1
|
Cao Y, Xu Y, Cao M, Chen N, Zeng Q, Lai MKP, Fan D, Sethi G, Cao Y. Fluid-based biomarkers for neurodegenerative diseases. Ageing Res Rev 2025; 108:102739. [PMID: 40122396 DOI: 10.1016/j.arr.2025.102739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 03/10/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Neurodegenerative diseases, such as Alzheimer's Disease (AD), Multiple Sclerosis (MS), Parkinson's Disease (PD), and Amyotrophic Lateral Sclerosis (ALS) are increasingly prevalent as global populations age. Fluid biomarkers, derived from cerebrospinal fluid (CSF), blood, saliva, urine, and exosomes, offer a promising solution for early diagnosis, prognosis, and disease monitoring. These biomarkers can reflect critical pathological processes like amyloid-beta (Aβ) deposition, tau protein hyperphosphorylation, α-syn misfolding, TDP-43 mislocalization and aggregation, and neuronal damage, enabling detection long before clinical symptoms emerge. Recent advances in blood-based biomarkers, particularly plasma Aβ, phosphorylated tau, and TDP-43, have shown diagnostic accuracy equivalent to CSF biomarkers, offering more accessible testing options. This review discusses the current challenges in fluid biomarker research, including variability, standardization, and sensitivity issues, and explores how combining multiple biomarkers with clinical symptoms improves diagnostic reliability. Ethical considerations, future directions involving extracellular vehicles (EVs), and the integration of artificial intelligence (AI) are also highlighted. Continued research efforts will be key to overcoming these obstacles, enabling fluid biomarkers to become crucial tools in personalized medicine for neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Yifei Xu
- Institute of Gastroenterology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Meiqun Cao
- Department of Neurology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Nan Chen
- Institute of Gastroenterology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Qingling Zeng
- Institute of Gastroenterology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore; Memory, Aging and Cognition Centre, National University Health System, Singapore
| | - Dahua Fan
- Institute of Maternal-Fetal Medicine,Shunde Women and Children's Hospital, Guangdong Medical University, Foshan 528300, China.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| | - Yongkai Cao
- Department of Neurology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China.
| |
Collapse
|
2
|
Jellinger KA. Behavioral disorders in dementia with Lewy bodies: old and new knowledge. J Neural Transm (Vienna) 2025; 132:203-216. [PMID: 39237792 DOI: 10.1007/s00702-024-02823-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024]
Abstract
Dementia with Lewy bodies (DLB), the second most common primary degenerative neurocognitive disorder after Alzheimer disease, is frequently preceded by REM sleep behavior disorders (RBD) and other behavioral symptoms, like anxiety, irritability, agitation or apathy, as well as visual hallucinations and delusions, most of which occurring in 40-60% of DLB patients. Other frequent behavioral symptoms like attention deficits contribute to cognitive impairment, while attention-deficit/hyperactivity disorder (ADHD) is a risk factor for DLB. Behavioral problems in DLB are more frequent, more severe and appear earlier than in other neurodegenerative diseases and, together with other neuropsychiatric symptoms, contribute to impairment of quality of life of the patients, but their pathophysiology is poorly understood. Neuroimaging studies displayed deficits in cholinergic brainstem nuclei and decreased metabolism in frontal, superior parietal regions, cingulate gyrus and amygdala in DLB. Early RBD in autopsy-confirmed DLB is associated with lower Braak neuritic stages, whereas those without RBD has greater atrophy of hippocampus and increased tau burden. αSyn pathology in the amygdala, a central region in the fear circuitry, may contribute to the high prevalence of anxiety, while in attention dysfunctions the default mode and dorsal attention networks displayed diverging activity. These changes suggest that behavioral disorders in DLB are associated with marked impairment in large-scale brain structures and functional connectivity network disruptions. However, many pathobiological mechanisms involved in the development of behavioral disorders in DLB await further elucidation in order to allow an early diagnosis and adequate treatment to prevent progression of these debilitating disorders.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, Vienna, A-1150, Austria.
| |
Collapse
|
3
|
Zhu L, Zhu P, Wang J, Yan K, Zhao S, Jiang Y, Zhang H. A bibliometric and visual analysis of Parkinson's disease sleep disorders: articles from 2008 to 2023. Front Psychiatry 2024; 15:1468568. [PMID: 39529898 PMCID: PMC11551719 DOI: 10.3389/fpsyt.2024.1468568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Objective Sleep disorder is a common non-motor symptom (NMS) of Parkinson's disease. However, the global research focus on Parkinson's sleep-related disorders (PDSDs) and future trends remains unclear. Currently, there is no bibliometric analysis of PDSDs. We aim to fill this gap, determine the status of current research, and predict future research hotspots. Methods We selected 1490 publications from the Web of Science Core Collection (WoSCC) database from 2008 to 2023. Based on CiteSpace and VOSviewer, the analysis was performed from the perspectives of the trend in the number of annual publications, countries, institutions, authors, journals, and co-citations. Results A total of 1490 publications from 590 authors from 409 institutions in 77 countries are included. The United States, China, and the United Kingdom are the leading countries. University College London (UCL) is the most prolific institution. Harvard University is the key for cooperation among institutions. Chaudhuri Kallol Ray is a leader in this field. "Movement Disorders" is the most influential journal. "A systematic review of the literature on disorders of sleep and wakefulness in Parkinson's disease from 2005 to 2015" is the publication with the highest co-citation intensity. Conclusion The total volume of publications on PDSDs is on the rise, entering a relatively high-yield stage in 2020. The COVID-19 pandemic and the emergence of new keywords may be the reasons behind this phenomenon. "quality of life" and "circadian rhythm" are the mainstream topics of PDSD research. Daytime sleepiness is the PDSD subtype that has received the most attention. Sleep quality, biomarkers, and neurodegeneration are likely to become future research hotspots.
Collapse
Affiliation(s)
- Lili Zhu
- Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, China
| | - Peiyuan Zhu
- Beijing University of Chinese Medicine, Beijing, China
| | - Juwei Wang
- Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Department of Graduate College, Wenzhou, China
| | - Kaiwen Yan
- Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Department of Graduate College, Wenzhou, China
| | - Sheng Zhao
- Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Department of Graduate College, Wenzhou, China
| | - Yue Jiang
- First Affiliated Hospital of Wenzhou Medical University, Department of Acupuncture, Wenzhou, China
| | - Huihe Zhang
- Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, China
| |
Collapse
|
4
|
Qi W, Zhu X, He D, Wang B, Cao S, Dong C, Li Y, Chen Y, Wang B, Shi Y, Jiang G, Liu F, Boots LMM, Li J, Lou X, Yao J, Lu X, Kang J. Mapping Knowledge Landscapes and Emerging Trends in AI for Dementia Biomarkers: Bibliometric and Visualization Analysis. J Med Internet Res 2024; 26:e57830. [PMID: 39116438 PMCID: PMC11342017 DOI: 10.2196/57830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/04/2024] [Accepted: 06/25/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND With the rise of artificial intelligence (AI) in the field of dementia biomarker research, exploring its current developmental trends and research focuses has become increasingly important. This study, using literature data mining, analyzes and assesses the key contributions and development scale of AI in dementia biomarker research. OBJECTIVE The aim of this study was to comprehensively evaluate the current state, hot topics, and future trends of AI in dementia biomarker research globally. METHODS This study thoroughly analyzed the literature in the application of AI to dementia biomarkers across various dimensions, such as publication volume, authors, institutions, journals, and countries, based on the Web of Science Core Collection. In addition, scales, trends, and potential connections between AI and biomarkers were extracted and deeply analyzed through multiple expert panels. RESULTS To date, the field includes 1070 publications across 362 journals, involving 74 countries and 1793 major research institutions, with a total of 6455 researchers. Notably, 69.41% (994/1432) of the researchers ceased their studies before 2019. The most prevalent algorithms used are support vector machines, random forests, and neural networks. Current research frequently focuses on biomarkers such as imaging biomarkers, cerebrospinal fluid biomarkers, genetic biomarkers, and blood biomarkers. Recent advances have highlighted significant discoveries in biomarkers related to imaging, genetics, and blood, with growth in studies on digital and ophthalmic biomarkers. CONCLUSIONS The field is currently in a phase of stable development, receiving widespread attention from numerous countries, institutions, and researchers worldwide. Despite this, stable clusters of collaborative research have yet to be established, and there is a pressing need to enhance interdisciplinary collaboration. Algorithm development has shown prominence, especially the application of support vector machines and neural networks in imaging studies. Looking forward, newly discovered biomarkers are expected to undergo further validation, and new types, such as digital biomarkers, will garner increased research interest and attention.
Collapse
Affiliation(s)
- Wenhao Qi
- School of Nursing, Hangzhou Normal University, Hangzhou, China
| | - Xiaohong Zhu
- School of Nursing, Hangzhou Normal University, Hangzhou, China
| | - Danni He
- School of Nursing, Hangzhou Normal University, Hangzhou, China
- Nursing Department, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Bin Wang
- School of Nursing, Hangzhou Normal University, Hangzhou, China
| | - Shihua Cao
- School of Nursing, Hangzhou Normal University, Hangzhou, China
| | - Chaoqun Dong
- School of Nursing, Hangzhou Normal University, Hangzhou, China
| | - Yunhua Li
- College of Education, Chengdu College of Arts and Sciences, Sichuan, China
| | - Yanfei Chen
- School of Nursing, Hangzhou Normal University, Hangzhou, China
- Nursing Department, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Bingsheng Wang
- School of Nursing, Hangzhou Normal University, Hangzhou, China
| | - Yankai Shi
- School of Nursing, Hangzhou Normal University, Hangzhou, China
| | - Guowei Jiang
- Department of Psychiatry and Neuropsychology and Alzheimer Center Limburg, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands
| | - Fang Liu
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Lizzy M M Boots
- Department of Psychiatry and Neuropsychology and Alzheimer Center Limburg, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands
| | - Jiaqi Li
- School of Nursing, Hangzhou Normal University, Hangzhou, China
| | - Xiajing Lou
- School of Nursing, Hangzhou Normal University, Hangzhou, China
| | - Jiani Yao
- School of Nursing, Hangzhou Normal University, Hangzhou, China
| | - Xiaodong Lu
- Department of Neurology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Junling Kang
- Department of Neurology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
5
|
Pavelka L, Rauschenberger A, Hemedan A, Ostaszewski M, Glaab E, Krüger R. Converging peripheral blood microRNA profiles in Parkinson's disease and progressive supranuclear palsy. Brain Commun 2024; 6:fcae187. [PMID: 38863572 PMCID: PMC11166179 DOI: 10.1093/braincomms/fcae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/02/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024] Open
Abstract
MicroRNAs act via targeted suppression of messenger RNA translation in the DNA-RNA-protein axis. The dysregulation of microRNA(s) reflects the epigenetic changes affecting the cellular processes in multiple disorders. To understand the complex effect of dysregulated microRNAs linked to neurodegeneration, we performed a cross-sectional microRNA expression analysis in idiopathic Parkinson's disease (n = 367), progressive supranuclear palsy (n = 35) and healthy controls (n = 416) from the Luxembourg Parkinson's Study, followed by prediction modelling, enriched pathway analysis and target simulation of dysregulated microRNAs using probabilistic Boolean modelling. Forty-six microRNAs were identified to be dysregulated in Parkinson's disease versus controls and 16 in progressive supranuclear palsy versus controls with 4 overlapping significantly dysregulated microRNAs between the comparisons. Predictive power of microRNA subsets (including up to 100 microRNAs) was modest for differentiating Parkinson's disease or progressive supranuclear palsy from controls (maximal cross-validated area under the receiver operating characteristic curve 0.76 and 0.86, respectively) and low for progressive supranuclear palsy versus Parkinson's disease (maximal cross-validated area under the receiver operating characteristic curve 0.63). The enriched pathway analysis revealed natural killer cell pathway to be dysregulated in both, Parkinson's disease and progressive supranuclear palsy versus controls, indicating that the immune system might play an important role in both diseases. Probabilistic Boolean modelling of pathway dynamics affected by dysregulated microRNAs in Parkinson's disease and progressive supranuclear palsy revealed partially overlapping dysregulation in activity of the transcription factor EB, endoplasmic reticulum stress signalling, calcium signalling pathway, dopaminergic transcription and peroxisome proliferator-activated receptor gamma coactivator-1α activity, though involving different mechanisms. These findings indicated a partially convergent (sub)cellular end-point dysfunction at multiple levels in Parkinson's disease and progressive supranuclear palsy, but with distinctive underlying molecular mechanisms.
Collapse
Affiliation(s)
- Lukas Pavelka
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen L-1445, Luxembourg
- Parkinson’s Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg L-1210, Luxembourg
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4367, Luxembourg
| | - Armin Rauschenberger
- Biomedical Data Science Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4367, Luxembourg
- Competence Centre for Methodology and Statistics, Translational Medicine Operations Hub, Luxembourg Institute of Health (LIH), Strassen L-1445, Luxembourg
| | - Ahmed Hemedan
- Bioinformatics Core Unit, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4367, Luxembourg
| | - Marek Ostaszewski
- Bioinformatics Core Unit, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4367, Luxembourg
| | - Enrico Glaab
- Biomedical Data Science Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4367, Luxembourg
| | - Rejko Krüger
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen L-1445, Luxembourg
- Parkinson’s Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg L-1210, Luxembourg
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4367, Luxembourg
| |
Collapse
|
6
|
Russo T, Kolisnyk B, B. S. A, Plessis‐Belair J, Kim TW, Martin J, Ni J, Pearson JA, Park EJ, Sher RB, Studer L, Riessland M. The SATB1-MIR22-GBA axis mediates glucocerebroside accumulation inducing a cellular senescence-like phenotype in dopaminergic neurons. Aging Cell 2024; 23:e14077. [PMID: 38303548 PMCID: PMC11019121 DOI: 10.1111/acel.14077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/01/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024] Open
Abstract
Idiopathic Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta, which is associated with neuroinflammation and reactive gliosis. The underlying cause of PD and the concurrent neuroinflammation are not well understood. In this study, we utilize human and murine neuronal lines, stem cell-derived dopaminergic neurons, and mice to demonstrate that three previously identified genetic risk factors for PD, namely SATB1, MIR22HG, and GBA, are components of a single gene regulatory pathway. Our findings indicate that dysregulation of this pathway leads to the upregulation of glucocerebrosides (GluCer), which triggers a cellular senescence-like phenotype in dopaminergic neurons. Specifically, we discovered that downregulation of the transcriptional repressor SATB1 results in the derepression of the microRNA miR-22-3p, leading to decreased GBA expression and subsequent accumulation of GluCer. Furthermore, our results demonstrate that an increase in GluCer alone is sufficient to impair lysosomal and mitochondrial function, thereby inducing cellular senescence. Dysregulation of the SATB1-MIR22-GBA pathway, observed in both PD patients and normal aging, leads to lysosomal and mitochondrial dysfunction due to the GluCer accumulation, ultimately resulting in a cellular senescence-like phenotype in dopaminergic neurons. Therefore, our study highlights a novel pathway involving three genetic risk factors for PD and provides a potential mechanism for the senescence-induced neuroinflammation and reactive gliosis observed in both PD and normal aging.
Collapse
Affiliation(s)
- Taylor Russo
- Department of Neurobiology and BehaviorStony Brook UniversityStony BrookNew YorkUSA
- Center for Nervous System DisordersStony Brook UniversityStony BrookNew YorkUSA
| | - Benjamin Kolisnyk
- Laboratory of Molecular and Cellular NeuroscienceThe Rockefeller UniversityNew YorkNew YorkUSA
| | - Aswathy B. S.
- Department of Neurobiology and BehaviorStony Brook UniversityStony BrookNew YorkUSA
- Center for Nervous System DisordersStony Brook UniversityStony BrookNew YorkUSA
| | - Jonathan Plessis‐Belair
- Department of Neurobiology and BehaviorStony Brook UniversityStony BrookNew YorkUSA
- Center for Nervous System DisordersStony Brook UniversityStony BrookNew YorkUSA
| | - Tae Wan Kim
- Center for Stem Cell BiologyMemorial Sloan‐Kettering Cancer CenterNew YorkNew YorkUSA
- Developmental Biology ProgramMemorial Sloan‐Kettering Cancer CenterNew YorkNew YorkUSA
| | - Jacqueline Martin
- Department of Neurobiology and BehaviorStony Brook UniversityStony BrookNew YorkUSA
- Center for Nervous System DisordersStony Brook UniversityStony BrookNew YorkUSA
| | - Jason Ni
- Laboratory of Molecular and Cellular NeuroscienceThe Rockefeller UniversityNew YorkNew YorkUSA
| | - Jordan A. Pearson
- Medical Scientist Training Program, Stony Brook University Renaissance School of MedicineStony Brook UniversityStony BrookNew YorkUSA
| | - Emily J. Park
- Stem Cells and Regenerative Medicine, Center for Cell and Gene Therapy, Department of Molecular and Cellular Biology and Dan L. Duncan Comprehensive Cancer CenterBaylor College of MedicineHoustonTexasUSA
| | - Roger B. Sher
- Department of Neurobiology and BehaviorStony Brook UniversityStony BrookNew YorkUSA
- Center for Nervous System DisordersStony Brook UniversityStony BrookNew YorkUSA
| | - Lorenz Studer
- Center for Stem Cell BiologyMemorial Sloan‐Kettering Cancer CenterNew YorkNew YorkUSA
- Developmental Biology ProgramMemorial Sloan‐Kettering Cancer CenterNew YorkNew YorkUSA
| | - Markus Riessland
- Department of Neurobiology and BehaviorStony Brook UniversityStony BrookNew YorkUSA
- Center for Nervous System DisordersStony Brook UniversityStony BrookNew YorkUSA
| |
Collapse
|
7
|
Das S, Ramteke H. A Comprehensive Review of the Role of Biomarkers in Early Diagnosis of Parkinson's Disease. Cureus 2024; 16:e54337. [PMID: 38500934 PMCID: PMC10945043 DOI: 10.7759/cureus.54337] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/16/2024] [Indexed: 03/20/2024] Open
Abstract
Parkinson's disease (PD) is a complex neurological, degenerative clinical condition depicted by the advancing loss of dopaminergic neurons in the substantia nigra pars compacta, which manifests itself as a myriad of sensorimotor and non-motor signs in patients. The disease occurs due to the reduced levels of the neurotransmitter dopamine in the brain, which is primarily associated with functional characteristics regarding mobility and cognition. The basal ganglion is mainly involved in the generation of cognitive functions and therefore is the most significantly associated area in PD. Since the classical diagnosis and assessment of PD depends majorly on the appearance of motor characteristics, which only arise when ~60-80% of the dopamine neuronal cell death has already occurred, it is imperative we focus on identifying biomarkers that can help us assess and diagnose PD in the earlier stages of disease progression, thus providing a better prognosis for the patients. This review article will focus on the different biomarkers that are currently available and in use, divided under the headings of clinical, biological, imaging, and genetic biomarkers, and assess their specificity and sensitivity toward providing an early assessment of Parkinson's for the patients and the future of preclinical diagnostics using molecular biomarkers. PD affects over 1% of the population worldwide and only ranks second to Alzheimer's disease in the context of its incidence and consequent socioeconomic burden. While recent breakthroughs in biomarkers have dramatically improved patients' odds of survival and prognosis, it still remains primarily a symptomatic diagnostic tool. It is an area of research that requires to focus on creating more advanced approaches toward diagnosing PD early, involving clinical diagnostics, neuroimaging technology, and molecular biology collaborations to provide the highest degree of care and quality of life that a Parkinson's patient deserves.
Collapse
Affiliation(s)
- Somdutta Das
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Harshal Ramteke
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
8
|
Schließer P, Struebing FL, Northoff BH, Kurz A, Rémi J, Holdt L, Höglinger GU, Herms J, Koeglsperger T. Detection of a Parkinson's Disease-Specific MicroRNA Signature in Nasal and Oral Swabs. Mov Disord 2023; 38:1706-1715. [PMID: 37382573 DOI: 10.1002/mds.29515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/11/2023] [Accepted: 05/31/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Biomaterials from oral and nasal swabs provide, in theory, a potential resource for biomarker development. However, their diagnostic value has not yet been investigated in the context of Parkinson's disease (PD) and associated conditions. OBJECTIVE We have previously identified a PD-specific microRNA (miRNA) signature in gut biopsies. In this work, we aimed to investigate the expression of miRNAs in routine buccal (oral) and nasal swabs obtained from cases with idiopathic PD and isolated rapid eye movement sleep behavior disorder (iRBD), a prodromal symptom that often precedes α-synucleinopathies. We aimed to address their value as a diagnostic biomarker for PD and their mechanistic contribution to PD onset and progression. METHODS Healthy control cases (n = 28), cases with PD (n = 29), and cases with iRBD (n = 8) were prospectively recruited to undergo routine buccal and nasal swabs. Total RNA was extracted from the swab material, and the expression of a predefined set of miRNAs was quantified by quantitative real-time polymerase chain reaction. RESULTS Statistical analysis revealed a significantly increased expression of hsa-miR-1260a in cases who had PD. Interestingly, hsa-miR-1260a expression levels correlated with diseases severity, as well as olfactory function, in the PD and iRBD cohorts. Mechanistically, hsa-miR-1260a segregated to Golgi-associated cellular processes with a potential role in mucosal plasma cells. Predicted hsa-miR-1260a target gene expression was reduced in iRBD and PD groups. CONCLUSIONS Our work demonstrates oral and nasal swabs as a valuable biomarker pool in PD and associated neurodegenerative conditions. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Patricia Schließer
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Felix L Struebing
- Department of Translational Brain Research, German Centre for Neurodegenerative Diseases, Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig Maximilian University, Munich, Germany
| | - Bernd H Northoff
- Institute of Laboratory Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Anna Kurz
- Department of Gynaecology and Obstetrics, Klinikum Landsberg am Lech, Landsberg, Germany
| | - Jan Rémi
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Lesca Holdt
- Institute of Laboratory Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Günter U Höglinger
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases e.V. (DZNE) Munich, Munich, Germany
| | - Jochen Herms
- Department of Translational Brain Research, German Centre for Neurodegenerative Diseases, Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig Maximilian University, Munich, Germany
| | - Thomas Koeglsperger
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Translational Brain Research, German Centre for Neurodegenerative Diseases, Munich, Germany
| |
Collapse
|
9
|
Liu H, Shen L, Zhao H, Yang J, Huang D. Parkinson's disease patients combined with constipation tend to have higher serum expression of microRNA 29c, prominent neuropsychiatric disorders, possible RBD conversion, and a substandard quality of life. Neurol Sci 2023; 44:3141-3150. [PMID: 37067722 DOI: 10.1007/s10072-023-06793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/02/2023] [Indexed: 04/18/2023]
Abstract
INTRODUCTION The symptom of constipation has been confirmed as an early diagnose criteria for Parkinson's disease (PD). Furthermore, evidences suggest that pathogenesis of PD initiates in gut, rather than brain. If so, identifying biomarkers for constipation in PD might have potentials to assist early diagnosis and initial treatment. METHOD We first identified that microRNA 29c (miR-29c) was dysregulated both in PD and constipation patients through bioinformatics analysis. Then, serological analysis of the expression of miR-29c in 67 PD patients with constipation (PD-C), 51 PD patients without constipation (PD-NC), and 50 healthy controls (HC) was carried out by qPCR. Demographic and clinical features were also compared. Patients in PD-C group were further classified into two groups: those with prodromal stage constipation (PD-C-Pro) (n = 36) and those with clinical stage constipation (PD-C-Clinic) (n = 31), to explore their different characteristics. RESULTS The levels of miR-29c in PD-C group were higher than that in PD-NC group, both higher than HC group. PD-C-Pro group's miR-29c levels were statistically higher compared with PD-C-Clinic group's. What is more, PD-C group had higher scores of MDS-UPDRS-I, NMSS, NMSS3, NMSS4, NMSS6, NMSS9, SCOPA-AUT, HAMD, HAMA, RBDSQ, CSS, and PACQOL compared with PD-NC party. Relative to the PD-C-Clinic, patients in PD-C-Pro group had higher MDS-UPDRS-I, NMSS, NMSS3, HAMD, and HAMA scores, and were more likely to have RBD. CONCLUSION Our results indicated that miR-29c seems to be an underlying cause for developing constipation in patients with PD and PD-C identifies a group of patients with more severe non-motor impairment, prominent neuropsychiatric disorders, and possible RBD conversion as well as a substandard quality of life. We further confirmed that there is a close relationship between symptoms representing the same pathological origin, especially constipation and RBD.
Collapse
Affiliation(s)
- Hong Liu
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Lei Shen
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Haonan Zhao
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jie Yang
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Dongya Huang
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| |
Collapse
|
10
|
Russo T, Kolisnyk B, Aswathy BS, Wan Kim T, Martin J, Plessis-Belair J, Ni J, Pearson JA, Park EJ, Sher RB, Studer L, Riessland M. The SATB1-MIR22-GBA axis mediates glucocerebroside accumulation inducing a cellular senescence-like phenotype in dopaminergic neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549710. [PMID: 37503189 PMCID: PMC10370136 DOI: 10.1101/2023.07.19.549710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Idiopathic Parkinson's Disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta, which is associated with neuroinflammation and reactive gliosis. The underlying cause of PD and the concurrent neuroinflammation are not well understood. In this study, we utilized human and murine neuronal lines, stem cell-derived dopaminergic neurons, and mice to demonstrate that three previously identified genetic risk factors for PD, namely SATB1, MIR22HG, and GBA, are components of a single gene regulatory pathway. Our findings indicate that dysregulation of this pathway leads to the upregulation of glucocerebrosides (GluCer), which triggers a cellular senescence-like phenotype in dopaminergic neurons. Specifically, we discovered that downregulation of the transcriptional repressor SATB1 results in the derepression of the microRNA miR-22-3p, leading to decreased GBA expression and subsequent accumulation of GluCer. Furthermore, our results demonstrate that an increase in GluCer alone is sufficient to impair lysosomal and mitochondrial function, thereby inducing cellular senescence dependent on S100A9 and stress factors. Dysregulation of the SATB1-MIR22-GBA pathway, observed in both PD patients and normal aging, leads to lysosomal and mitochondrial dysfunction due to the GluCer accumulation, ultimately resulting in a cellular senescence-like phenotype in dopaminergic neurons. Therefore, our study highlights a novel pathway involving three genetic risk factors for PD and provides a potential mechanism for the senescence-induced neuroinflammation and reactive gliosis observed in both PD and normal aging.
Collapse
Affiliation(s)
- Taylor Russo
- Department of Neurobiology and Behavior; Stony Brook University, Stony Brook, NY 11794, USA
- Center for Nervous System Disorders; Stony Brook University, Stony Brook, NY 11794, USA
| | - Benjamin Kolisnyk
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - BS Aswathy
- Department of Neurobiology and Behavior; Stony Brook University, Stony Brook, NY 11794, USA
- Center for Nervous System Disorders; Stony Brook University, Stony Brook, NY 11794, USA
| | - Tae Wan Kim
- Center for Stem Cell Biology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Jacqueline Martin
- Department of Neurobiology and Behavior; Stony Brook University, Stony Brook, NY 11794, USA
- Center for Nervous System Disorders; Stony Brook University, Stony Brook, NY 11794, USA
| | - Jonathan Plessis-Belair
- Department of Neurobiology and Behavior; Stony Brook University, Stony Brook, NY 11794, USA
- Center for Nervous System Disorders; Stony Brook University, Stony Brook, NY 11794, USA
| | - Jason Ni
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Jordan A. Pearson
- Medical Scientist Training Program, Stony Brook University Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Emily J. Park
- Stem Cells and Regenerative Medicine, Center for Cell and Gene Therapy, Department of Molecular and Cellular Biology and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Roger B. Sher
- Department of Neurobiology and Behavior; Stony Brook University, Stony Brook, NY 11794, USA
- Center for Nervous System Disorders; Stony Brook University, Stony Brook, NY 11794, USA
| | - Lorenz Studer
- Center for Stem Cell Biology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Markus Riessland
- Department of Neurobiology and Behavior; Stony Brook University, Stony Brook, NY 11794, USA
- Center for Nervous System Disorders; Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
11
|
Soto M, Fernández M, Bravo P, Lahoz S, Garrido A, Sánchez-Rodríguez A, Rivera-Sánchez M, Sierra M, Melón P, Roig-García A, Naito A, Casey B, Camps J, Tolosa E, Martí MJ, Infante J, Ezquerra M, Fernández-Santiago R. Differential serum microRNAs in premotor LRRK2 G2019S carriers from Parkinson's disease. NPJ Parkinsons Dis 2023; 9:15. [PMID: 36732514 PMCID: PMC9894906 DOI: 10.1038/s41531-023-00451-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023] Open
Abstract
The LRRK2 G2019S pathogenic mutation causes LRRK2-associated Parkinson's disease (L2PD) with incomplete penetrance. LRRK2 non-manifesting carriers (L2NMC) are at PD high risk but predicting pheno-conversion is challenging given the lack of progression biomarkers. To investigate novel biomarkers for PD premotor stages, we performed a longitudinal microRNA (miRNA) assessment of serum samples from G2019S L2NMC followed-up over 8 years. Our cohort consisted of G2019S L2NMC stratified by dopamine transporter single-photon emission computed tomography (DaT-SPECT) into DaT-negative (n = 20) and DaT-positive L2NMC (n = 20), pheno-converted G2019S L2PD patients (n = 20), idiopathic PD (iPD) (n = 19), and controls (n = 40). We also screened a second cohort of L2PD patients (n = 19) and controls (n = 20) (Total n = 158). Compared to healthy controls, we identified eight deregulated miRNAs in DaT-negative L2NMC, six in DaT-positive L2NMC, and one in L2PD. Between groups, the highest miRNA differences, 24 candidate miRNAs, occurred between DaT-positive L2NMC and L2PD. Longitudinally, we found 11 common miRNAs with sustained variation in DaT-negative and DaT-positive L2NMCs compared to their baselines. Our study identifies novel miRNA alterations in premotor stages of PD co-occurring with progressive DaT-SPECT decline before motor manifestation, whose deregulation seems to attenuate after the diagnosis of L2PD. Moreover, we identified four miRNAs with relatively high discriminative ability (AUC = 0.82) between non-pheno-converted DaT-positive G2019S carriers and pheno-converted L2PD patients (miR-4505, miR-8069, miR-6125, and miR-451a), which hold potential as early progression biomarkers for PD.
Collapse
Affiliation(s)
- Marta Soto
- Lab of Parkinson Disease and Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, ES-08036, Barcelona, Catalonia, Spain
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, ES-08036, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), ES-08036, Barcelona, Catalonia, Spain
| | - Manel Fernández
- Lab of Parkinson Disease and Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, ES-08036, Barcelona, Catalonia, Spain
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, ES-08036, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), ES-08036, Barcelona, Catalonia, Spain
- Parkinson's Disease and Movement Disorders Group of the Institut de Neurociències (Universitat de Barcelona), ES-08036, Barcelona, Catalonia, Spain
| | - Paloma Bravo
- Lab of Parkinson Disease and Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, ES-08036, Barcelona, Catalonia, Spain
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, ES-08036, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), ES-08036, Barcelona, Catalonia, Spain
| | - Sara Lahoz
- Gastrointestinal and Pancreatic Oncology Team, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Hospital Clínic de Barcelona, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Alicia Garrido
- Lab of Parkinson Disease and Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, ES-08036, Barcelona, Catalonia, Spain
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, ES-08036, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), ES-08036, Barcelona, Catalonia, Spain
| | - Antonio Sánchez-Rodríguez
- Movement Disorders Unit, Department of Neurology, Hospital Universitario Marqués de Valdecilla, Universidad de Cantabria, ES-39008, Santander, Cantabria, Spain
| | - María Rivera-Sánchez
- Movement Disorders Unit, Department of Neurology, Hospital Universitario Marqués de Valdecilla, Universidad de Cantabria, ES-39008, Santander, Cantabria, Spain
| | - María Sierra
- Movement Disorders Unit, Department of Neurology, Hospital Universitario Marqués de Valdecilla, Universidad de Cantabria, ES-39008, Santander, Cantabria, Spain
| | - Paula Melón
- Lab of Parkinson Disease and Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, ES-08036, Barcelona, Catalonia, Spain
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, ES-08036, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), ES-08036, Barcelona, Catalonia, Spain
| | - Ana Roig-García
- Lab of Parkinson Disease and Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, ES-08036, Barcelona, Catalonia, Spain
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, ES-08036, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), ES-08036, Barcelona, Catalonia, Spain
| | - Anna Naito
- The Michael J. Fox Foundation for Parkinson's Research, Grand Central Station, P.O. Box 4777, New York, NY, 10120, USA
| | - Bradford Casey
- The Michael J. Fox Foundation for Parkinson's Research, Grand Central Station, P.O. Box 4777, New York, NY, 10120, USA
| | - Jordi Camps
- Gastrointestinal and Pancreatic Oncology Team, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Hospital Clínic de Barcelona, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Eduardo Tolosa
- Lab of Parkinson Disease and Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, ES-08036, Barcelona, Catalonia, Spain
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, ES-08036, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), ES-08036, Barcelona, Catalonia, Spain
| | - María-José Martí
- Lab of Parkinson Disease and Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, ES-08036, Barcelona, Catalonia, Spain
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, ES-08036, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), ES-08036, Barcelona, Catalonia, Spain
| | - Jon Infante
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), ES-08036, Barcelona, Catalonia, Spain
- Movement Disorders Unit, Department of Neurology, Hospital Universitario Marqués de Valdecilla, Universidad de Cantabria, ES-39008, Santander, Cantabria, Spain
| | - Mario Ezquerra
- Lab of Parkinson Disease and Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, ES-08036, Barcelona, Catalonia, Spain.
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, ES-08036, Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), ES-08036, Barcelona, Catalonia, Spain.
| | - Rubén Fernández-Santiago
- Lab of Parkinson Disease and Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, ES-08036, Barcelona, Catalonia, Spain.
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, ES-08036, Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), ES-08036, Barcelona, Catalonia, Spain.
- Histology Unit, Department of Biomedicine, Faculty of Medicine, Universitat de Barcelona, ES-08036, Barcelona, Catalonia, Spain.
| |
Collapse
|
12
|
Kinoshita C, Kubota N, Aoyama K. Glutathione Depletion and MicroRNA Dysregulation in Multiple System Atrophy: A Review. Int J Mol Sci 2022; 23:15076. [PMID: 36499400 PMCID: PMC9740333 DOI: 10.3390/ijms232315076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Multiple system atrophy (MSA) is a rare neurodegenerative disease characterized by parkinsonism, cerebellar impairment, and autonomic failure. Although the causes of MSA onset and progression remain uncertain, its pathogenesis may involve oxidative stress via the generation of excess reactive oxygen species and/or destruction of the antioxidant system. One of the most powerful antioxidants is glutathione, which plays essential roles as an antioxidant enzyme cofactor, cysteine-storage molecule, major redox buffer, and neuromodulator, in addition to being a key antioxidant in the central nervous system. Glutathione levels are known to be reduced in neurodegenerative diseases. In addition, genes regulating redox states have been shown to be post-transcriptionally modified by microRNA (miRNA), one of the most important types of non-coding RNA. miRNAs have been reported to be dysregulated in several diseases, including MSA. In this review, we focused on the relation between glutathione deficiency, miRNA dysregulation and oxidative stress and their close relation with MSA pathology.
Collapse
Affiliation(s)
- Chisato Kinoshita
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Noriko Kubota
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
- Teikyo University Support Center for Women Physicians and Researchers, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| |
Collapse
|