1
|
Morinelli L, Corradi B, Arnaldi P, Cortese K, Muià M, Zara F, Maragliano L, Sterlini B, Corradi A. Unraveling the Membrane Topology of TMEM151A: A Step Towards Understanding its Cellular Role. J Mol Biol 2024; 436:168834. [PMID: 39454747 DOI: 10.1016/j.jmb.2024.168834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/04/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
Transmembrane protein 151A (TMEM151A) has been identified as a causative gene for paroxysmal kinesigenic dyskinesia, though its molecular function remains almost completely unknown. Understanding the membrane topology of transmembrane proteins is crucial for elucidating their functions and possible interacting partners. In this study, we utilized molecular dynamics simulations, immunocytochemistry, and electron microscopy to define the topology of TMEM151A. Our results validate a starting AlphaFold model of TMEM151A and reveal that it comprises a transmembrane domain with two membrane-spanning alpha helices connected by a short extracellular loop and an intramembrane helix-hinge-helix structure. Notably, most of the protein is oriented towards the intracellular side of the membranes with a large cytosolic domain featuring a combination of alpha-helix and beta-sheet structures, as well as the protein N- and C-termini. These insights into TMEM151A's topology and orientation of its domains with respect of the cell membranes provide essential information for future functional studies and represent a first fundamental step for understanding its role in the pathogenesis of paroxysmal kinesigenic dyskinesia.
Collapse
Affiliation(s)
- Lisastella Morinelli
- University of Genova, Department of Experimental Medicine, Genova, Italy; Istituto Italiano di Tecnologia, Center for Synaptic Neuroscience and Technology, Genova, Italy
| | - Beatrice Corradi
- University of Genova, Department of Experimental Medicine, Genova, Italy; Istituto Italiano di Tecnologia, Center for Synaptic Neuroscience and Technology, Genova, Italy
| | - Pietro Arnaldi
- University of Genova, Department of Experimental Medicine, Genova, Italy
| | - Katia Cortese
- University of Genova, Department of Experimental Medicine, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Martina Muià
- University of Genova, Department of Experimental Medicine, Genova, Italy
| | - Federico Zara
- University of Genova, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Genova, Italy; IRCCS Istituto Giannina Gaslini, Unit of Medical Genetics, Genova, Italy
| | - Luca Maragliano
- Istituto Italiano di Tecnologia, Center for Synaptic Neuroscience and Technology, Genova, Italy; Polytechnic University of Marche, Department of Life and Environmental Sciences, Ancona, Italy
| | - Bruno Sterlini
- University of Genova, Department of Experimental Medicine, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Anna Corradi
- University of Genova, Department of Experimental Medicine, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| |
Collapse
|
2
|
Huang X, Fu X, Wu J, Cheng X, Hong X, Li Z, Zheng L, Liu Q, Chen S, Tang B, Zhao Y, Liu X, Li X, Liu X, Zhou Z, Wu L, Fang K, Zhong P, Zhang M, Luan X, Tian W, Tong X, Cao L. Heterozygous KCNJ10 Variants Affecting Kir4.1 Channel Cause Paroxysmal Kinesigenic Dyskinesia. Mov Disord 2024. [PMID: 39367724 DOI: 10.1002/mds.30025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/15/2024] [Accepted: 09/12/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND More than 60% of paroxysmal kinesigenic dyskinesia (PKD) cases are of uncertain variants. OBJECTIVE The aim was to elucidate novel genetic contribution to PKD. METHODS A total of 476 probands with uncertain genetic causes were enrolled for whole-exome sequencing. A method of case-control analysis was applied to identify the candidate genes. Whole-cell patch-clamp recording was applied to verify the electrophysiological impact of the identified variants. A mouse model with cerebellar heterozygous knockout of the candidate gene was developed via adeno-associated virus injection, and dystonia-like phenotype inducement and rotarod tests were performed. In vivo multiunit electrical recording was applied to investigate the change in neural excitability in knockout mice. RESULTS Heterozygous variants of potassium inwardly rectifying channel subfamily J member 10 (KCNJ10) clustered in PKD patients were compared with those in the control groups. Fifteen variants were detected in 16 of 522 probands (frequency = 3.07%). Patients with KCNJ10 variants tended to have a milder manifestation compared to those with PRRT2 (proline-rich transmembrane protein 2) variants. KCNJ10 variants partially altered the transmembrane location of inwardly rectifying potassium channel 4.1 (Kir4.1). The Kcnj10 expression is consistent with the natural course of PKD. Variants resulted in different degrees of reduction in cell Kir4.1 currents, and mice with heterozygous conditional knockout of Kcnj10 in the cerebellum presented dystonic posture, together with poor motor coordination and motor learning ability in rotarod tests. The firing rate of deep cerebellar nuclei was significantly elevated in Kcnj10-cKO mice. CONCLUSION We identified heterozygous variants of KCNJ10 in PKD. Impaired function of Kir4.1 might lead to abnormal neuronal excitability, which attributed to PKD. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Xiaojun Huang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Xin Fu
- Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingying Wu
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Xin Cheng
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Xiaoqi Hong
- Department of Obstetrics and Gynecology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyi Li
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Lan Zheng
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, China
| | - Qing Liu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shendi Chen
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuwu Zhao
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Xiaorong Liu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xunhua Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoli Liu
- Department of Neurology, Shanghai Fengxian District Central Hospital, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Zaiwei Zhou
- Shanghai Xunyin Biotechnology Co., Ltd., Shanghai, China
| | - Li Wu
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kan Fang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Zhong
- Department of Neurology, Suzhou Hospital of Anhui Medical University, HeFei, China
| | - Mei Zhang
- Department of Neurology, The First Hospital Affiliated to Anhui University of Science and Technology, HeFei, China
| | - Xinghua Luan
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Wotu Tian
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Xiaoping Tong
- Department of Obstetrics and Gynecology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Cao
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
- Department of Neurology, Suzhou Hospital of Anhui Medical University, HeFei, China
- Department of Neurology, The First Hospital Affiliated to Anhui University of Science and Technology, HeFei, China
| |
Collapse
|
3
|
Li YL, Lin J, Huang X, Zeng RH, Zhang G, Xu JN, Lin KJ, Chen XS, He MF, Qiao JD, Cheng X, Zhu D, Xiong ZQ, Chen WJ. Heterozygous Variants in KCNJ10 Cause Paroxysmal Kinesigenic Dyskinesia Via Haploinsufficiency. Ann Neurol 2024; 96:758-773. [PMID: 38979912 DOI: 10.1002/ana.27018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024]
Abstract
OBJECTIVE Most paroxysmal kinesigenic dyskinesia (PKD) cases are hereditary, yet approximately 60% of patients remain genetically undiagnosed. We undertook the present study to uncover the genetic basis for undiagnosed PKD patients. METHODS Whole-exome sequencing was performed for 106 PRRT2-negative PKD probands. The functional impact of the genetic variants was investigated in HEK293T cells and Drosophila. RESULTS Heterozygous variants in KCNJ10 were identified in 11 individuals from 8 unrelated families, which accounted for 7.5% (8/106) of the PRRT2-negative probands. Both co-segregation of the identified variants and the significantly higher frequency of rare KCNJ10 variants in PKD cases supported impacts from the detected KCNJ10 heterozygous variants on PKD pathogenesis. Moreover, a KCNJ10 mutation-carrying father from a typical EAST/SeSAME family was identified as a PKD patient. All patients manifested dystonia attacks triggered by sudden movement with a short episodic duration. Patch-clamp recordings in HEK293T cells revealed apparent reductions in K+ currents of the patient-derived variants, indicating a loss-of-function. In Drosophila, milder hyperexcitability phenotypes were observed in heterozygous Irk2 knock-in flies compared to homozygotes, supporting haploinsufficiency as the mechanism for the detected heterozygous variants. Electrophysiological recordings showed that excitatory neurons in Irk2 haploinsufficiency flies exhibited increased excitability, and glia-specific complementation with human Kir4.1 rescued the Irk2 mutant phenotypes. INTERPRETATION Our study established haploinsufficiency resulting from heterozygous variants in KCNJ10 can be understood as a previously unrecognized genetic cause for PKD and provided evidence of glial involvement in the pathophysiology of PKD. ANN NEUROL 2024;96:758-773.
Collapse
Affiliation(s)
- Yun-Lu Li
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian, China
| | - Jingjing Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian, China
| | - Xuejing Huang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian, China
| | - Rui-Huang Zeng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian, China
| | - Guangyu Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jie-Ni Xu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian, China
| | - Kai-Jun Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian, China
| | - Xin-Shuo Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian, China
| | - Ming-Feng He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing-Da Qiao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xuewen Cheng
- Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Dengna Zhu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhi-Qi Xiong
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Xu JJ, Li HF, Wu ZY. Paroxysmal Kinesigenic Dyskinesia: Genetics and Pathophysiological Mechanisms. Neurosci Bull 2024; 40:952-962. [PMID: 38091244 PMCID: PMC11250761 DOI: 10.1007/s12264-023-01157-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/03/2023] [Indexed: 07/16/2024] Open
Abstract
Paroxysmal kinesigenic dyskinesia (PKD), the most common type of paroxysmal movement disorder, is characterized by sudden and brief attacks of choreoathetosis or dystonia triggered by sudden voluntary movements. PKD is mainly caused by mutations in the PRRT2 or TMEM151A gene. The exact pathophysiological mechanisms of PKD remain unclear, although the function of PRRT2 protein has been well characterized in the last decade. Based on abnormal ion channels and disturbed synaptic transmission in the absence of PRRT2, PKD may be channelopathy or synaptopathy, or both. In addition, the cerebellum is regarded as the key pathogenic area. Spreading depolarization in the cerebellum is tightly associated with dyskinetic episodes. Whereas, in PKD, other than the cerebellum, the role of the cerebrum including the cortex and thalamus needs to be further investigated.
Collapse
Affiliation(s)
- Jiao-Jiao Xu
- Department of Medical Genetics and Center for Rare Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Department of Neurology in the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Hong-Fu Li
- Department of Medical Genetics and Center for Rare Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Department of Neurology in the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Zhi-Ying Wu
- Department of Medical Genetics and Center for Rare Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Department of Neurology in the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
5
|
Wirth T, Roze E, Delvallée C, Trouillard O, Drouot N, Damier P, Boulay C, Bourgninaud M, Jegatheesan P, Sangare A, Forlani S, Gaymard B, Hervochon R, Navarro V, Calmels N, Schalk A, Tranchant C, Piton A, Méneret A, Anheim M. Rare Missense Variants in KCNJ10 Are Associated with Paroxysmal Kinesigenic Dyskinesia. Mov Disord 2024; 39:897-905. [PMID: 38436103 DOI: 10.1002/mds.29752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/03/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Although the group of paroxysmal kinesigenic dyskinesia (PKD) genes is expanding, the molecular cause remains elusive in more than 50% of cases. OBJECTIVE The aim is to identify the missing genetic causes of PKD. METHODS Phenotypic characterization, whole exome sequencing and association test were performed among 53 PKD cases. RESULTS We identified four causative variants in KCNJ10, already associated with EAST syndrome (epilepsy, cerebellar ataxia, sensorineural hearing impairment and renal tubulopathy). Homozygous p.(Ile209Thr) variant was found in two brothers from a single autosomal recessive PKD family, whereas heterozygous p.(Cys294Tyr) and p.(Thr178Ile) variants were found in six patients from two autosomal dominant PKD families. Heterozygous p.(Arg180His) variant was identified in one additional sporadic PKD case. Compared to the Genome Aggregation Database v2.1.1, our PKD cohort was significantly enriched in both rare heterozygous (odds ratio, 21.6; P = 9.7 × 10-8) and rare homozygous (odds ratio, 2047; P = 1.65 × 10-6) missense variants in KCNJ10. CONCLUSIONS We demonstrated that both rare monoallelic and biallelic missense variants in KCNJ10 are associated with PKD. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Thomas Wirth
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Département de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch-Graffenstaden, France
- Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Emmanuel Roze
- Département de Neurologie, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
- Institut du Cerveau, Sorbonne Université, INSERM-U1127/CNRS-UMR7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Clarisse Delvallée
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Département de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch-Graffenstaden, France
- Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Oriane Trouillard
- Institut du Cerveau, Sorbonne Université, INSERM-U1127/CNRS-UMR7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Nathalie Drouot
- Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | | | - Clotilde Boulay
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Marine Bourgninaud
- Département de Neurologie, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
- Institut du Cerveau, Sorbonne Université, INSERM-U1127/CNRS-UMR7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Prasanthi Jegatheesan
- Département de Neurologie, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
- Institut du Cerveau, Sorbonne Université, INSERM-U1127/CNRS-UMR7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Aude Sangare
- Département de Neurologie, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
- Institut du Cerveau, Sorbonne Université, INSERM-U1127/CNRS-UMR7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Sylvie Forlani
- Département de Neurologie, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
- Institut du Cerveau, Sorbonne Université, INSERM-U1127/CNRS-UMR7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Bertrand Gaymard
- Département de Neurologie, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
- Institut du Cerveau, Sorbonne Université, INSERM-U1127/CNRS-UMR7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Remi Hervochon
- Service d'Oto-Rhino-Laryngologie, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Vincent Navarro
- Département de Neurologie, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
- Institut du Cerveau, Sorbonne Université, INSERM-U1127/CNRS-UMR7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Nadège Calmels
- Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Audrey Schalk
- Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Christine Tranchant
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Département de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch-Graffenstaden, France
- Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Amélie Piton
- Département de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch-Graffenstaden, France
- Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Aurélie Méneret
- Département de Neurologie, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
- Institut du Cerveau, Sorbonne Université, INSERM-U1127/CNRS-UMR7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Mathieu Anheim
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Département de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch-Graffenstaden, France
- Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
6
|
Yuan Z, Wang Q, Wang C, Liu Y, Fan L, Liu Y, Huang H. Identification of a de novo CACNA1B variant and a start-loss ADRA2B variant in paroxysmal kinesigenic dyskinesia. Heliyon 2024; 10:e28674. [PMID: 38571653 PMCID: PMC10988053 DOI: 10.1016/j.heliyon.2024.e28674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Paroxysmal kinesigenic dyskinesia (PKD) represents the most prevalent form of paroxysmal dyskinesia, characterized by recurrent and transient attacks of involuntary movements triggered by a sudden voluntary action. In this study, whole-exome sequencing was conducted on a cohort of Chinese patients to identify causal mutations. In one young female case, a de novo CACNA1B variant (NM_000718.3:exon3:c.479C > T:p.S160F) was identified as the causative lesion. This finding may broaden the phenotypic spectrum of CACNA1B mutations and provide a prospective cause of primary PKD. Additionally, a novel start-loss variant (NM_000682.7:c.3G > A) within ADRA2B further denied its association with benign adult familial myoclonic epilepsy, and a KCNQ2 E515D variant that was reported as a genetic susceptibility factor for seizures had no damaging effect in this family. In sum, this study established a correlation between CACNA1B and primary PKD, and found valid evidence that further negates the pathogenic role of ADRA2B in benign adult familial myoclonic epilepsy.
Collapse
Affiliation(s)
- Zhuangzhuang Yuan
- Department of Cell Biology, School of Life Science, Central South University, Changsha, China
| | - Qian Wang
- Department of Cell Biology, School of Life Science, Central South University, Changsha, China
| | - Chenyu Wang
- Department of Cell Biology, School of Life Science, Central South University, Changsha, China
| | - Yuxing Liu
- Department of Cell Biology, School of Life Science, Central South University, Changsha, China
| | - Liangliang Fan
- Department of Cell Biology, School of Life Science, Central South University, Changsha, China
| | - Yihui Liu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Hao Huang
- Department of Cell Biology, School of Life Science, Central South University, Changsha, China
| |
Collapse
|
7
|
Luo H, Huang X, Li Z, Tian W, Fang K, Liu T, Wang S, Tang B, Hu J, Yuan TF, Cao L. An Electroencephalography Profile of Paroxysmal Kinesigenic Dyskinesia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306321. [PMID: 38227367 DOI: 10.1002/advs.202306321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/24/2023] [Indexed: 01/17/2024]
Abstract
Paroxysmal kinesigenic dyskinesia (PKD) is associated with a disturbance of neural circuit and network activities, while its neurophysiological characteristics have not been fully elucidated. This study utilized the high-density electroencephalogram (hd-EEG) signals to detect abnormal brain activity of PKD and provide a neural biomarker for its clinical diagnosis and PKD progression monitoring. The resting hd-EEGs are recorded from two independent datasets and then source-localized for measuring the oscillatory activities and function connectivity (FC) patterns of cortical and subcortical regions. The abnormal elevation of theta oscillation in wildly brain regions represents the most remarkable physiological feature for PKD and these changes returned to healthy control level in remission patients. Another remarkable feature of PKD is the decreased high-gamma FCs in non-remission patients. Subtype analyses report that increased theta oscillations may be related to the emotional factors of PKD, while the decreased high-gamma FCs are related to the motor symptoms. Finally, the authors established connectome-based predictive modelling and successfully identified the remission state in PKD patients in dataset 1 and dataset 2. The findings establish a clinically relevant electroencephalography profile of PKD and indicate that hd-EEG can provide robust neural biomarkers to evaluate the prognosis of PKD.
Collapse
Affiliation(s)
- Huichun Luo
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xiaojun Huang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Ziyi Li
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Wotu Tian
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Kan Fang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Taotao Liu
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Shige Wang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Hunan Province, 410008, China
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226019, China
- Institute of Mental Health and drug discovery, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Li Cao
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| |
Collapse
|
8
|
Zhang Y, Ren J, Yang T, Xiong W, Qin L, An D, Hu F, Zhou D. Genetic and phenotypic analyses of PRRT2 positive and negative paroxysmal kinesigenic dyskinesia. Ther Adv Neurol Disord 2024; 17:17562864231224110. [PMID: 38250317 PMCID: PMC10798112 DOI: 10.1177/17562864231224110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
Background Paroxysmal kinesigenic dyskinesia (PKD) is a rare neurological disorder, characterized by attacks of involuntary movements triggered by sudden action. Variants in proline-rich transmembrane protein 2 (PRRT2) are the most common genetic cause of PKD. Objective The objective was to investigate the clinical and genetic characteristics of PKD and to establish genotype-phenotype correlations. Methods We enrolled 219 PKD patients, documented their clinical information and performed PRRT2 screening using Sanger sequencing. Whole exome sequencing was performed on 49 PKD probands without PRRT2 variants. Genotype-phenotype correlation analyses were conducted on the probands. Results Among 219 PKD patients (99 cases from 39 families and 120 sporadic cases), 16 PRRT2 variants were identified. Nine variants (c.879+4A>G, c.879+5G>A, c.856G>A, c.955G>T, c.884G>C, c.649C>T, c.649dupC, c.649delC and c.696_697delCA) were previously known, while seven were novel (c.367_403del, c.347_348delAA, c.835C>T, c.116dupC, c.837_838insC, c.916_937del and c.902G>A). The mean interval from onset to diagnosis was 7.94 years. Compared to patients without PRRT2 variants, patients with the variants were more likely to have a positive family history, an earlier age of onset and a higher prevalence of falls during pre-treatment attacks (27.14% versus 8.99%, respectively). Patients with truncated PRRT2 variants tend to have bilateral attacks. We identified two transmembrane protein 151A (TMEM151A) variants including a novel variant (c.368G>C) and a reported variant (c.203C>T) in two PRRT2-negative probands with PKD. Conclusion These findings provide insights on the clinical characteristics, diagnostic timeline and treatment response of PKD patients. PKD patients with truncated PRRT2 variants may tend to have more severe paroxysmal symptoms. This study expands the spectrum of PRRT2 and TMEM151A variants. Carbamazepine and oxcarbazepine are both used as a first-line treatment choice for PKD patients.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Jiechuan Ren
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tianhua Yang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Weixi Xiong
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Linyuan Qin
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Dongmei An
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Fayun Hu
- Department of Neurology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan 610041, China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan 610041, China
| |
Collapse
|
9
|
Huang HL, Zhang QX, Huang F, Long XY, Song Z, Xiao B, Li GL, Ma CY, Liu D. TMEM151A variants associated with paroxysmal kinesigenic dyskinesia. Hum Genet 2023; 142:1017-1028. [PMID: 36856871 DOI: 10.1007/s00439-023-02535-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/16/2023] [Indexed: 03/02/2023]
Abstract
TMEM151A, located at 11q13.2 and encoding transmembrane protein 151A, was recently reported as causative for autosomal dominant paroxysmal kinesigenic dyskinesia (PKD). Here, through comprehensive analysis of sporadic and familial cases, we expand the clinical and mutation spectrum of PKD. In doing so, we clarify the clinical and genetic features of Chinese PKD patients harboring TMEM151A variants and further explore the relationship between TMEM151A mutations and PKD. Whole exome sequencing was performed on 26 sporadic PKD patients and nine familial PKD pedigrees without PRRT2 variants. Quantitative real-time PCR was used to assess the gene expression of frameshift mutant TMEM151A in a PKD patient. TMEM151A variants reported to date were reviewed. Four TMEM151A variants were detected in four unrelated families with 12 individuals, including a frameshift mutation [c.606_607insA (p.Val203fs)], two missense mutations [c.166G > A (p.Gly56Arg) and c.791T > C (p.Val264Ala)], and a non-pathogenic variant [c.994G > A (p.Gly332Arg)]. The monoallelic frameshift mutation [c.606_607insA (p.Val203fs)] may cause TMEM151A mRNA decay, suggesting a potential pathogenic mechanism of haploinsufficiency. Patients with TMEM151A variants had short-duration attacks and presented with dystonia. Our study provides a detailed clinical description of PKD patients with TMEM151A mutations and reports a new disease-causing mutation, expanding the known phenotypes caused by TMEM151A mutations and providing further detail about the pathoetiology of PKD.
Collapse
Affiliation(s)
- Hua Lin Huang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qing Xia Zhang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fei Huang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao Yan Long
- Department of Neurology, The Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhi Song
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Xiao
- Department of Neurology, The Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guo Liang Li
- Department of Neurology, The Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cai Yu Ma
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Ding Liu
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
10
|
Xie F, Mao T, Tang J, Zhao L, Guo J, Lin H, Wang D, Zhou G. Evaluation of iron deposition in the motor CSTC loop of a Chinese family with paroxysmal kinesigenic dyskinesia using quantitative susceptibility mapping. Front Neurol 2023; 14:1164600. [PMID: 37483438 PMCID: PMC10358764 DOI: 10.3389/fneur.2023.1164600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Previous studies have revealed structural, functional, and metabolic changes in brain regions inside the cortico-striatal-thalamo-cortical (CSTC) loop in patients with paroxysmal kinesigenic dyskinesia (PKD), whereas no quantitative susceptibility mapping (QSM)-related studies have explored brain iron deposition in these areas. Methods A total of eight familial PKD patients and 10 of their healthy family members (normal controls) were recruited and underwent QSM on a 3T magnetic resonance imaging system. Magnetic susceptibility maps were reconstructed using a multi-scale dipole inversion algorithm. Thereafter, we specifically analyzed changes in local mean susceptibility values in cortical regions and subcortical nuclei inside the motor CSTC loop. Results Compared with normal controls, PKD patients had altered brain iron levels. In the cortical gray matter area involved with the motor CSTC loop, susceptibility values were generally elevated, especially in the bilateral M1 and PMv regions. In the subcortical nuclei regions involved with the motor CSTC loop, susceptibility values were generally lower, especially in the bilateral substantia nigra regions. Conclusion Our results provide new evidence for the neuropathogenesis of PKD and suggest that an imbalance in brain iron levels may play a role in PKD.
Collapse
Affiliation(s)
- Fangfang Xie
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Ting Mao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jingyi Tang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Linmei Zhao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jiuqing Guo
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Huashan Lin
- Department of Pharmaceutical Diagnosis, GE Healthcare, Changsha, China
| | - Dongcui Wang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Gaofeng Zhou
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Lin W. Translating Genetic Discovery into a Mechanistic Understanding of Pediatric Movement Disorders: Lessons from Genetic Dystonias and Related Disorders. ADVANCED GENETICS (HOBOKEN, N.J.) 2023; 4:2200018. [PMID: 37288166 PMCID: PMC10242408 DOI: 10.1002/ggn2.202200018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Indexed: 06/09/2023]
Abstract
The era of next-generation sequencing has increased the pace of gene discovery in the field of pediatric movement disorders. Following the identification of novel disease-causing genes, several studies have aimed to link the molecular and clinical aspects of these disorders. This perspective presents the developing stories of several childhood-onset movement disorders, including paroxysmal kinesigenic dyskinesia, myoclonus-dystonia syndrome, and other monogenic dystonias. These stories illustrate how gene discovery helps focus the research efforts of scientists trying to understand the mechanisms of disease. The genetic diagnosis of these clinical syndromes also helps clarify the associated phenotypic spectra and aids the search for additional disease-causing genes. Collectively, the findings of previous studies have led to increased recognition of the role of the cerebellum in the physiology and pathophysiology of motor control-a common theme in many pediatric movement disorders. To fully exploit the genetic information garnered in the clinical and research arenas, it is crucial that corresponding multi-omics analyses and functional studies also be performed at scale. Hopefully, these integrated efforts will provide us with a more comprehensive understanding of the genetic and neurobiological bases of movement disorders in childhood.
Collapse
Affiliation(s)
- Wei‐Sheng Lin
- Department of PediatricsTaipei Veterans General HospitalTaipei11217Taiwan
- School of MedicineNational Yang Ming Chiao Tung UniversityTaipei112304Taiwan
| |
Collapse
|
12
|
Mounir Alaoui O, Charbonneau PF, Prin P, Mongin M, Choquer M, Damier P, Riant F, Degos B. TMEM151A as an alternative to PRRT2 in paroxysmal kinesigenic dyskinesia: About three new cases. Parkinsonism Relat Disord 2023; 108:105295. [PMID: 36724570 DOI: 10.1016/j.parkreldis.2023.105295] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/29/2023]
Abstract
Paroxysmal kinesigenic dyskinesia (PKD) are movement disorders triggered by sudden voluntary movement. Variants in the TMEM151A gene have recently been associated with the development of PKD. We report three patients presenting PKD with different TMEM151A mutations, two of which have not been described yet.
Collapse
Affiliation(s)
- Othman Mounir Alaoui
- Service de Neurologie, Avicenne Hospital, APHP, Hôpitaux Universitaires de Paris-Seine Saint Denis (HUPSSD), Sorbonne Paris Nord, réseau NS-PARK/FCRIN, Bobigny, France
| | | | - Pauline Prin
- Service de Neurologie, Pôle Neurosciences Tête et Cou, CEPMo, CHU Gui de Chauliac, Montpellier, France
| | - Marie Mongin
- Service de Neurologie, Avicenne Hospital, APHP, Hôpitaux Universitaires de Paris-Seine Saint Denis (HUPSSD), Sorbonne Paris Nord, réseau NS-PARK/FCRIN, Bobigny, France
| | - Mathilde Choquer
- Service de Neurologie, Avicenne Hospital, APHP, Hôpitaux Universitaires de Paris-Seine Saint Denis (HUPSSD), Sorbonne Paris Nord, réseau NS-PARK/FCRIN, Bobigny, France
| | - Philippe Damier
- Service de Neurologie, CIC1314, CHU de Nantes, France; Nantes Université, Pôle Santé, UFR Medecine, Nantes, France
| | - Florence Riant
- Laboratoire de Génétique Moléculaire Neurovasculaire, Hôpital Saint-Louis, Paris, France
| | - Bertrand Degos
- Service de Neurologie, Avicenne Hospital, APHP, Hôpitaux Universitaires de Paris-Seine Saint Denis (HUPSSD), Sorbonne Paris Nord, réseau NS-PARK/FCRIN, Bobigny, France; Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR7241/INSERM U1050, Université PSL, Paris, France.
| |
Collapse
|
13
|
Li ZY, Tian WT, Huang XJ, Cao L. The Pathogenesis of Paroxysmal Kinesigenic Dyskinesia: Current Concepts. Mov Disord 2023; 38:537-544. [PMID: 36718795 DOI: 10.1002/mds.29326] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 02/01/2023] Open
Abstract
Paroxysmal kinesigenic dyskinesia (PKD) is a movement disorder characterized by recurrent and transient episodes of involuntary movements, including dystonia, chorea, ballism, or a combination of these, which are typically triggered by sudden voluntary movement. Disturbance of the basal ganglia-thalamo-cortical circuit has long been considered the cause of involuntary movements. Impairment of the gating function of the basal ganglia can cause an aberrant output toward the thalamus, which in turn leads to excessive activation of the cerebral cortex. Structural and functional abnormalities in the basal ganglia, thalamus, and cortex and abnormal connections between these brain regions have been found in patients with PKD. Recent studies have highlighted the role of the cerebellum in PKD. Insufficient suppression from the cerebellar cortex to the deep cerebellar nuclei could lead to overexcitation of the thalamocortical pathway. Therefore, this literature review aims to provide a comprehensive overview of the current research progress to explore the neural circuits and pathogenesis of PKD and promote further understanding and outlook on the pathophysiological mechanism of movement disorders. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Zi-Yi Li
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wo-Tu Tian
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Jun Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Cao
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Erro R, Magrinelli F, Bhatia KP. Paroxysmal movement disorders: Paroxysmal dyskinesia and episodic ataxia. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:347-365. [PMID: 37620078 DOI: 10.1016/b978-0-323-98817-9.00033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Paroxysmal movement disorders have traditionally been classified into paroxysmal dyskinesia (PxD), which consists in attacks of involuntary movements (mainly dystonia and/or chorea) without loss of consciousness, and episodic ataxia (EA), which features spells of cerebellar dysfunction with or without interictal neurological manifestations. In this chapter, PxD will be discussed first according to the trigger-based classification, thus reviewing clinical, genetic, and molecular features of paroxysmal kinesigenic dyskinesia, paroxysmal nonkinesigenic dyskinesia, and paroxysmal exercise-induced dyskinesia. EA will be presented thereafter according to their designated gene or genetic locus. Clinicogenetic similarities among paroxysmal movement disorders have progressively emerged, which are herein highlighted along with growing evidence that their pathomechanisms overlap those of epilepsy and migraine. Advances in our comprehension of the biological pathways underlying paroxysmal movement disorders, which involve ion channels as well as proteins associated with the vesical synaptic cycle or implicated in neuronal energy metabolism, may represent the cornerstone for defining a shared pathophysiologic framework and developing target-specific therapies.
Collapse
Affiliation(s)
- Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Baronissi, Salerno, Italy
| | - Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
15
|
TMEM151A phenotypic spectrum includes paroxysmal kinesigenic dyskinesia with infantile convulsions. Neurol Sci 2022; 43:6095-6099. [DOI: 10.1007/s10072-022-06208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/08/2022] [Indexed: 10/18/2022]
|
16
|
Stephen CD. The Dystonias. Continuum (Minneap Minn) 2022; 28:1435-1475. [PMID: 36222773 DOI: 10.1212/con.0000000000001159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
PURPOSE OF REVIEW This article discusses the most recent findings regarding the diagnosis, classification, and management of genetic and idiopathic dystonia. RECENT FINDINGS A new approach to classifying dystonia has been created with the aim to increase the recognition and diagnosis of dystonia. Molecular biology and genetic studies have identified several genes and biological pathways involved in dystonia. SUMMARY Dystonia is a common movement disorder involving abnormal, often twisting, postures and is a challenging condition to diagnose. The pathophysiology of dystonia involves abnormalities in brain motor networks in the context of genetic factors. Dystonia has genetic, idiopathic, and acquired forms, with a wide phenotypic spectrum, and is a common feature in complex neurologic disorders. Dystonia can be isolated or combined with another movement disorder and may be focal, segmental, multifocal, or generalized in distribution, with some forms only occurring during the performance of specific tasks (task-specific dystonia). Dystonia is classified by clinical characteristics and presumed etiology. The management of dystonia involves accurate diagnosis, followed by treatment with botulinum toxin injections, oral medications, and surgical therapies (mainly deep brain stimulation), as well as pathogenesis-directed treatments, including the prospect of disease-modifying or gene therapies.
Collapse
|
17
|
Ma LY, Han L, Niu M, Chen L, Yu YZ, Feng T. Screening of the TMEM151A Gene in Patients With Paroxysmal Kinesigenic Dyskinesia and Other Movement Disorders. Front Neurol 2022; 13:865690. [PMID: 35707035 PMCID: PMC9189402 DOI: 10.3389/fneur.2022.865690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022] Open
Abstract
Background Paroxysmal kinesigenic dyskinesia (PKD) is a rare neurological disorder characterized by recurrent involuntary movements usually triggered by sudden movements. Mutations in the TMEM151A gene were found to be the causative factor of PKD in recent studies. It has also been revealed that loss-of-function is the mechanism by which TMEM151A mutations cause PKD. Methods To investigate the genetic basis of PKD and broaden the clinical spectrum of the TMEM151A mutations, we recruited 181 patients of Chinese origin with movement disorders (MDs), including 39 PRRT2-negative PKD, 3 paroxysmal exercise-induced dyskinesia (PED), 2 paroxysmal non-kinesigenic dyskinesia (PNKD), 127 isolated dystonia, 8 choreas, and 2 myoclonus-dystonia syndromes. Whole-exome sequencing was applied to identify their possible disease-causing mutations. Then, Sanger sequencing was performed for validation and co-segregation analysis. Genetic analysis was also performed on additional family members of patients with TMEM151A mutations. Clinical manifestations of all PKD cases with mutations in TMEM151A reported, so far, were reviewed. Results Two novel variants of the TMEM151A gene (NM_153266.4, NP_694998.1), c.627_643dup (p.A215Gfs*53) and c.627delG (p.L210Wfs*52), were identified in 2 patients with PKD by whole-exome sequencing and further Sanger sequencing. Both variants were inherited by the patients from their respective mothers. No mutation of the TMEM151A gene was found in the other type of movement disorders. In reviewing the clinical presentation of TMEM151A-related PKD, no statistically significant difference in the age of onset, family history, duration of attacks, laterality, and phenotype was found between genders. More male patients received treatment and had a good response. A higher proportion of female patients did not receive any treatment, possibly because they had a milder condition of the disease. Conclusions This study further validated the role of TMEM151A in PKD. Future studies on protein function will be needed to ascertain the pathogenesis of TMEM151A in PKD.
Collapse
Affiliation(s)
- Ling-Yan Ma
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Lin Han
- Running Gene Inc., Beijing, China
| | - Meng Niu
- Department of Neurology, Hengshui Eighth People's Hospital, Hebei, China
| | - Lu Chen
- Department of Encephalopathy, Dong Fang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Ya-Zhen Yu
- Department of Pediatrics, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Ya-Zhen Yu
| | - Tao Feng
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Parkinson's Disease Center, Beijing Institute for Brain Disorders, Beijing, China
- Tao Feng
| |
Collapse
|
18
|
Wirth T, Méneret A, Drouot N, Rudolf G, Lagha Boukbiza O, Chelly J, Tranchant C, Piton A, Roze E, Anheim M. De Novo Mutation in TMEM151A and Paroxysmal Kinesigenic Dyskinesia. Mov Disord 2022; 37:1115-1117. [PMID: 35587630 PMCID: PMC9321051 DOI: 10.1002/mds.29023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/03/2022] [Accepted: 02/13/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Thomas Wirth
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé Et de la Recherche Médicale-U964/Centre National de la Recherche Scientifique-UMR7104/Université de Strasbourg, Illkirch-Graffenstaden, France.,Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Aurélie Méneret
- Département de neurologie, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France.,Sorbonne Université, Institut du Cerveau, Institut National de la Santé Et de la Recherche Médicale-U1127/Centre National de la Recherche Scientifique-UMR7225, Salpêtrière Hospital, AP-HP, Paris, France
| | - Nathalie Drouot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé Et de la Recherche Médicale-U964/Centre National de la Recherche Scientifique-UMR7104/Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Gabrielle Rudolf
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé Et de la Recherche Médicale-U964/Centre National de la Recherche Scientifique-UMR7104/Université de Strasbourg, Illkirch-Graffenstaden, France.,Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | | | - Jamel Chelly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé Et de la Recherche Médicale-U964/Centre National de la Recherche Scientifique-UMR7104/Université de Strasbourg, Illkirch-Graffenstaden, France.,Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France.,Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Christine Tranchant
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé Et de la Recherche Médicale-U964/Centre National de la Recherche Scientifique-UMR7104/Université de Strasbourg, Illkirch-Graffenstaden, France.,Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Amélie Piton
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé Et de la Recherche Médicale-U964/Centre National de la Recherche Scientifique-UMR7104/Université de Strasbourg, Illkirch-Graffenstaden, France.,Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France.,Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Emmanuel Roze
- Département de neurologie, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France.,Sorbonne Université, Institut du Cerveau, Institut National de la Santé Et de la Recherche Médicale-U1127/Centre National de la Recherche Scientifique-UMR7225, Salpêtrière Hospital, AP-HP, Paris, France
| | - Mathieu Anheim
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé Et de la Recherche Médicale-U964/Centre National de la Recherche Scientifique-UMR7104/Université de Strasbourg, Illkirch-Graffenstaden, France.,Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
19
|
Li YL, Lv WQ, Zeng YH, Chen YK, Wang XL, Yang K, Ding YL, Chen RK, Wang N, Chen WJ. Exome-Wide Analyses in Paroxysmal Kinesigenic Dyskinesia Confirm TMEM151A as a Novel Causative Gene. Mov Disord 2021; 37:641-643. [PMID: 34970790 DOI: 10.1002/mds.28904] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/13/2021] [Indexed: 02/04/2023] Open
Affiliation(s)
- Yun-Lu Li
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Wen-Qi Lv
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yi-Heng Zeng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yi-Kun Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xian-Long Wang
- Department of Bioinformatics, School of Medical Technology and Engineering, Key Laboratory of Medical Bioinformatics, Fujian Medical University, Fuzhou, China
| | - Kang Yang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yuan-Liang Ding
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Ru-Kai Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| |
Collapse
|