1
|
Li ZY, Tian WT, Huang XJ, Cao L. The Pathogenesis of Paroxysmal Kinesigenic Dyskinesia: Current Concepts. Mov Disord 2023; 38:537-544. [PMID: 36718795 DOI: 10.1002/mds.29326] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 02/01/2023] Open
Abstract
Paroxysmal kinesigenic dyskinesia (PKD) is a movement disorder characterized by recurrent and transient episodes of involuntary movements, including dystonia, chorea, ballism, or a combination of these, which are typically triggered by sudden voluntary movement. Disturbance of the basal ganglia-thalamo-cortical circuit has long been considered the cause of involuntary movements. Impairment of the gating function of the basal ganglia can cause an aberrant output toward the thalamus, which in turn leads to excessive activation of the cerebral cortex. Structural and functional abnormalities in the basal ganglia, thalamus, and cortex and abnormal connections between these brain regions have been found in patients with PKD. Recent studies have highlighted the role of the cerebellum in PKD. Insufficient suppression from the cerebellar cortex to the deep cerebellar nuclei could lead to overexcitation of the thalamocortical pathway. Therefore, this literature review aims to provide a comprehensive overview of the current research progress to explore the neural circuits and pathogenesis of PKD and promote further understanding and outlook on the pathophysiological mechanism of movement disorders. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Zi-Yi Li
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wo-Tu Tian
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Jun Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Cao
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Recommendations for the diagnosis and treatment of paroxysmal kinesigenic dyskinesia: an expert consensus in China. Transl Neurodegener 2021; 10:7. [PMID: 33588936 PMCID: PMC7885391 DOI: 10.1186/s40035-021-00231-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 01/16/2021] [Indexed: 02/08/2023] Open
Abstract
Paroxysmal dyskinesias are a group of neurological diseases characterized by intermittent episodes of involuntary movements with different causes. Paroxysmal kinesigenic dyskinesia (PKD) is the most common type of paroxysmal dyskinesia and can be divided into primary and secondary types based on the etiology. Clinically, PKD is characterized by recurrent and transient attacks of involuntary movements precipitated by a sudden voluntary action. The major cause of primary PKD is genetic abnormalities, and the inheritance pattern of PKD is mainly autosomal-dominant with incomplete penetrance. The proline-rich transmembrane protein 2 (PRRT2) was the first identified causative gene of PKD, accounting for the majority of PKD cases worldwide. An increasing number of studies has revealed the clinical and genetic characteristics, as well as the underlying mechanisms of PKD. By seeking the views of domestic experts, we propose an expert consensus regarding the diagnosis and treatment of PKD to help establish standardized clinical evaluation and therapies for PKD. In this consensus, we review the clinical manifestations, etiology, clinical diagnostic criteria and therapeutic recommendations for PKD, and results of genetic analyses in PKD patients performed in domestic hospitals.
Collapse
|
3
|
Li HF, Yang L, Yin D, Chen WJ, Liu GL, Ni W, Wang N, Yu W, Wu ZY, Wang Z. Associations between neuroanatomical abnormality and motor symptoms in paroxysmal kinesigenic dyskinesia. Parkinsonism Relat Disord 2019; 62:134-140. [DOI: 10.1016/j.parkreldis.2018.12.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 12/17/2018] [Accepted: 12/31/2018] [Indexed: 02/04/2023]
|
4
|
Abstract
Paroxysmal dyskinesias (PD) are hyperkinetic movement disorders where patients usually retain consciousness. Paroxysmal dyskinesias can be kinesigenic (PKD), nonkinesigenic (PNKD), and exercise induced (PED). These are usually differentiated from each other based on their phenotypic and genotypic characteristics. Genetic causes of PD are continuing to be discovered. Genes found to be involved in the pathogenesis of PD include MR-1, PRRT2, SLC2A1, and KCNMA1. The differential diagnosis is broad as PDs can mimic psychogenic events, seizure, or other movement disorders. This review also includes secondary causes of PDs, which can range from infections, metabolic, structural malformations to malignancies. Treatment is usually based on the correct identification of type of PD. PKD responds well to antiepileptic medications, whereas PNKD and PED respond to avoidance of triggers and exercise, respectively. In this article, we review the classification, clinical features, genetics, differential diagnosis, and management of PD.
Collapse
Affiliation(s)
- Sara McGuire
- Department of Pediatrics, Section of Neurology, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA
| | - Swati Chanchani
- Department of Pediatrics, Section of Neurology, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA
| | - Divya S Khurana
- Department of Pediatrics, Section of Neurology, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA.
| |
Collapse
|
5
|
Luo C, Chen Y, Song W, Chen Q, Gong Q, Shang HF. Altered intrinsic brain activity in patients with paroxysmal kinesigenic dyskinesia by PRRT2 mutation: altered brain activity by PRRT2 mutation. Neurol Sci 2013; 34:1925-31. [PMID: 23532549 DOI: 10.1007/s10072-013-1408-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/14/2013] [Indexed: 02/05/2023]
Abstract
The proline-rich transmembrane protein 2 (PRRT2) gene has been recently identified as a causative gene of paroxysmal kinesigenic dyskinesia (PKD), with an insertion mutation c.649_650insC (p.P217fsX7) reported as the most common mutation. However, the pathogenic mechanism of the mutation of PRRT2 remains largely unknown. Resting-state functional magnetic resonance imaging is a promising approach to assess cerebral function and reveals underlying functional changes. Resting-state functional magnetic resonance imaging was performed in 4 Chinese PKD patients with p.P217fsX7 mutation, 6 Chinese PKD patients without the mutation, and 10 healthy control subjects. Voxel-based analysis was used to characterize alterations in the amplitude of low-frequency fluctuation (ALFF). When compared with the healthy control subjects, both groups of PKD patients showed alterations in spontaneous brain activities within cortical-basal ganglia circuitry. Besides, the group of patients with p.P217fsX7 mutation also exhibited increased ALFF in the right postcenral gyrus and right rolandic operculum area, while the alteration of ALFF in group of patients without the mutation additionally involved the middle orbitofrontal cortex. Direct comparative analysis between these two patient groups revealed significantly increased ALFF in the right postcentral gyrus in the group with p.P217fsX7 mutation. Increased spontaneous brain activity in the cortical-basal ganglia circuitry, especially in the motor preparation areas, is a common pathophysiology in PKD. Differences in the spatial patterns of increased ALFF between patients with and those without the mutation might reflect the distinct pathological mechanism resulting from PRRT2 mutation.
Collapse
Affiliation(s)
- ChunYan Luo
- Department of Neurology, Sichuan University, West China Hospital, 610041, Chengdu, Sichuan, China
| | | | | | | | | | | |
Collapse
|
6
|
Kuznetsov Y, Khiat A, Blanchet PJ, Boulanger Y. Proton magnetic resonance spectroscopy study of dyskinesia patients. Mov Disord 2007; 22:957-62. [PMID: 17377925 DOI: 10.1002/mds.21459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oral dyskinesias may occur spontaneously or be induced by medications such as antipsychotics and antidepressants. In this study, single voxel proton magnetic resonance spectroscopy was used to compare metabolite levels in the striatum for (1) 12 patients with drug-induced tardive dyskinesia (TD), (2) 12 patients with spontaneous oral dyskinesia (SOD), (3) 8 antidepressant-treated patients without TD, and (4) 8 control subjects. Statistically significant reductions in the choline/creatine (Cho/Cr) ratio were measured for the drug-treated patients with TD (-13%, P = 0.020) and SOD patients (-12%, P = 0.034) relative to control subjects. In comparison with antidepressant-treated patients without TD, drug-treated patients with TD showed a non statistically significant reduction in Cho/Cr (-11%, P = 0.079). All other metabolite ratios (N-acetylaspartate (NAA)/Cr, myo-inositol (mI)/Cr, glutamine + glutamate (Glx)/Cr, macromolecule + lipid (MM+Lip)/Cr, NAA/Cho) were unaffected by either type of dyskinesia. The observed Cho/Cr reduction in dyskinesia patients suggests decreased membrane phosphatidylcholine turnover, which provides free choline as precursor of molecules responsible for cellular signal transduction.
Collapse
Affiliation(s)
- Yevgeniy Kuznetsov
- Département de Radiologie, Centre Hospitalier de l'Université de Montréal (CHUM), Canada
| | | | | | | |
Collapse
|
7
|
Swoboda KJ, Soong B, McKenna C, Brunt ER, Litt M, Bale JF, Ashizawa T, Bennett LB, Bowcock AM, Roach ES, Gerson D, Matsuura T, Heydemann PT, Nespeca MP, Jankovic J, Leppert M, Ptácek LJ. Paroxysmal kinesigenic dyskinesia and infantile convulsions: clinical and linkage studies. Neurology 2000; 55:224-30. [PMID: 10908896 DOI: 10.1212/wnl.55.2.224] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To clinically characterize affected individuals in families with paroxysmal kinesigenic dyskinesia (PKD), examine the association with infantile convulsions, and confirm linkage to a pericentromeric chromosome 16 locus. BACKGROUND PKD is characterized by frequent, recurrent attacks of involuntary movement or posturing in response to sudden movement, stress, or excitement. Recently, an autosomal dominant PKD locus on chromosome 16 was identified. METHODS The authors studied 11 previously unreported families of diverse ethnic background with PKD with or without infantile convulsions and performed linkage analysis with markers spanning the chromosome 16 locus. Detailed clinical questionnaires and interviews were conducted with affected and unaffected family members. RESULTS Clinical characterization and sampling of 95 individuals in 11 families revealed 44 individuals with paroxysmal dyskinesia, infantile convulsions, or both. Infantile convulsions were surprisingly common, occurring in 9 of 11 families. In only two individuals did generalized seizures occur in later childhood or adulthood. The authors defined a 26-cM region using linkage data in 11 families (maximum lod score 6.63 at theta = 0). Affected individuals in one family showed no evidence for a shared haplotype in this region, implying locus heterogeneity. CONCLUSIONS Identification and characterization of the PKD/infantile convulsions gene will provide new insight into the pathophysiology of this disorder, which spans the phenotypic spectrum between epilepsy and movement disorder.
Collapse
Affiliation(s)
- K J Swoboda
- Department of Neurology, Human Genetics, Howard Hughes Medical Institute, Salt Lake City, UT, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Lee MS, Kim WC, Lyoo CH, Lee HJ. Reciprocal inhibition between the forearm muscles in patients with paroxysmal kinesigenic dyskinesia. J Neurol Sci 1999; 168:57-61. [PMID: 10500275 DOI: 10.1016/s0022-510x(99)00186-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We measured the changes of forearm flexor H reflexes produced by conditioning radial nerve stimulation at delays of -2, 0, 2, 4, 7.5, 10, 25 and 75 ms in 10 patients with PKD and six with generalized seizure disorder. We compared the results with 12 normal volunteers. In the patients with PKD, we compared the amounts of reciprocal inhibition between the severely and the asymptomatic or mildly affected sides of arms. Follow-up studies were done in eight PKD patients after they responded to the anticonvulsant treatment. At each delay, patients with seizure disorders showed comparable amounts of changes with controls. Patients with PKD showed paradoxical facilitation at a delay of 0 ms, enhanced facilitation between 2 to 7.5 ms delays and attenuated inhibition at a delay of 75 ms. There were no significant differences in the amount of reciprocal inhibition according to the severity of clinical symptoms. Follow-up studies showed no significant changes of reciprocal inhibition compared to the baseline data. In PKD, paradoxical facilitation and enhanced first relative facilitation period may be caused by defective spinal interneurons. In addition to the defective reciprocal inhibition, abnormalities of supraspinal inputs seem to be involved in the genesis of PKD.
Collapse
Affiliation(s)
- M S Lee
- Department of Neurology, Youngdong Severance Hospital, Yonsei University College of Medicine, 146-92 Dogok-dong, Kangnam-koo, Seoul, South Korea.
| | | | | | | |
Collapse
|
9
|
Abstract
The paroxysmal dyskinesias are a subset of the hyperkinetic movement disorders characterized by their episodic nature. Classification based on precipitating factors is helpful in considering treatment and prognosis. The clinical similarities with partial seizures are discussed. An approach to differential diagnosis, diagnostic evaluation, and treatment options are presented.
Collapse
Affiliation(s)
- B L Schlaggar
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|