Department of Medicine (S.R., A.-A.B.), University of Montreal; Centre for Advanced Research in Sleep Medicine (S.R., R.P., A.-A.B., A.P., J.M., J.-F.G.), CIUSSS-NÎM - Hôpital du Sacré-Cœur de Montréal; Department of Neurology (R.P., A.P.), Montreal General Hospital; The Neuro (Montreal Neurological Institute-Hospital) (B.M., J.-P.S., A.D.), McGill University; Department of Psychiatry (J.M.), University of Montreal; and Department of Psychology (J.-F.G.), Université du Québec à Montréal, Canada
| | - Amélie Pelletier
- From the Department of Medicine (S.R., A.-A.B.), University of Montreal; Centre for Advanced Research in Sleep Medicine (S.R., R.P., A.-A.B., A.P., J.M., J.-F.G.), CIUSSS-NÎM - Hôpital du Sacré-Cœur de Montréal; Department of Neurology (R.P., A.P.), Montreal General Hospital; The Neuro (Montreal Neurological Institute-Hospital) (B.M., J.-P.S., A.D.), McGill University; Department of Psychiatry (J.M.), University of Montreal; and Department of Psychology (J.-F.G.), Université du Québec à Montréal, Canada
| | - Jean-Paul Soucy
- From the Department of Medicine (S.R., A.-A.B.), University of Montreal; Centre for Advanced Research in Sleep Medicine (S.R., R.P., A.-A.B., A.P., J.M., J.-F.G.), CIUSSS-NÎM - Hôpital du Sacré-Cœur de Montréal; Department of Neurology (R.P., A.P.), Montreal General Hospital; The Neuro (Montreal Neurological Institute-Hospital) (B.M., J.-P.S., A.D.), McGill University; Department of Psychiatry (J.M.), University of Montreal; and Department of Psychology (J.-F.G.), Université du Québec à Montréal, Canada
| | - Jacques Montplaisir
- From the Department of Medicine (S.R., A.-A.B.), University of Montreal; Centre for Advanced Research in Sleep Medicine (S.R., R.P., A.-A.B., A.P., J.M., J.-F.G.), CIUSSS-NÎM - Hôpital du Sacré-Cœur de Montréal; Department of Neurology (R.P., A.P.), Montreal General Hospital; The Neuro (Montreal Neurological Institute-Hospital) (B.M., J.-P.S., A.D.), McGill University; Department of Psychiatry (J.M.), University of Montreal; and Department of Psychology (J.-F.G.), Université du Québec à Montréal, Canada
| | - Alain Dagher
- From the Department of Medicine (S.R., A.-A.B.), University of Montreal; Centre for Advanced Research in Sleep Medicine (S.R., R.P., A.-A.B., A.P., J.M., J.-F.G.), CIUSSS-NÎM - Hôpital du Sacré-Cœur de Montréal; Department of Neurology (R.P., A.P.), Montreal General Hospital; The Neuro (Montreal Neurological Institute-Hospital) (B.M., J.-P.S., A.D.), McGill University; Department of Psychiatry (J.M.), University of Montreal; and Department of Psychology (J.-F.G.), Université du Québec à Montréal, Canada
| | - Jean-François Gagnon
- From the Department of Medicine (S.R., A.-A.B.), University of Montreal; Centre for Advanced Research in Sleep Medicine (S.R., R.P., A.-A.B., A.P., J.M., J.-F.G.), CIUSSS-NÎM - Hôpital du Sacré-Cœur de Montréal; Department of Neurology (R.P., A.P.), Montreal General Hospital; The Neuro (Montreal Neurological Institute-Hospital) (B.M., J.-P.S., A.D.), McGill University; Department of Psychiatry (J.M.), University of Montreal; and Department of Psychology (J.-F.G.), Université du Québec à Montréal, Canada
| |
Collapse
|
11
|
Carli G, Meles SK, Janzen A, Sittig E, Kogan RV, Perani D, Oertel WH, Leenders KL. Occipital hypometabolism is a risk factor for conversion to Parkinson's disease in isolated REM sleep behaviour disorder. Eur J Nucl Med Mol Imaging 2023; 50:3290-3301. [PMID: 37310428 PMCID: PMC10542098 DOI: 10.1007/s00259-023-06289-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/30/2023] [Indexed: 06/14/2023]
Abstract
PURPOSE Isolated REM sleep behaviour disorder (iRBD) patients are at high risk of developing clinical syndromes of the α-synuclein spectrum. Progression markers are needed to determine the neurodegenerative changes and to predict their conversion. Brain imaging with 18F-FDG PET in iRBD is promising, but longitudinal studies are scarce. We investigated the regional brain changes in iRBD over time, related to phenoconversion. METHODS Twenty iRBD patients underwent two consecutive 18F-FDG PET brain scans and clinical assessments (3.7 ± 0.6 years apart). Seventeen patients also underwent 123I-MIBG and 123I-FP-CIT SPECT scans at baseline. Four subjects phenoconverted to Parkinson's disease (PD) during follow-up. 18F-FDG PET scans were compared to controls with a voxel-wise single-subject procedure. The relationship between regional brain changes in metabolism and PD-related pattern scores (PDRP) was investigated. RESULTS Individual hypometabolism t-maps revealed three scenarios: (1) normal 18F-FDG PET scans at baseline and follow-up (N = 10); (2) normal scans at baseline but occipital or occipito-parietal hypometabolism at follow-up (N = 4); (3) occipital hypometabolism at baseline and follow-up (N = 6). All patients in the last group had pathological 123I-MIBG and 123I-FP-CIT SPECT. iRBD converters (N = 4) showed occipital hypometabolism at baseline (third scenario). At the group level, hypometabolism in the frontal and occipito-parietal regions and hypermetabolism in the cerebellum and limbic regions were progressive over time. PDRP z-scores increased over time (0.54 ± 0.36 per year). PDRP expression was driven by occipital hypometabolism and cerebellar hypermetabolism. CONCLUSIONS Our results suggest that occipital hypometabolism at baseline in iRBD implies a short-term conversion to PD. This might help in stratification strategies for disease-modifying trials.
Collapse
Affiliation(s)
- Giulia Carli
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Sanne K Meles
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Annette Janzen
- Department of Neurology, Philipps-Universität Marburg, Marburg, Germany
| | - Elisabeth Sittig
- Department of Neurology, Philipps-Universität Marburg, Marburg, Germany
| | - Rosalie V Kogan
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Internal Medicine, Sierra View Medical Center, Porterville, CA, USA
| | - Daniela Perani
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy
- In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Wolfgang H Oertel
- Department of Neurology, Philipps-Universität Marburg, Marburg, Germany
- Institute for Neurogenomics, Helmholtz Center for Health and Environment, Munich, Germany
| | - Klaus L Leenders
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
12
|
Orso B, Mattioli P, Yoon EJ, Kim YK, Kim H, Shin JH, Kim R, Liguori C, Famà F, Donniaquio A, Massa F, García DV, Meles SK, Leenders KL, Chiaravalloti A, Pardini M, Bauckneht M, Morbelli S, Nobili F, Lee JY, Arnaldi D. Validation of the REM behaviour disorder phenoconversion-related pattern in an independent cohort. Neurol Sci 2023; 44:3161-3168. [PMID: 37140829 PMCID: PMC10415520 DOI: 10.1007/s10072-023-06829-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/23/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND A brain glucose metabolism pattern related to phenoconversion in patients with idiopathic/isolated REM sleep behaviour disorder (iRBDconvRP) was recently identified. However, the validation of the iRBDconvRP in an external, independent group of iRBD patients is needed to verify the reproducibility of such pattern, so to increase its importance in clinical and research settings. The aim of this work was to validate the iRBDconvRP in an independent group of iRBD patients. METHODS Forty iRBD patients (70 ± 5.59 years, 19 females) underwent brain [18F]FDG-PET in Seoul National University. Thirteen patients phenoconverted at follow-up (7 Parkinson disease, 5 Dementia with Lewy bodies, 1 Multiple system atrophy; follow-up time 35 ± 20.56 months) and 27 patients were still free from parkinsonism/dementia after 62 ± 29.49 months from baseline. We applied the previously identified iRBDconvRP to validate its phenoconversion prediction power. RESULTS The iRBDconvRP significantly discriminated converters from non-converters iRBD patients (p = 0.016; Area under the Curve 0.74, Sensitivity 0.69, Specificity 0.78), and it significantly predicted phenoconversion (Hazard ratio 4.26, C.I.95%: 1.18-15.39). CONCLUSIONS The iRBDconvRP confirmed its robustness in predicting phenoconversion in an independent group of iRBD patients, suggesting its potential role as a stratification biomarker for disease-modifying trials.
Collapse
Affiliation(s)
- Beatrice Orso
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Clinical Neurology, University of Genoa, Largo Daneo 3, 16132, Genoa, Italy.
| | - Pietro Mattioli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Clinical Neurology, University of Genoa, Largo Daneo 3, 16132, Genoa, Italy
| | - Eun-Jin Yoon
- Memory Network Medical Research Center, Seoul National University, Seoul, South Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine and Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, South Korea
| | - Heejung Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine and Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, South Korea
| | - Jung Hwan Shin
- Department of Neurology, Seoul National University College of Medicine, Seoul, South Korea
| | - Ryul Kim
- Department of Neurology, Inha University Hospital, Incheon, South Korea
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
- Sleep Medicine Center, Neurology Unit, University Hospital "Tor Vergata", Rome, Italy
| | - Francesco Famà
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Clinical Neurology, University of Genoa, Largo Daneo 3, 16132, Genoa, Italy
- IRCCS Ospedale Policlinico S. Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Andrea Donniaquio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Clinical Neurology, University of Genoa, Largo Daneo 3, 16132, Genoa, Italy
| | - Federico Massa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Clinical Neurology, University of Genoa, Largo Daneo 3, 16132, Genoa, Italy
| | - David Vállez García
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VuMC, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Sanne K Meles
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Klaus L Leenders
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Agostino Chiaravalloti
- IRCCS Neuromed, Pozzilli, Italy
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Clinical Neurology, University of Genoa, Largo Daneo 3, 16132, Genoa, Italy
- IRCCS Ospedale Policlinico S. Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Matteo Bauckneht
- IRCCS Ospedale Policlinico S. Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
- Department of Health Science (DISSAL), University of Genoa, Via Antonio Pastore 1, 16132, Genoa, Italy
| | - Silvia Morbelli
- IRCCS Ospedale Policlinico S. Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
- Department of Health Science (DISSAL), University of Genoa, Via Antonio Pastore 1, 16132, Genoa, Italy
| | - Flavio Nobili
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Clinical Neurology, University of Genoa, Largo Daneo 3, 16132, Genoa, Italy
- IRCCS Ospedale Policlinico S. Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Jee-Young Lee
- Department of Neurology, Seoul National University College of Medicine and Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, South Korea
| | - Dario Arnaldi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Clinical Neurology, University of Genoa, Largo Daneo 3, 16132, Genoa, Italy
- IRCCS Ospedale Policlinico S. Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| |
Collapse
|
13
|
Carli G, Meles SK, Reesink FE, de Jong BM, Pilotto A, Padovani A, Galbiati A, Ferini-Strambi L, Leenders KL, Perani D. Comparison of univariate and multivariate analyses for brain [18F]FDG PET data in α-synucleinopathies. Neuroimage Clin 2023; 39:103475. [PMID: 37494757 PMCID: PMC10394024 DOI: 10.1016/j.nicl.2023.103475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/18/2023] [Accepted: 07/09/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Brain imaging with [18F]FDG-PET can support the diagnostic work-up of patients with α-synucleinopathies. Validated data analysis approaches are necessary to evaluate disease-specific brain metabolism patterns in neurodegenerative disorders. This study compared the univariate Statistical Parametric Mapping (SPM) single-subject procedure and the multivariate Scaled Subprofile Model/Principal Component Analysis (SSM/PCA) in a cohort of patients with α-synucleinopathies. METHODS We included [18F]FDG-PET scans of 122 subjects within the α-synucleinopathy spectrum: Parkinson's Disease (PD) normal cognition on long-term follow-up (PD - low risk to dementia (LDR); n = 28), PD who developed dementia on clinical follow-up (PD - high risk of dementia (HDR); n = 16), Dementia with Lewy Bodies (DLB; n = 67), and Multiple System Atrophy (MSA; n = 11). We also included [18F]FDG-PET scans of isolated REM sleep behaviour disorder (iRBD; n = 51) subjects with a high risk of developing a manifest α-synucleinopathy. Each [18F]FDG-PET scan was compared with 112 healthy controls using SPM procedures. In the SSM/PCA approach, we computed the individual scores of previously identified patterns for PD, DLB, and MSA: PD-related patterns (PDRP), DLBRP, and MSARP. We used ROC curves to compare the diagnostic performances of SPM t-maps (visual rating) and SSM/PCA individual pattern scores in identifying each clinical condition across the spectrum. Specifically, we used the clinical diagnoses ("gold standard") as our reference in ROC curves to evaluate the accuracy of the two methods. Experts in movement disorders and dementia made all the diagnoses according to the current clinical criteria of each disease (PD, DLB and MSA). RESULTS The visual rating of SPM t-maps showed higher performance (AUC: 0.995, specificity: 0.989, sensitivity 1.000) than PDRP z-scores (AUC: 0.818, specificity: 0.734, sensitivity 1.000) in differentiating PD-LDR from other α-synucleinopathies (PD-HDR, DLB and MSA). This result was mainly driven by the ability of SPM t-maps to reveal the limited or absent brain hypometabolism characteristics of PD-LDR. Both SPM t-maps visual rating and SSM/PCA z-scores showed high performance in identifying DLB (DLBRP = AUC: 0.909, specificity: 0.873, sensitivity 0.866; SPM t-maps = AUC: 0.892, specificity: 0.872, sensitivity 0.910) and MSA (MSARP: AUC: 0.921, specificity: 0.811, sensitivity 1.000; SPM t-maps: AUC: 1.000, specificity: 1.000, sensitivity 1.000) from other α-synucleinopathies. PD-HDR and DLB were comparable for the brain hypo and hypermetabolism patterns, thus not allowing differentiation by SPM t-maps or SSM/PCA. Of note, we found a gradual increase of PDRP and DLBRP expression in the continuum from iRBD to PD-HDR and DLB, where the DLB patients had the highest scores. SSM/PCA could differentiate iRBD from DLB, reflecting specifically the differences in disease staging and severity (AUC: 0.938, specificity: 0.821, sensitivity 0.941). CONCLUSIONS SPM-single subject maps and SSM/PCA are both valid methods in supporting diagnosis within the α-synucleinopathy spectrum, with different strengths and pitfalls. The former reveals dysfunctional brain topographies at the individual level with high accuracy for all the specific subtype patterns, and particularly also the normal maps; the latter provides a reliable quantification, independent from the rater experience, particularly in tracking the disease severity and staging. Thus, our findings suggest that differences in data analysis approaches exist and should be considered in clinical settings. However, combining both methods might offer the best diagnostic performance.
Collapse
Affiliation(s)
- Giulia Carli
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sanne K Meles
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Fransje E Reesink
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bauke M de Jong
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andrea Pilotto
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Andrea Galbiati
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy; Department of Clinical Neuroscience, Sleep Disorders Center, San Raffaele Hospital, Milan, Italy
| | - Luigi Ferini-Strambi
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy; Department of Clinical Neuroscience, Sleep Disorders Center, San Raffaele Hospital, Milan, Italy
| | - Klaus L Leenders
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Daniela Perani
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy; In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan; Nuclear Medicine Unit, San Raffaele Hospital, Milan, Italy.
| |
Collapse
|
14
|
Sun J, Ma J, Gao L, Wang J, Zhang D, Chen L, Fang J, Feng T, Wu T. Disruption of locus coeruleus-related functional networks in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:81. [PMID: 37253752 DOI: 10.1038/s41531-023-00532-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 05/22/2023] [Indexed: 06/01/2023] Open
Abstract
Locus coeruleus (LC) is severely affected in Parkinson's Disease (PD). However, alterations in LC-related resting-state networks (RSNs) in PD remain unclear. We used resting-state functional MRI to investigate the alterations in functional connectivity (FC) of LC-related RSNs and the associations between RSNs changes and clinical features in idiopathic rapid eye movement sleep behavior disorder (iRBD) and PD patients with (PDRBD+) and without RBD (PDRBD-). There was a similarly disrupted FC pattern of LC-related RSNs in iRBD and PDRBD+ patients, whereas LC-related RSNs were less damaged in PDRBD- patients than that in patients with iRBD and PDRBD+. The FC of LC-related RSNs correlated with cognition and duration in iRBD, depression in PDRBD-, and cognition and severity of RBD in patients with PDRBD+. Our findings demonstrate that LC-related RSNs are significantly disrupted in the prodromal stage of α-synucleinopathies and proposed body-first PD (PDRBD+), but are less affected in brain-first PD (PDRBD-).
Collapse
Affiliation(s)
- Junyan Sun
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinghong Ma
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Linlin Gao
- Department of General Medicine, Tianjin Union Medical Center, Tianjin, China
| | - Junling Wang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dongling Zhang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lili Chen
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiliang Fang
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Tao Wu
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
15
|
Diaz-Galvan P, Miyagawa T, Przybelski SA, Lesnick TG, Senjem ML, Jack CR, Forsberg LK, Min HK, St. Louis EK, Savica R, Fields JA, Benarroch EE, Lowe V, Petersen RC, Boeve BF, Kantarci K. Brain glucose metabolism and nigrostriatal degeneration in isolated rapid eye movement sleep behaviour disorder. Brain Commun 2023; 5:fcad021. [PMID: 36844148 PMCID: PMC9945851 DOI: 10.1093/braincomms/fcad021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 11/14/2022] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
Alterations of cerebral glucose metabolism can be detected in patients with isolated rapid eye movement sleep behaviour disorder, a prodromal feature of neurodegenerative diseases with α-synuclein pathology. However, metabolic characteristics that determine clinical progression in isolated rapid eye movement sleep behaviour disorder and their association with other biomarkers need to be elucidated. We investigated the pattern of cerebral glucose metabolism on 18F-fluorodeoxyglucose PET in patients with isolated rapid eye movement sleep behaviour disorder, differentiating between those who clinically progressed and those who remained stable over time. Second, we studied the association between 18F-fluorodeoxyglucose PET and lower dopamine transporter availability in the putamen, another hallmark of synucleinopathies. Patients with isolated rapid eye movement sleep behaviour disorder from the Mayo Clinic Alzheimer's Disease Research Center and Center for Sleep Medicine (n = 22) and age-and sex-matched clinically unimpaired controls (clinically unimpaired; n = 44) from the Mayo Clinic Study of Aging were included. All participants underwent 18F-fluorodeoxyglucose PET and dopamine transporter imaging with iodine 123-radiolabeled 2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl) nortropane on single-photon emission computerized tomography. A subset of patients with isolated rapid eye movement sleep behaviour disorder with follow-up evaluations (n = 17) was classified as isolated rapid eye movement sleep behaviour disorder progressors (n = 7) if they developed mild cognitive impairment or Parkinson's disease; or isolated rapid eye movement sleep behaviour disorder stables (n = 10) if they remained with a diagnosis of isolated rapid eye movement sleep behaviour disorder with no cognitive impairment. Glucose metabolic abnormalities in isolated rapid eye movement sleep behaviour disorder were determined by comparing atlas-based regional 18F-fluorodeoxyglucose PET uptake between isolated rapid eye movement sleep behaviour disorder and clinically unimpaired. Associations between 18F-fluorodeoxyglucose PET and dopamine transporter availability in the putamen were analyzed with Pearson's correlation within the nigrostriatal pathway structures and with voxel-based analysis in the cortex. Patients with isolated rapid eye movement sleep behaviour disorder had lower glucose metabolism in the substantia nigra, retrosplenial cortex, angular cortex, and thalamus, and higher metabolism in the amygdala and entorhinal cortex compared with clinically unimpaired. Patients with isolated rapid eye movement sleep behaviour disorder who clinically progressed over time were characterized by higher glucose metabolism in the amygdala and entorhinal cortex, and lower glucose metabolism in the cerebellum compared with clinically unimpaired. Lower dopamine transporter availability in the putamen was associated with higher glucose metabolism in the pallidum within the nigrostriatal pathway; and with higher 18F-fluorodeoxyglucose uptake in the amygdala, insula, and temporal pole on a voxel-based analysis, although these associations did not survive after correcting for multiple comparisons. Our findings suggest that cerebral glucose metabolism in isolated rapid eye movement sleep behaviour disorder is characterized by hypometabolism in regions frequently affected during the prodromal stage of synucleinopathies, potentially reflecting synaptic dysfunction. Hypermetabolism is also seen in isolated rapid eye movement sleep behaviour disorder, suggesting that synaptic metabolic disruptions may be leading to a lack of inhibition, compensatory mechanisms, or microglial activation, especially in regions associated with nigrostriatal degeneration.
Collapse
Affiliation(s)
| | - Toji Miyagawa
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Scott A Przybelski
- Department of Quantitative Health Science, Mayo Clinic, Rochester, MN 55905, USA
| | - Timothy G Lesnick
- Department of Quantitative Health Science, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew L Senjem
- Department of Information Technology, Mayo Clinic, Rochester, MN 55905, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Leah K Forsberg
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hoon-Ki Min
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Julie A Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Val Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
16
|
Mattioli P, Orso B, Liguori C, Famà F, Giorgetti L, Donniaquio A, Massa F, Giberti A, Vállez García D, Meles SK, Leenders KL, Placidi F, Spanetta M, Chiaravalloti A, Camedda R, Schillaci O, Izzi F, Mercuri NB, Pardini M, Bauckneht M, Morbelli S, Nobili F, Arnaldi D. Derivation and Validation of a Phenoconversion-Related Pattern in Idiopathic Rapid Eye Movement Behavior Disorder. Mov Disord 2023; 38:57-67. [PMID: 36190111 PMCID: PMC10092506 DOI: 10.1002/mds.29236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Idiopathic rapid eye movement sleep behavior disorder (iRBD) represents the prodromal stage of α-synucleinopathies. Reliable biomarkers are needed to predict phenoconversion. OBJECTIVE The aim was to derive and validate a brain glucose metabolism pattern related to phenoconversion in iRBD (iRBDconvRP) using spatial covariance analysis (Scaled Subprofile Model and Principal Component Analysis [SSM-PCA]). METHODS Seventy-six consecutive iRBD patients (70 ± 6 years, 15 women) were enrolled in two centers and prospectively evaluated to assess phenoconversion (30 converters, 73 ± 6 years, 14 Parkinson's disease and 16 dementia with Lewy bodies, follow-up time: 21 ± 14 months; 46 nonconverters, 69 ± 6 years, follow-up time: 33 ± 19 months). All patients underwent [18 F]FDG-PET (18 F-fluorodeoxyglucose positron emitting tomography) to investigate brain glucose metabolism at baseline. SSM-PCA was applied to obtain the iRBDconvRP; nonconverter patients were considered as the reference group. Survival analysis and Cox regression were applied to explore prediction power. RESULTS First, we derived and validated two distinct center-specific iRBDconvRP that were comparable and significantly able to predict phenoconversion. Then, SSM-PCA was applied to the whole set, identifying the iRBDconvRP. The iRBDconvRP included positive voxel weights in cerebellum; brainstem; anterior cingulate cortex; lentiform nucleus; and middle, mesial temporal, and postcentral areas. Negative voxel weights were found in posterior cingulate, precuneus, middle frontal gyrus, and parietal areas. Receiver operating characteristic analysis showed an area under the curve of 0.85 (sensitivity: 87%, specificity: 72%), discriminating converters from nonconverters. The iRBDconvRP significantly predicted phenoconversion (hazard ratio: 7.42, 95% confidence interval: 2.6-21.4). CONCLUSIONS We derived and validated an iRBDconvRP to efficiently discriminate converter from nonconverter iRBD patients. [18 F]FDG-PET pattern analysis has potential as a phenoconversion biomarker in iRBD patients. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Pietro Mattioli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Clinical Neurology, University of Genoa, Genoa, Italy
| | - Beatrice Orso
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Clinical Neurology, University of Genoa, Genoa, Italy.,Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VuMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.,Sleep Medicine Center, Neurology Unit, University Hospital "Tor Vergata", Rome, Italy
| | - Francesco Famà
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Clinical Neurology, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | | | - Andrea Donniaquio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Clinical Neurology, University of Genoa, Genoa, Italy
| | - Federico Massa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Clinical Neurology, University of Genoa, Genoa, Italy
| | - Andrea Giberti
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Clinical Neurology, University of Genoa, Genoa, Italy
| | - David Vállez García
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VuMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Sanne K Meles
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Klaus L Leenders
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Fabio Placidi
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.,Sleep Medicine Center, Neurology Unit, University Hospital "Tor Vergata", Rome, Italy
| | - Matteo Spanetta
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Riccardo Camedda
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Francesca Izzi
- Sleep Medicine Center, Neurology Unit, University Hospital "Tor Vergata", Rome, Italy
| | - Nicola B Mercuri
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Clinical Neurology, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - Matteo Bauckneht
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy.,Department of Health Science (DISSAL), University of Genoa, Genoa, Italy
| | - Silvia Morbelli
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy.,Department of Health Science (DISSAL), University of Genoa, Genoa, Italy
| | - Flavio Nobili
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Clinical Neurology, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - Dario Arnaldi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Clinical Neurology, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| |
Collapse
|
17
|
Fasiello E, Scarpelli S, Gorgoni M, Alfonsi V, Galbiati A, De Gennaro L. A systematic review of dreams and nightmares recall in patients with rapid eye movement sleep behaviour disorder. J Sleep Res 2022; 32:e13768. [PMID: 36316953 DOI: 10.1111/jsr.13768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/08/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Rapid eye movement (REM) sleep behaviour disorder is a REM sleep parasomnia characterised by the loss of the physiological muscle atonia during REM sleep, resulting in dream enactment behaviours that may cause injuries to patients or their bed partners. The nocturnal motor episodes seem to respond to the dream contents, which are often vivid and violent. These behavioural and oneiric features make the REM sleep behaviour disorder a potential model to study dreams. This review aims to unify the literature about dream recall in REM sleep behaviour disorder as a privileged approach to study dreams, systematically reviewing studies that applied retrospective and prospective experimental designs to provide a comprehensive overview of qualitative and quantitative aspects of dream recall in this REM sleep parasomnia. The present work highlights that the study of dreaming in REM sleep behaviour disorder is useful to understand unique aspects of this pathology and to explore neurobiological, electrophysiological, and cognitive mechanisms of REM sleep and dreaming.
Collapse
Affiliation(s)
| | - Serena Scarpelli
- Department of Psychology Sapienza ‐ University of Rome Rome Italy
| | - Maurizio Gorgoni
- Department of Psychology Sapienza ‐ University of Rome Rome Italy
- Body and Action Lab IRCCS Fondazione Santa Lucia Rome Italy
| | | | - Andrea Galbiati
- “Vita‐Salute” San Raffaele University Milan Italy
- Department of Clinical Neuroscience, Neurology and Sleep Disorders Center IRCCS San Raffaele Scientific Institute Milan Italy
| | - Luigi De Gennaro
- Department of Psychology Sapienza ‐ University of Rome Rome Italy
- Body and Action Lab IRCCS Fondazione Santa Lucia Rome Italy
| |
Collapse
|
18
|
Prange S, Theis H, Banwinkler M, van Eimeren T. Molecular Imaging in Parkinsonian Disorders—What’s New and Hot? Brain Sci 2022; 12:brainsci12091146. [PMID: 36138882 PMCID: PMC9496752 DOI: 10.3390/brainsci12091146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Highlights Abstract Neurodegenerative parkinsonian disorders are characterized by a great diversity of clinical symptoms and underlying neuropathology, yet differential diagnosis during lifetime remains probabilistic. Molecular imaging is a powerful method to detect pathological changes in vivo on a cellular and molecular level with high specificity. Thereby, molecular imaging enables to investigate functional changes and pathological hallmarks in neurodegenerative disorders, thus allowing to better differentiate between different forms of degenerative parkinsonism, improve the accuracy of the clinical diagnosis and disentangle the pathophysiology of disease-related symptoms. The past decade led to significant progress in the field of molecular imaging, including the development of multiple new and promising radioactive tracers for single photon emission computed tomography (SPECT) and positron emission tomography (PET) as well as novel analytical methods. Here, we review the most recent advances in molecular imaging for the diagnosis, prognosis, and mechanistic understanding of parkinsonian disorders. First, advances in imaging of neurotransmission abnormalities, metabolism, synaptic density, inflammation, and pathological protein aggregation are reviewed, highlighting our renewed understanding regarding the multiplicity of neurodegenerative processes involved in parkinsonian disorders. Consequently, we review the role of molecular imaging in the context of disease-modifying interventions to follow neurodegeneration, ensure stratification, and target engagement in clinical trials.
Collapse
Affiliation(s)
- Stéphane Prange
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, Université de Lyon, 69675 Bron, France
- Correspondence: (S.P.); (T.v.E.); Tel.: +49-221-47882843 (T.v.E.)
| | - Hendrik Theis
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Department of Neurology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
| | - Magdalena Banwinkler
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
| | - Thilo van Eimeren
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Department of Neurology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Correspondence: (S.P.); (T.v.E.); Tel.: +49-221-47882843 (T.v.E.)
| |
Collapse
|
19
|
Kim R, Kim H, Kim YK, Yoon EJ, Nam HW, Jeon B, Lee J. Brain Metabolic Correlates of Dopaminergic Denervation in Prodromal and Early Parkinson's Disease. Mov Disord 2022; 37:2099-2109. [DOI: 10.1002/mds.29177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/22/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Ryul Kim
- Department of Neurology Inha University Hospital, Inha University College of Medicine Incheon South Korea
| | - Heejung Kim
- Institute of Radiation Medicine, Medical Research Center Seoul National University Seoul South Korea
- Department of Nuclear Medicine Seoul Metropolitan Government – Seoul National University Boramae Medical Center Seoul South Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine Seoul Metropolitan Government – Seoul National University Boramae Medical Center Seoul South Korea
- Memory Network Medical Research Center Seoul National University Seoul South Korea
| | - Eun Jin Yoon
- Department of Nuclear Medicine Seoul Metropolitan Government – Seoul National University Boramae Medical Center Seoul South Korea
- Memory Network Medical Research Center Seoul National University Seoul South Korea
| | - Hyun Woo Nam
- Department of Neurology Seoul Metropolitan Government–Seoul National University Boramae Medical Center, Seoul National University College of Medicine Seoul South Korea
| | - Beomseok Jeon
- Department of Neurology Seoul National University Hospital, Seoul National University College of Medicine Seoul South Korea
| | - Jee‐Young Lee
- Department of Neurology Seoul Metropolitan Government–Seoul National University Boramae Medical Center, Seoul National University College of Medicine Seoul South Korea
| |
Collapse
|
20
|
Ota Y, Kanel P, Bohnen N. Imaging of sleep disorders in pre-Parkinsonian syndromes. Curr Opin Neurol 2022; 35:443-452. [PMID: 35788559 PMCID: PMC9308698 DOI: 10.1097/wco.0000000000001084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Neuroimaging has been advanced in the last years and enabled clinicians to evaluate sleep disorders, especially isolated rapid eye movement sleep disorder (iRBD), which can be seen in alpha-synucleinopathies. iRBD is the best prodromal clinical marker for phenoconversion to these neurodegenerative diseases. This review aims to provide an update on advanced neuroimaging biomarkers in iRBD. RECENT FINDINGS Advanced structural MRI techniques, such as diffusion tensor imaging and functional MRI, neuromelanin-sensitive MRI, and scintigraphic neuroimaging such as cholinergic PET, dopamine transporter imaging - single-photon emission computerized tomography, perfusional single-photon emission computerized tomography, and cardiac metaiodobenzylguanidine can provide diagnostic and prognostic imaging biomarkers for iRBD, in isolation and more robustly when combined. SUMMARY New advanced neuroimaging can provide imaging biomarkers and aid in the appropriate clinical assessment and future therapeutic trials.
Collapse
Affiliation(s)
- Yoshiaki Ota
- The Division of Neuroradiology, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Prabesh Kanel
- The Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Parkinson’s Foundation Research Center of Excellence, Ann Arbor, MI, USA
| | - Nicolaas Bohnen
- The Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Parkinson’s Foundation Research Center of Excellence, Ann Arbor, MI, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- GRECC & Neurology Service, VAAAHS, Ann Arbor, MI, USA
| |
Collapse
|
21
|
Valli M, Uribe C, Mihaescu A, Strafella AP. Neuroimaging of rapid eye movement sleep behavior disorder and its relation to Parkinson's disease. J Neurosci Res 2022; 100:1815-1833. [DOI: 10.1002/jnr.25099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/10/2022] [Accepted: 06/08/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Mikaeel Valli
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health University of Toronto Toronto Ontario Canada
- Division of Brain, Imaging and Behaviour – Systems Neuroscience, Krembil Brain Institute, UHN University of Toronto Toronto Ontario Canada
- Institute of Medical Science University of Toronto Toronto Ontario Canada
| | - Carme Uribe
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health University of Toronto Toronto Ontario Canada
- Medical Psychology Unit, Department of Medicine, Institute of Neuroscience University of Barcelona Barcelona Spain
| | - Alexander Mihaescu
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health University of Toronto Toronto Ontario Canada
- Division of Brain, Imaging and Behaviour – Systems Neuroscience, Krembil Brain Institute, UHN University of Toronto Toronto Ontario Canada
- Institute of Medical Science University of Toronto Toronto Ontario Canada
| | - Antonio P. Strafella
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health University of Toronto Toronto Ontario Canada
- Division of Brain, Imaging and Behaviour – Systems Neuroscience, Krembil Brain Institute, UHN University of Toronto Toronto Ontario Canada
- Institute of Medical Science University of Toronto Toronto Ontario Canada
- Edmond J. Safra Parkinson Disease Program & Morton and Gloria Shulman Movement Disorder Unit, Neurology Division, Department of Medicine, Toronto Western Hospital, UHN University of Toronto Toronto Ontario Canada
| |
Collapse
|
22
|
Yoon EJ, Lee JY, Kim H, Yoo D, Shin JH, Nam H, Jeon B, Kim YK. Brain Metabolism Related to Mild Cognitive Impairment and Phenoconversion in Patients With Isolated REM Sleep Behavior Disorder. Neurology 2022; 98:e2413-e2424. [PMID: 35437260 PMCID: PMC9231839 DOI: 10.1212/wnl.0000000000200326] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/17/2022] [Indexed: 11/15/2022] Open
Abstract
Background and Objectives Mild cognitive impairment (MCI) in isolated REM sleep behavior disorder (iRBD) is a risk factor for subsequent neurodegeneration. We aimed to identify brain metabolism and functional connectivity changes related to MCI in patients with iRBD and the neuroimaging markers' predictive value for phenoconversion. Methods This is a prospective cohort study of patients with iRBD with a mean follow-up of 4.2 ± 2.6 years. At baseline, patients with iRBD and age- and sex-matched healthy controls (HCs) underwent 18F-fluorodeoxyglucose (FDG)–PET and resting-state fMRI scans and a comprehensive neuropsychological test battery. Voxel-wise group comparisons for FDG-PET data were performed using a general linear model. Seed-based connectivity maps were computed using brain regions showing significant hypometabolism associated with MCI in patients with iRBD and compared between groups. A Cox regression analysis was applied to investigate the association between brain metabolism and risk of phenoconversion. Results Forty patients with iRBD, including 21 with MCI (iRBD-MCI) and 19 with normal cognition (iRBD-NC), and 24 HCs were included in the study. The iRBD-MCI group revealed relative hypometabolism in the inferior parietal lobule, lateral and medial occipital, and middle and inferior temporal cortex bilaterally compared with HC and the iRBD-NC group. In seed-based connectivity analyses, the iRBD-MCI group exhibited decreased functional connectivity of the left angular gyrus with the occipital cortex. Of 40 patients with iRBD, 12 patients converted to Parkinson disease (PD) or dementia with Lewy bodies (DLB). Hypometabolism of the occipital pole (hazard ratio [95% CI] 6.652 [1.387–31.987]), medial occipital (4.450 [1.143–17.327]), and precuneus (3.635 [1.009–13.093]) was associated with higher phenoconversion rate to PD/DLB. Discussion MCI in iRBD is related to functional and metabolic changes in broad brain areas, particularly the occipital and parietal areas. Moreover, hypometabolism in these brain regions was a predictor of phenoconversion to PD or DLB. Evaluation of cognitive function and neuroimaging characteristics could be useful for risk stratification in patients with iRBD.
Collapse
Affiliation(s)
- Eun Jin Yoon
- Memory Network Medical Research Center, Seoul National University, Seoul, Korea, Republic of.,Department of Nuclear Medicine, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Jee-Young Lee
- Department of Neurology, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Heejung Kim
- Department of Nuclear Medicine, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea, Republic of.,Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Korea, Republic of
| | - Dallah Yoo
- Department of Neurology, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea, Republic of.,Department of Neurology, Kyung Hee University Hospital, Seoul, Korea, Republic of
| | - Jung Hwan Shin
- Department of Neurology, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Hyunwoo Nam
- Department of Neurology, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Beomseok Jeon
- Department of Neurology, Seoul National University Hospital and Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea, Republic of
| |
Collapse
|
23
|
Meles SK, Oertel WH, Leenders KL. Circuit imaging biomarkers in preclinical and prodromal Parkinson's disease. Mol Med 2021; 27:111. [PMID: 34530732 PMCID: PMC8447708 DOI: 10.1186/s10020-021-00327-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/02/2021] [Indexed: 11/10/2022] Open
Abstract
Parkinson's disease (PD) commences several years before the onset of motor features. Pathophysiological understanding of the pre-clinical or early prodromal stages of PD are essential for the development of new therapeutic strategies. Two categories of patients are ideal to study the early disease stages. Idiopathic rapid eye movement sleep behavior disorder (iRBD) represents a well-known prodromal stage of PD in which pathology is presumed to have reached the lower brainstem. The majority of patients with iRBD will develop manifest PD within years to decades. Another category encompasses non-manifest mutation carriers, i.e. subjects without symptoms, but with a known mutation or genetic variant which gives an increased risk of developing PD. The speed of progression from preclinical or prodromal to full clinical stages varies among patients and cannot be reliably predicted on the individual level. Clinical trials will require inclusion of patients with a predictable conversion within a limited time window. Biomarkers are necessary that can confirm pre-motor PD status and can provide information regarding lead time and speed of progression. Neuroimaging changes occur early in the disease process and may provide such a biomarker. Studies have focused on radiotracer imaging of the dopaminergic nigrostriatal system, which can be assessed with dopamine transporter (DAT) single photon emission computed tomography (SPECT). Loss of DAT binding represents an effect of irreversible structural damage to the nigrostriatal system. This marker can be used to monitor disease progression and identify individuals at specific risk for phenoconversion. However, it is known that changes in neuronal activity precede structural changes. Functional neuro-imaging techniques, such as 18F-2-fluoro-2-deoxy-D-glucose Positron Emission Tomography (18F-FDG PET) and functional magnetic resonance imaging (fMRI), can be used to model the effects of disease on brain networks when combined with advanced analytical methods. Because these changes occur early in the disease process, functional imaging studies are of particular interest in prodromal PD diagnosis. In addition, fMRI and 18F-FDG PET may be able to predict a specific future phenotype in prodromal cohorts, which is not possible with DAT SPECT. The goal of the current review is to discuss the network-level brain changes in pre-motor PD.
Collapse
Affiliation(s)
- Sanne K Meles
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, 9700 RB, Groningen, The Netherlands.
| | - Wolfgang H Oertel
- Department of Neurology, Philipps-Universität Marburg, Marburg, Germany.,Institute for Neurogenomics, Helmholtz Center for Health and Environment, Munich, Germany
| | - Klaus L Leenders
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|