1
|
Hertz E, Chen Y, Sidransky E. Gaucher disease provides a unique window into Parkinson disease pathogenesis. Nat Rev Neurol 2024; 20:526-540. [PMID: 39107435 DOI: 10.1038/s41582-024-00999-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
An exciting development in the field of neurodegeneration is the association between the rare monogenic disorder Gaucher disease and the common complex disorder Parkinson disease (PD). Gaucher disease is a lysosomal storage disorder resulting from an inherited deficiency of the enzyme glucocerebrosidase, encoded by GBA1, which hydrolyses the glycosphingolipids glucosylceramide and glucosylsphingosine. The observation of parkinsonism in a rare subgroup of individuals with Gaucher disease first directed attention to the role of glucocerebrosidase deficiency in the pathogenesis of PD. PD occurs more frequently in people heterozygous for Gaucher GBA1 mutations, and 3-25% of people with Parkinson disease carry a GBA1 variant. However, only a small percentage of individuals with GBA1 variants develop parkinsonism, suggesting that the penetrance is low. Despite over a decade of intense research in this field, including clinical and radiological evaluations, genetic studies and investigations using model systems, the mechanism underlying GBA1-PD is still being pursued. Insights from this association have emphasized the role of lysosomal pathways in parkinsonism. Furthermore, different therapeutic strategies considered or developed for Gaucher disease can now inform drug development for PD.
Collapse
Affiliation(s)
- Ellen Hertz
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yu Chen
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ellen Sidransky
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Pilotto A, Zanusso G, Antelmi E, Okuzumi A, Zatti C, Lupini A, Bongianni M, Padovani A, Hattori N. Biofluid Markers and Tissue Biopsies Analyses for the Prodromal and Earliest Phase of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:S333-S344. [PMID: 39331105 PMCID: PMC11494635 DOI: 10.3233/jpd-240007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 09/28/2024]
Abstract
The recent development of new methods to detect misfolded α-synuclein (αSyn) aggregates in biofluids and tissue biopsies in the earliest Parkinson's disease (PD) phases is dramatically challenging the biological definition of PD. The αSyn seed amplification methods in cerebrospinal fluid (CSF) showed high sensitivity and specificity for early diagnosis of PD and Lewy bodies disorders. Several studies in isolated REM sleep behavior disorders and other at-risk populations also demonstrated a high prevalence of CSF αSyn positivity and its potential value in predicting the phenoconversion to clinically manifested diseases. Growing evidence exists for αSyn aggregates in olfactory mucosa, skin, and other tissues in subjects with PD or at-risk subjects. DOPA decarboxylase and numerous other candidates have been additionally proposed for either diagnostic or prognostic purposes in earliest PD phases. The newly described αSyn detection in blood, through its quantification in neuronally-derived exosome vesicles, represents a technical challenge that could open a new scenario for the biological diagnosis of PD. Despite this growing evidence in the field, most of method of αSyn detection and markers still need to be validated in ongoing longitudinal studies through an accurate assessment of different prodromal disease subtypes and scenarios before being definitively implemented in clinical settings.
Collapse
Affiliation(s)
- Andrea Pilotto
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Laboratory of Digital Neurology and Biosensors, University of Brescia, Brescia, Italy
- Neurology Unit, Department of Continuity of Care and Frailty, ASST Spedali Civili Brescia Hospital, Brescia, Italy
- Neurobiorepository and Laboratory of Advanced Biological Markers, University of Brescia and ASST Spedali Civili of Brescia, Brescia, Italy
| | - Gianluigi Zanusso
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Elena Antelmi
- Neurology Unit, Parkinson Disease and Movement Disorders Division, Department of Engineering and Medicine of Innovation, University of Verona, Verona, Italy
| | - Ayami Okuzumi
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Cinzia Zatti
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Laboratory of Digital Neurology and Biosensors, University of Brescia, Brescia, Italy
- Neurology Unit, Department of Continuity of Care and Frailty, ASST Spedali Civili Brescia Hospital, Brescia, Italy
| | - Alessandro Lupini
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Laboratory of Digital Neurology and Biosensors, University of Brescia, Brescia, Italy
- Neurology Unit, Department of Continuity of Care and Frailty, ASST Spedali Civili Brescia Hospital, Brescia, Italy
| | - Matilde Bongianni
- Neurobiorepository and Laboratory of Advanced Biological Markers, University of Brescia and ASST Spedali Civili of Brescia, Brescia, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Laboratory of Digital Neurology and Biosensors, University of Brescia, Brescia, Italy
- Neurology Unit, Department of Continuity of Care and Frailty, ASST Spedali Civili Brescia Hospital, Brescia, Italy
- Neurobiorepository and Laboratory of Advanced Biological Markers, University of Brescia and ASST Spedali Civili of Brescia, Brescia, Italy
- Brain Health Center, University of Brescia, Brescia, Italy
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Neurodegenerative Disorders Collaboration Laboratory, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
3
|
Vijiaratnam N, Foltynie T. How should we be using biomarkers in trials of disease modification in Parkinson's disease? Brain 2023; 146:4845-4869. [PMID: 37536279 PMCID: PMC10690028 DOI: 10.1093/brain/awad265] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/05/2023] Open
Abstract
The recent validation of the α-synuclein seed amplification assay as a biomarker with high sensitivity and specificity for the diagnosis of Parkinson's disease has formed the backbone for a proposed staging system for incorporation in Parkinson's disease clinical studies and trials. The routine use of this biomarker should greatly aid in the accuracy of diagnosis during recruitment of Parkinson's disease patients into trials (as distinct from patients with non-Parkinson's disease parkinsonism or non-Parkinson's disease tremors). There remain, however, further challenges in the pursuit of biomarkers for clinical trials of disease modifying agents in Parkinson's disease, namely: optimizing the distinction between different α-synucleinopathies; the selection of subgroups most likely to benefit from a candidate disease modifying agent; a sensitive means of confirming target engagement; and the early prediction of longer-term clinical benefit. For example, levels of CSF proteins such as the lysosomal enzyme β-glucocerebrosidase may assist in prognostication or allow enrichment of appropriate patients into disease modifying trials of agents with this enzyme as the target; the presence of coexisting Alzheimer's disease-like pathology (detectable through CSF levels of amyloid-β42 and tau) can predict subsequent cognitive decline; imaging techniques such as free-water or neuromelanin MRI may objectively track decline in Parkinson's disease even in its later stages. The exploitation of additional biomarkers to the α-synuclein seed amplification assay will, therefore, greatly add to our ability to plan trials and assess the disease modifying properties of interventions. The choice of which biomarker(s) to use in the context of disease modifying clinical trials will depend on the intervention, the stage (at risk, premotor, motor, complex) of the population recruited and the aims of the trial. The progress already made lends hope that panels of fluid biomarkers in tandem with structural or functional imaging may provide sensitive and objective methods of confirming that an intervention is modifying a key pathophysiological process of Parkinson's disease. However, correlation with clinical progression does not necessarily equate to causation, and the ongoing validation of quantitative biomarkers will depend on insightful clinical-genetic-pathophysiological comparisons incorporating longitudinal biomarker changes from those at genetic risk with evidence of onset of the pathophysiology and those at each stage of manifest clinical Parkinson's disease.
Collapse
Affiliation(s)
- Nirosen Vijiaratnam
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
4
|
Te Vruchte D, Sturchio A, Priestman DA, Tsitsi P, Hertz E, Andréasson M, Markaki I, Wallom KL, Platt F, Svenningsson P. Glycosphingolipid Changes in Plasma in Parkinson's Disease Independent of Glucosylceramide Levels. Mov Disord 2022; 37:2129-2134. [PMID: 35876461 DOI: 10.1002/mds.29163] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Alteration in glycosphingolipids (GSLs) in Parkinson's disease (PD) still needs to be determined. OBJECTIVES We evaluated if PD subjects show abnormal GSLs levels compared to healthy controls (HC) and if GSLs correlate with clinical features. METHODS We analyzed GSLs and glucosylceramide (GlcCer) in plasma using two normal-phase high-performance liquid chromatography assays; clinico-demographic data were extracted. RESULTS Eighty PD subjects and 25 HCs were analyzed. Levels of GlcCer, GD1b, Gb4, GalNAcGA1, and b-series were higher in PD patients than in HCs; total GSLs, GT1b, GM1a, GM3, GM2, and a-series levels were lower in PD patients than in HCs. Changes in GSLs were present in PD subjects, with GlcCer levels similar to those in HCs. The results were similar after excluding certain GBA1 mutation carriers. Movement Disorder Society Unified Parkinson's Disease Rating Scale, Part III, correlated with Gb4 and Montreal Cognitive Assessment with GD1b levels. CONCLUSIONS Multiple GSL abnormalities in plasma were detected in patients with and without GlcCer changes, indicating a broader shift in lipid homeostasis. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
Collapse
Affiliation(s)
| | - Andrea Sturchio
- Department of Clinical Neuroscience, Neuro Svenningsson, Karolinska Institute, Stockholm, Sweden.,James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, Ohio, USA
| | - David A Priestman
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Panagiota Tsitsi
- Department of Clinical Neuroscience, Neuro Svenningsson, Karolinska Institute, Stockholm, Sweden
| | - Ellen Hertz
- Department of Clinical Neuroscience, Neuro Svenningsson, Karolinska Institute, Stockholm, Sweden
| | - Mattias Andréasson
- Department of Clinical Neuroscience, Neuro Svenningsson, Karolinska Institute, Stockholm, Sweden
| | - Ioanna Markaki
- Department of Clinical Neuroscience, Neuro Svenningsson, Karolinska Institute, Stockholm, Sweden
| | - Kerri-Lee Wallom
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Frances Platt
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Per Svenningsson
- Department of Clinical Neuroscience, Neuro Svenningsson, Karolinska Institute, Stockholm, Sweden.,Department of Basic and Clinical Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
5
|
Lansbury P. The Jury Is Still Out. Mov Disord 2022; 37:651. [PMID: 35040206 DOI: 10.1002/mds.28911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Peter Lansbury
- Bial Biotech, 19 Blackstone Street, Cambridge, Massachusetts, 02139, USA
| |
Collapse
|