1
|
Cui T, Li WJ, Chen J, Zhao R, Li YM. Development of an o-aminoanilide-mediated native chemical ligation-assisted DADA strategy for the synthesis of disulfide surrogate peptides. Org Biomol Chem 2023; 21:533-537. [PMID: 36533871 DOI: 10.1039/d2ob01966c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The hydrazide-based native chemical ligation-assisted diaminodiacid (DADA) strategy is an efficient method for synthesizing large-span disulfide bridge surrogates. However, it is difficult to synthesize disulfide bond surrogates at Gln-Cys or Asn-Cys ligation sites using this strategy. Herein, we report a peptide o-aminoanilide-mediated NCL-assisted DADA strategy that enables the synthesis of large-span peptide disulfide bridge surrogates containing only Gln-Cys or Asn-Cys ligation sites. Through this strategy, we successfully synthesized disulfide bond surrogates of conotoxin vil14a and κ-hefutoxin 1. This strategy provides a new option to obtain large-span peptide disulfide bridge substitutes for native chemical ligation at Gln-Cys and Asn-Cys sites.
Collapse
Affiliation(s)
- Tingting Cui
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Wen-Jie Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Junyou Chen
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Rui Zhao
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yi-Ming Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
2
|
Ueda A, Makura Y, Kakazu S, Kato T, Umeno T, Hirayama K, Doi M, Oba M, Tanaka M. E-Selective Ring-Closing Metathesis in α-Helical Stapled Peptides Using Carbocyclic α,α-Disubstituted α-Amino Acids. Org Lett 2022; 24:1049-1054. [PMID: 35073100 DOI: 10.1021/acs.orglett.1c04256] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present an E-selective ring-closing metathesis reaction in α-helical stapled peptides at positions i and i + 4. The use of two chiral carbocyclic α,α-disubstituted α-amino acids, (1S,3S)-Ac5c3OAll and (1R,3S)-Ac5c3OAll, provides a high E-selectivity of a ≤59:1 E:Z ratio, while mixtures with E:Z ratios of 2.1-0.5:1 were produced with standard acyclic (S)-(4-pentenyl)alanine amino acids. A stapled octapeptide composed of (1S,3S)- and (1R,3S)-Ac5c3OAll amino acids showed a right-handed α-helical crystal structure.
Collapse
Affiliation(s)
- Atsushi Ueda
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Yui Makura
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Sana Kakazu
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Takuma Kato
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka 569-1094, Japan
| | - Tomohiro Umeno
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Kazuhiro Hirayama
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Mitsunobu Doi
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka 569-1094, Japan
| | - Makoto Oba
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
- Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto 606-0823, Japan
| | - Masakazu Tanaka
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
3
|
Kennedy AC, Belgi A, Husselbee BW, Spanswick D, Norton RS, Robinson AJ. α-Conotoxin Peptidomimetics: Probing the Minimal Binding Motif for Effective Analgesia. Toxins (Basel) 2020; 12:E505. [PMID: 32781580 PMCID: PMC7472027 DOI: 10.3390/toxins12080505] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022] Open
Abstract
Several analgesic α-conotoxins have been isolated from marine cone snails. Structural modification of native peptides has provided potent and selective analogues for two of its known biological targets-nicotinic acetylcholine and γ-aminobutyric acid (GABA) G protein-coupled (GABAB) receptors. Both of these molecular targets are implicated in pain pathways. Despite their small size, an incomplete understanding of the structure-activity relationship of α-conotoxins at each of these targets has hampered the development of therapeutic leads. This review scrutinises the N-terminal domain of the α-conotoxin family of peptides, a region defined by an invariant disulfide bridge, a turn-inducing proline residue and multiple polar sidechain residues, and focusses on structural features that provide analgesia through inhibition of high-voltage-activated Ca2+ channels. Elucidating the bioactive conformation of this region of these peptides may hold the key to discovering potent drugs for the unmet management of debilitating chronic pain associated with a wide range of medical conditions.
Collapse
Affiliation(s)
- Adam C. Kennedy
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia; (A.C.K.); (A.B.); (B.W.H.)
| | - Alessia Belgi
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia; (A.C.K.); (A.B.); (B.W.H.)
| | - Benjamin W. Husselbee
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia; (A.C.K.); (A.B.); (B.W.H.)
| | - David Spanswick
- Biomedicine Discovery Institute and the Department of Physiology, Monash University, Victoria 3800, Australia;
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- NeuroSolutions Ltd., Coventry CV4 7AL, UK
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Science, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia;
- ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria 3052, Australia
| | - Andrea J. Robinson
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia; (A.C.K.); (A.B.); (B.W.H.)
| |
Collapse
|
4
|
Sengupta S, Mehta G. Macrocyclization via C-H functionalization: a new paradigm in macrocycle synthesis. Org Biomol Chem 2020; 18:1851-1876. [PMID: 32101232 DOI: 10.1039/c9ob02765c] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The growing emphasis on macrocycles in engaging difficult therapeutic targets such as protein-protein interactions and GPCRs via preferential adaptation of bioactive and cell penetrating conformations has provided impetus to the search for de novo macrocyclization strategies that are efficient, chemically robust and amenable to diversity creation. An emerging macrocyclization paradigm based on the C-H activation logic, of particular promise in the macrocyclization of complex peptides, has added a new dimension to this pursuit, enabling efficacious access to macrocycles of various sizes and topologies with high atom and step economy. Significant achievements in macrocyclization methodologies and their applications in the synthesis of bioactive natural products and drug-like molecules, employing strategic variations of C-H activation are captured in this review. It is expected that this timely account will foster interest in newer ways of macrocycle construction among practitioners of organic synthesis and chemical biology to advance the field.
Collapse
Affiliation(s)
- Saumitra Sengupta
- School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad-5000 046, Telengana, India.
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad-5000 046, Telengana, India.
| |
Collapse
|
5
|
Gisemba SA, Aldrich JV. Optimized Ring Closing Metathesis Reaction Conditions To Suppress Desallyl Side Products in the Solid-Phase Synthesis of Cyclic Peptides Involving Tyrosine( O-allyl). J Org Chem 2020; 85:1407-1415. [PMID: 31880448 PMCID: PMC8018726 DOI: 10.1021/acs.joc.9b02345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We are exploring constraining aromatic residues in the kappa opioid receptor selective antagonist arodyn (Ac[Phe1,2,3,Arg4,d-Ala8]dynorphin A(1-11)-NH2) by ring closing metathesis (RCM) involving tyrosine(O-allyl) (Tyr(All)), but desallyl products limited the yields of the desired cyclic peptide. The model dipeptide Fmoc-Tyr(All)-Tyr(All) was used to explore different reaction conditions, including the use of isomerization suppressants, to minimize formation of the desallyl products and enhance formation of the desired RCM product. Reaction conditions were identified that enhanced the RCM product yield while suppressing desallyl products using both second-generation Grubbs and second-generation Hoveyda-Grubbs catalysts. These optimized reaction conditions were then applied to the cyclization of a tripeptide and an arodyn analog resulting in ≥70% conversion to the desired cyclic peptides. These strategies should be applicable to RCM involving Tyr(All) and similar residues in peptide and peptidomimetic cyclizations performed on solid phase.
Collapse
Affiliation(s)
- Solomon A. Gisemba
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610
| | - Jane V. Aldrich
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610
| |
Collapse
|
6
|
Hegmann N, Prusko L, Diesendorf N, Heinrich MR. In Situ Conformational Fixation of the Amide Bond Enables General Access to Medium-Sized Lactams via Ring-Closing Metathesis. Org Lett 2018; 20:7825-7829. [DOI: 10.1021/acs.orglett.8b03320] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Nina Hegmann
- Department of Chemistry and Pharmacy; Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Lea Prusko
- Department of Chemistry and Pharmacy; Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Nina Diesendorf
- Department of Chemistry and Pharmacy; Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Markus R. Heinrich
- Department of Chemistry and Pharmacy; Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| |
Collapse
|
7
|
Kadyrov R. Reduction of Amides to Amines under Mild Conditions via Catalytic Hydrogenation of Amide Acetals and Imidates. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800855] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Renat Kadyrov
- Evonik Resource Efficiency GmbH Rodenbacher Chaussee 4 63457 Hanau-Wolfgang Germany
| |
Collapse
|
8
|
Sousbie M, Vivancos M, Brouillette RL, Besserer-Offroy É, Longpré JM, Leduc R, Sarret P, Marsault É. Structural Optimization and Characterization of Potent Analgesic Macrocyclic Analogues of Neurotensin (8–13). J Med Chem 2018; 61:7103-7115. [DOI: 10.1021/acs.jmedchem.8b00175] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Marc Sousbie
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Mélanie Vivancos
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Rebecca L. Brouillette
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Élie Besserer-Offroy
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Jean-Michel Longpré
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Richard Leduc
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Philippe Sarret
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Éric Marsault
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| |
Collapse
|
9
|
Gleeson EC, Jackson WR, Robinson AJ. Ring closing metathesis of unprotected peptides. Chem Commun (Camb) 2018; 53:9769-9772. [PMID: 28815236 DOI: 10.1039/c7cc04100d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient and expedient route to the synthesis of dicarba peptides from protecting group-free sequences is reported using Ru-alkylidene catalysed olefin metathesis. A range of cyclic peptides was prepared from linear peptides containing two Z-crotyl glycine residues. Free amine groups were masked as salts with Brønsted acids preventing in situ catalyst decomposition. Excellent RCM conversion was obtained in both DMF and methanol.
Collapse
Affiliation(s)
- Ellen C Gleeson
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia.
| | | | | |
Collapse
|
10
|
Sousbie M, Besserer-Offroy É, Brouillette RL, Longpré JM, Leduc R, Sarret P, Marsault É. In Search of the Optimal Macrocyclization Site for Neurotensin. ACS Med Chem Lett 2018. [PMID: 29541365 DOI: 10.1021/acsmedchemlett.7b00500] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neurotensin exerts potent analgesic effects following activation of its cognate GPCRs. In this study, we describe a systematic exploration, using structure-based design, of conformationally constraining neurotensin (8-13) with the help of macrocyclization and the resulting impacts on binding affinity, signaling, and proteolytic stability. This exploratory study led to a macrocyclic scaffold with submicromolar binding affinity, agonist activity, and greatly improved plasma stability.
Collapse
Affiliation(s)
- Marc Sousbie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Élie Besserer-Offroy
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Rebecca L. Brouillette
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Jean-Michel Longpré
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Richard Leduc
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Philippe Sarret
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Éric Marsault
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| |
Collapse
|
11
|
Fang WJ, Murray TF, Aldrich JV. Design, synthesis, and opioid activity of arodyn analogs cyclized by ring-closing metathesis involving Tyr(allyl). Bioorg Med Chem 2017; 26:1157-1161. [PMID: 29273415 DOI: 10.1016/j.bmc.2017.11.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 01/31/2023]
Abstract
Kappa (κ) opioid receptor selective antagonists are useful pharmacological tools in studying κ opioid receptors and have potential to be used as therapeutic agents for the treatment of a variety of diseases including mood disorders and drug addiction. Arodyn (Ac[Phe1-3,Arg4,d-Ala8]Dyn A-(1-11)NH2) is a linear acetylated dynorphin A (Dyn A) analog that is a potent and selective κ opioid receptor antagonist (Bennett et al. J Med Chem 2002;45:5617-5619) and prevents stress-induced reinstatement of cocaine-seeking behavior following central administration (Carey et al. Eur J Pharmacol 2007;569:84-89). To restrict its conformational mobility, explore possible bioactive conformations and potentially increase its metabolic stability we synthesized cyclic arodyn analogs on solid phase utilizing a novel ring-closing metathesis (RCM) reaction involving allyl-protected Tyr (Tyr(All)) residues. This approach preserves the aromatic functionality and directly constrains the side chains of one or more of the Phe residues. The novel cyclic arodyn analog 4 cyclized between Tyr(All) residues incorporated in positions 2 and 3 exhibited potent κ opioid receptor antagonism in the [35S]GTPγS assay (KB = 3.2 nM) similar to arodyn. Analog 3 cyclized between Tyr(All) residues in positions 1 and 2 also exhibited nanomolar κ opioid receptor antagonist potency (KB = 27.5 nM) in this assay. These are the first opioid peptides cyclized via RCM involving aromatic residues, and given their promising pharmacological activity represent novel lead peptides for further exploration.
Collapse
Affiliation(s)
- Wei-Jie Fang
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Thomas F Murray
- Department of Pharmacology, Creighton University, Omaha, NE 68178, USA
| | - Jane V Aldrich
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, USA; Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
12
|
Maurya SK, Rana R. An eco-compatible strategy for the diversity-oriented synthesis of macrocycles exploiting carbohydrate-derived building blocks. Beilstein J Org Chem 2017; 13:1106-1118. [PMID: 28684990 PMCID: PMC5480360 DOI: 10.3762/bjoc.13.110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 05/12/2017] [Indexed: 12/15/2022] Open
Abstract
An efficient, eco-compatible diversity-oriented synthesis (DOS) approach for the generation of library of sugar embedded macrocyclic compounds with various ring size containing 1,2,3-triazole has been developed. This concise strategy involves the iterative use of readily available sugar-derived alkyne/azide-alkene building blocks coupled through copper catalyzed azide-alkyne cycloaddition (CuAAC) reaction followed by pairing of the linear cyclo-adduct using greener reaction conditions. The eco-compatibility, mild reaction conditions, greener solvents, easy purification and avoidance of hazards and toxic solvents are advantages of this protocol to access this important structural class. The diversity of the macrocycles synthesized (in total we have synthesized 13 macrocycles) using a set of standard reaction protocols demonstrate the potential of the new eco-compatible approach for the macrocyclic library generation.
Collapse
Affiliation(s)
- Sushil K Maurya
- Natural Product Chemistry and Process Development Division, CSIR- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India.,Academy of Scientific and Innovative Research, CSIR- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India
| | - Rohit Rana
- Natural Product Chemistry and Process Development Division, CSIR- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India.,Academy of Scientific and Innovative Research, CSIR- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India
| |
Collapse
|
13
|
Roscales S, Plumet J. Ring Rearrangement Metathesis in 7-Oxabicyclo[2.2.1]heptene (7-Oxanorbornene) Derivatives. Some Applications in Natural Product Chemistry. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Metathesis reactions is firmly established as a valuable synthetic tool in organic chemistry, clearly comparable with the venerable Diels-Alder and Wittig reactions and, more recently, with the metal-catalyzed cross-coupling reactions. Metathesis reactions can be considered as a fascinating synthetic methodology, allowing different variants regarding substrate (alkene and alkyne metathesis) and type of metathetical reactions. On the other hand, tandem metathesis reactions such Ring Rearrangement Metathesis (RRM) and the coupling of metathesis reaction with other reactions of alkenes such as Diels-Alder or Heck reactions, makes metathesis one of the most powerful and reliable synthetic procedure.In particular, Ring-Rearrangement Metathesis (RRM) refers to the combination of several metathesis transformations into a domino process such as ring-opening metathesis (ROM)/ring-closing metathesis (RCM) and ROM-cross metathesis (CM) in a one-pot operation. RRM delivers complex frameworks that are difficult to assemble by conventional methods constitutingan atom economic process. RRM is applicable to mono- and polycyclic systems of varying ring sizes such as cyclopropene, cyclobutene, cyclopentene, cyclohexene, pyran systems, bicyclo[2.2.1]heptene derivatives, bicyclo[2.2.2]octene derivatives, bicyclo[3.2.1]octene derivatives and bicyclo[3.2.1]octene derivatives.In this review our attention has focused on the RRM reactions in 7-oxabicyclo[2.2.1]heptene derivatives and on their application in the synthesis of natural products or significant subunits of them.
Collapse
Affiliation(s)
- Silvia Roscales
- Technological Institute Pet, 10 Manuel Bartolomé Cossio St, 28040 Madrid, Spain
| | - Joaquín Plumet
- Complutense University, Faculty of Chemistry, Organic Chemistry Department, Ciudad Universitaria, 28040, Madrid, Spain
| |
Collapse
|
14
|
Murza A, Sainsily X, Côté J, Bruneau-Cossette L, Besserer-Offroy É, Longpré JM, Leduc R, Dumaine R, Lesur O, Auger-Messier M, Sarret P, Marsault É. Structure–activity relationship of novel macrocyclic biased apelin receptor agonists. Org Biomol Chem 2017; 15:449-458. [DOI: 10.1039/c6ob02247b] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Apelin is the endogenous ligand for the G protein-coupled receptor APJ and exerts a key role in regulating cardiovascular functions.
Collapse
|
15
|
Gleeson EC, Wang ZJ, Robinson SD, Chhabra S, MacRaild CA, Jackson WR, Norton RS, Robinson AJ. Stereoselective synthesis and structural elucidation of dicarba peptides. Chem Commun (Camb) 2016; 52:4446-9. [PMID: 26892179 DOI: 10.1039/c5cc10540d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile stereoselective synthesis of cis and trans unsaturated dicarba peptides has been established using preformed diaminosuberic acid derivatives as bridging units. In addition, characteristic spectral differences in the (13)C-NMR spectra of the cis- and trans-isomers show that the chemical shift of carbons in the Δ4,5-diaminosuberic acid residue can be used to assign stereochemistry in unsaturated dicarba peptides formed from ring closing metathesis of linear peptide sequences.
Collapse
Affiliation(s)
- Ellen C Gleeson
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia.
| | - Zhen J Wang
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia.
| | - Samuel D Robinson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria, Australia
| | - Sandeep Chhabra
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria, Australia
| | - Christopher A MacRaild
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria, Australia
| | - W Roy Jackson
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia.
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria, Australia
| | - Andrea J Robinson
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia.
| |
Collapse
|
16
|
|
17
|
Cromm PM, Schaubach S, Spiegel J, Fürstner A, Grossmann TN, Waldmann H. Orthogonal ring-closing alkyne and olefin metathesis for the synthesis of small GTPase-targeting bicyclic peptides. Nat Commun 2016; 7:11300. [PMID: 27075966 PMCID: PMC4834642 DOI: 10.1038/ncomms11300] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/11/2016] [Indexed: 02/06/2023] Open
Abstract
Bicyclic peptides are promising scaffolds for the development of inhibitors of biological targets that proved intractable by typical small molecules. So far, access to bioactive bicyclic peptide architectures is limited due to a lack of appropriate orthogonal ring-closing reactions. Here, we report chemically orthogonal ring-closing olefin (RCM) and alkyne metathesis (RCAM), which enable an efficient chemo- and regioselective synthesis of complex bicyclic peptide scaffolds with variable macrocycle geometries. We also demonstrate that the formed alkyne macrocycle can be functionalized subsequently. The orthogonal RCM/RCAM system was successfully used to evolve a monocyclic peptide inhibitor of the small GTPase Rab8 into a bicyclic ligand. This modified peptide shows the highest affinity for an activated Rab GTPase that has been reported so far. The RCM/RCAM-based formation of bicyclic peptides provides novel opportunities for the design of bioactive scaffolds suitable for the modulation of challenging protein targets. Bicyclic peptides can inhibit biological targets hard to address with small molecules. Here, the authors combine two orthogonal ring-closing reactions to produce bicyclic peptides with improved bioactivity thereby providing a strategy that can greatly improve the structural diversity of such peptides.
Collapse
Affiliation(s)
- Philipp M Cromm
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany.,Technische Universität Dortmund, Fakultät für Chemie and Chemische Biologie, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
| | - Sebastian Schaubach
- Technische Universität Dortmund, Fakultät für Chemie and Chemische Biologie, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany.,Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim/Ruhr, Germany
| | - Jochen Spiegel
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany.,Technische Universität Dortmund, Fakultät für Chemie and Chemische Biologie, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
| | - Alois Fürstner
- Technische Universität Dortmund, Fakultät für Chemie and Chemische Biologie, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany.,Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim/Ruhr, Germany
| | - Tom N Grossmann
- Technische Universität Dortmund, Fakultät für Chemie and Chemische Biologie, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany.,Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Strasse 15, D-44227 Dortmund, Germany.,Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Herbert Waldmann
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany.,Technische Universität Dortmund, Fakultät für Chemie and Chemische Biologie, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
| |
Collapse
|
18
|
Naveen, Babu SA. Ring-closing metathesis reaction-based synthesis of new classes of polyether macrocyclic systems. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.06.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Library construction, selection and modification strategies to generate therapeutic peptide-based modulators of protein-protein interactions. Future Med Chem 2015; 6:2073-92. [PMID: 25531969 DOI: 10.4155/fmc.14.134] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the modern age of proteomics, vast numbers of protein-protein interactions (PPIs) are being identified as causative agents in pathogenesis, and are thus attractive therapeutic targets for intervention. Although traditionally regarded unfavorably as druggable agents relative to small molecules, peptides in recent years have gained considerable attention. Their previous dismissal had been largely due to the susceptibility of unmodified peptides to the barriers and pressures exerted by the circulation, immune system, proteases, membranes and other stresses. However, recent advances in high-throughput peptide isolation techniques, as well as a huge variety of direct modification options and approaches to allow targeted delivery, mean that peptides and their mimetics can now be designed to circumvent many of these traditional barriers. As a result, an increasing number of peptide-based drugs are reaching clinical trials and patients beyond.
Collapse
|
20
|
Hanold LE, Watkins CP, Ton NT, Liaw P, Beedle AM, Kennedy EJ. Design of a selenylsulfide-bridged EGFR dimerization arm mimic. Bioorg Med Chem 2015; 23:2761-6. [PMID: 25840798 DOI: 10.1016/j.bmc.2015.03.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 01/25/2023]
Abstract
The epidermal growth factor receptor (EGFR) dimerization arm is a key feature that stabilizes dimerization of the extracellular receptor, thereby mediating activation of the tyrosine kinase domain. Peptides mimicking this β-loop feature can disrupt dimer formation and kinase activation, yet these peptides lack structural constraints or contain redox sensitive disulfide bonds which may limit their stability in physiological environments. Selenylsulfide bonds are a promising alternative to disulfide bonds as they maintain much of the same structural and chemical behavior, yet they are inherently less prone to reduction. Herein, we describe the synthesis, stability and activity of selenylsulfide-bridged dimerization arm mimics. The synthesis was accomplished using an Fmoc-based strategy along with C-terminal labeling for improved overall yield. This selenylsulfide-bridged peptide displayed both proteolytic stability and structural stability even under reducing conditions, demonstrating the potential application of the selenylsulfide bond to generate redox stable β-loop peptides for disruption of protein-protein interactions.
Collapse
Affiliation(s)
- Laura E Hanold
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, 240 W. Green St., Athens, GA 30602, USA
| | - Christopher P Watkins
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, 240 W. Green St., Athens, GA 30602, USA
| | - Norman T Ton
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, 240 W. Green St., Athens, GA 30602, USA
| | - Peter Liaw
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, 240 W. Green St., Athens, GA 30602, USA
| | - Aaron M Beedle
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, 240 W. Green St., Athens, GA 30602, USA
| | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, 240 W. Green St., Athens, GA 30602, USA.
| |
Collapse
|
21
|
A medium fluorous Grubbs–Hoveyda 2nd generation catalyst for phase transfer catalysis of ring closing metathesis reactions. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.01.097] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Chu Q, Moellering RE, Hilinski GJ, Kim YW, Grossmann TN, Yeh JTH, Verdine GL. Towards understanding cell penetration by stapled peptides. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00131a] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A systematic study on cell penetration by stapled peptides.
Collapse
Affiliation(s)
- Qian Chu
- Department of Stem Cell & Regenerative Biology
- Harvard University
- Cambridge
- USA
- Chemistry & Chemical Biology
| | - Raymond E. Moellering
- Department of Stem Cell & Regenerative Biology
- Harvard University
- Cambridge
- USA
- Chemistry & Chemical Biology
| | - Gerard J. Hilinski
- Department of Stem Cell & Regenerative Biology
- Harvard University
- Cambridge
- USA
- Chemistry & Chemical Biology
| | - Young-Woo Kim
- Department of Stem Cell & Regenerative Biology
- Harvard University
- Cambridge
- USA
- Chemistry & Chemical Biology
| | - Tom N. Grossmann
- Department of Stem Cell & Regenerative Biology
- Harvard University
- Cambridge
- USA
- Chemistry & Chemical Biology
| | - Johannes T.-H. Yeh
- Department of Stem Cell & Regenerative Biology
- Harvard University
- Cambridge
- USA
- Chemistry & Chemical Biology
| | - Gregory L. Verdine
- Department of Stem Cell & Regenerative Biology
- Harvard University
- Cambridge
- USA
- Chemistry & Chemical Biology
| |
Collapse
|
23
|
Sánchez-Murcia PA, Ruiz-Santaquiteria M, Toro MA, de Lucio H, Jiménez MÁ, Gago F, Jiménez-Ruiz A, Camarasa MJ, Velázquez S. Comparison of hydrocarbon-and lactam-bridged cyclic peptides as dimerization inhibitors of Leishmania infantum trypanothione reductase. RSC Adv 2015. [DOI: 10.1039/c5ra06853c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Helical peptides stabilizedviaall-hydrocarbon or lactam side-chain bridging were investigated as disruptors ofLeishmania infantumtrypanothione reductase.
Collapse
Affiliation(s)
| | | | - Miguel A. Toro
- Departamento de Biología de Sistemas
- Universidad de Alcalá
- Madrid
- Spain
| | - Héctor de Lucio
- Departamento de Biología de Sistemas
- Universidad de Alcalá
- Madrid
- Spain
| | | | - Federico Gago
- Departamento de Ciencias Biomédicas
- Unidad Asociada al CSIC
- Universidad de Alcalá
- Madrid
- Spain
| | | | | | | |
Collapse
|
24
|
Synthesis of truncated analogues of preptin-(1–16), and investigation of their ability to stimulate osteoblast proliferation. Bioorg Med Chem 2014; 22:3565-72. [DOI: 10.1016/j.bmc.2014.05.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/05/2014] [Accepted: 05/13/2014] [Indexed: 11/21/2022]
|
25
|
Martín-Gago P, Ramón R, Aragón E, Fernández-Carneado J, Martin-Malpartida P, Verdaguer X, López-Ruiz P, Colás B, Cortes MA, Ponsati B, Macias MJ, Riera A. A tetradecapeptide somatostatin dicarba-analog: Synthesis, structural impact and biological activity. Bioorg Med Chem Lett 2014; 24:103-7. [DOI: 10.1016/j.bmcl.2013.11.065] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 11/21/2013] [Accepted: 11/25/2013] [Indexed: 01/19/2023]
|
26
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2011. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Gómez-SanJuan A, Sotomayor N, Lete E. RCM Approach to Complex Polycyclic α-Hydroxy γ-Lactams: Synthesis of Indolizinones and Pyrroloazepinones. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300889] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Sundararaju B, Sridhar T, Achard M, Sharma GVM, Bruneau C. Ring Closing and Macrocyclization of β-Dipeptides by Olefin Metathesis. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300608] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
29
|
Long YQ, Huang SX, Zawahir Z, Xu ZL, Li H, Sanchez TW, Zhi Y, De Houwer S, Christ F, Debyser Z, Neamati N. Design of cell-permeable stapled peptides as HIV-1 integrase inhibitors. J Med Chem 2013; 56:5601-12. [PMID: 23758584 DOI: 10.1021/jm4006516] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
HIV-1 integrase (IN) catalyzes the integration of viral DNA into the host genome, involving several interactions with the viral and cellular proteins. We have previously identified peptide IN inhibitors derived from the α-helical regions along the dimeric interface of HIV-1 IN. Herein, we show that appropriate hydrocarbon stapling of these peptides to stabilize their helical structure remarkably improves the cell permeability, thus allowing inhibition of the HIV-1 replication in cell culture. Furthermore, the stabilized peptides inhibit the interaction of IN with the cellular cofactor LEDGF/p75. Cellular uptake of the stapled peptide was confirmed in four different cell lines using a fluorescein-labeled analogue. Given their enhanced potency and cell permeability, these stapled peptides can serve as not only lead IN inhibitors but also prototypical biochemical probes or "nanoneedles" for the elucidation of HIV-1 IN dimerization and host cofactor interactions within their native cellular environment.
Collapse
Affiliation(s)
- Ya-Qiu Long
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Perfetto A, Costabile C, Longo P, Bertolasi V, Grisi F. Probing the Relevance of NHC Ligand Conformations in the Ru-Catalysed Ring-Closing Metathesis Reaction. Chemistry 2013; 19:10492-6. [DOI: 10.1002/chem.201301540] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Indexed: 11/11/2022]
|
31
|
Ottersbach PA, Schmitz J, Schnakenburg G, Gütschow M. An access to aza-Freidinger lactams and E-locked analogs. Org Lett 2013; 15:448-51. [PMID: 23320486 DOI: 10.1021/ol3030583] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Freidinger lactams, possessing a peptide bond configuration locked to Z, are important key elements of conformationally restricted peptidomimetics. In the present work, the C(α)H(i+1) unit has been replaced by N, leading to novel aza-Freidinger lactams. A synthesis to corresponding building blocks and their E-locked analogs is introduced. The versatile buildings blocks reported here are expected to serve as useful elements in peptide synthesis.
Collapse
Affiliation(s)
- Philipp A Ottersbach
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | | | | | | |
Collapse
|
32
|
Cochrane SA, Huang Z, Vederas JC. Investigation of the ring-closing metathesis of peptides in water. Org Biomol Chem 2012; 11:630-9. [PMID: 23212663 DOI: 10.1039/c2ob26938d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A systematic study of the ring-closing metathesis (RCM) of unprotected oxytocin and crotalphine peptide analogues in water is reported. The replacement of cysteine with S-allyl cysteine enables RCM to proceed readily in water containing excess MgCl(2) with 30% t-BuOH as a co-solvent. The presence of the sulfur atom is vital for efficient aqueous RCM to occur, with non-sulfur containing analogues undergoing RCM in low yields.
Collapse
Affiliation(s)
- Stephen A Cochrane
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | | | | |
Collapse
|
33
|
|
34
|
How to blast osteoblasts? Novel dicarba analogues of amylin-(1–8) to treat osteoporosis. Bioorg Med Chem 2012; 20:6011-8. [DOI: 10.1016/j.bmc.2012.08.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 08/16/2012] [Accepted: 08/28/2012] [Indexed: 11/22/2022]
|
35
|
Singh R, Vince R. 2-Azabicyclo[2.2.1]hept-5-en-3-one: Chemical Profile of a Versatile Synthetic Building Block and its Impact on the Development of Therapeutics. Chem Rev 2012; 112:4642-86. [DOI: 10.1021/cr2004822] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rohit Singh
- Center for Drug Design, Academic Health Center, University of Minnesota, 516 Delaware Street Southeast,
Minneapolis, MN 55455, United States
| | - Robert Vince
- Center for Drug Design, Academic Health Center, University of Minnesota, 516 Delaware Street Southeast,
Minneapolis, MN 55455, United States
| |
Collapse
|
36
|
Chavez SA, Martinko AJ, Lau C, Pham MN, Cheng K, Bevan DE, Mollnes TE, Yin H. Development of β-amino alcohol derivatives that inhibit Toll-like receptor 4 mediated inflammatory response as potential antiseptics. J Med Chem 2011; 54:4659-69. [PMID: 21591694 PMCID: PMC3131463 DOI: 10.1021/jm2003365] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Toll-like receptor 4 (TLR4) induced proinflammatory signaling has been directly implicated in severe sepsis and represents an attractive therapeutic target. Herein, we report our investigations into the structure-activity relationship and preliminary drug metabolism/pharmacokinetics study of β-amino alcohol derivatives that inhibit the TLR4 signaling pathway. Lead compounds were identified from in vitro cellular examination with micromolar potency for their inhibitory effects on TLR4 signaling and subsequently assessed for their ability to suppress the TLR4-induced inflammatory response in an ex vivo whole blood model. In addition, the toxicology, specificity, solubility, brain-blood barrier permeability, and drug metabolism of several compounds were evaluated. Although further optimizations are needed, our findings lay the groundwork for the future drug development of this class of small molecule agents for the treatment of severe sepsis.
Collapse
Affiliation(s)
- Sherry A. Chavez
- Department of Chemistry and Biochemistry University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Alexander J. Martinko
- Department of Chemistry and Biochemistry University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Corinna Lau
- Research Laboratory, Nordland Hospital, Bodø, Norway NO-8092
| | - Michael N. Pham
- Department of Chemistry and Biochemistry University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Kui Cheng
- Department of Chemistry and Biochemistry University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Douglas E. Bevan
- Department of Chemistry and Biochemistry University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Tom E. Mollnes
- Research Laboratory, Nordland Hospital, Bodø, Norway NO-8092
- University of Tromsø, Tromsø, Norway NO-9037
| | - Hang Yin
- Department of Chemistry and Biochemistry University of Colorado at Boulder, Boulder, CO 80309, USA
| |
Collapse
|
37
|
García-Aranda MI, Marrero P, Gautier B, Martín-Martínez M, Inguimbert N, Vidal M, García-López MT, Jiménez MA, González-Muñiz R, Vega MJPD. Parallel solid-phase synthesis of a small library of linear and hydrocarbon-bridged analogues of VEGF81–91: Potential biological tools for studying the VEGF/VEGFR-1 interaction. Bioorg Med Chem 2011; 19:1978-86. [DOI: 10.1016/j.bmc.2011.01.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/24/2011] [Accepted: 01/27/2011] [Indexed: 11/26/2022]
|