1
|
Wu M, Chen Q, Wang Y, Li Y, Zhao X, Chang Q. Structural modification and antitumor activity of antimicrobial peptide HYL. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
2
|
Singh S, Shukla R. Key Signaling Pathways Engaged in Cancer Management: Current Update. CURRENT CANCER THERAPY REVIEWS 2020. [DOI: 10.2174/1573394714666180904122412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
<P>Background: Till today cancer is still challenging to treat and needs more active therapeutic approaches. Participation of complex multi-pathway cell propagation instrument is a noteworthy issue in creating active anticancer therapeutic methodologies. Immune evasions, metabolic modifications, imperfect apoptotic component, modification in upstream or downstream RAS signaling, altered nuclear factor kappa B actions, imbalanced autophagy design and distortedly controlled angiogenesis are distinguishing features of cancer. </P><P> Methods: On the basis of systemic research and analysis of the current online available database, we analyzed and reported about the key signaling pathway engaged with cancer development outlining the effectiveness of different therapeutic measures and targets that have been created or are being researched to obstruct the cancer development. </P><P> Results: A number of signaling pathways, for example, resistant, metabolism, apoptosis, RAS protein, nuclear factor kappa B, autophagy, and angiogenesis have been perceived as targets for drug treatment to control the advancement, development and administration of cancer. </P><P> Conclusion: A noteworthy challenge for future medication advancement is to detail a synthesis treatment influencing distinctive targets to enhance the treatment of cancer.</P>
Collapse
Affiliation(s)
- Sanjiv Singh
- National Institute of Pharmaceutical Science and Education, Shree Bhawani Paper Mill Road, ITI Compound, Raebareli-229010 (U.P.), India
| | - Rahul Shukla
- National Institute of Pharmaceutical Science and Education, Shree Bhawani Paper Mill Road, ITI Compound, Raebareli-229010 (U.P.), India
| |
Collapse
|
3
|
Wei MM, Wang YS, Ye XS. Carbohydrate-based vaccines for oncotherapy. Med Res Rev 2018; 38:1003-1026. [PMID: 29512174 DOI: 10.1002/med.21493] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/18/2018] [Accepted: 01/31/2018] [Indexed: 01/02/2023]
Abstract
Cancer is still one of the most serious threats to human worldwide. Aberrant patterns of glycosylation on the surface of cancer cells, which are correlated with various cancer development stages, can differentiate the abnormal tissues from the healthy ones. Therefore, tumor-associated carbohydrate antigens (TACAs) represent the desired targets for cancer immunotherapy. However, these carbohydrate antigens may not able to evoke powerful immune response to combat with cancer for their poor immunogenicity and immunotolerance. Different approaches have been developed to address these problems. In this review, we want to summarize the latest advances in TACAs based anticancer vaccines.
Collapse
Affiliation(s)
- Meng-Man Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yong-Shi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
4
|
Li Y, Wu M, Chang Q, Zhao X. Stapling strategy enables improvement of antitumor activity and proteolytic stability of host-defense peptide hymenochirin-1B. RSC Adv 2018; 8:22268-22275. [PMID: 35541711 PMCID: PMC9081086 DOI: 10.1039/c8ra03446j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 05/14/2018] [Indexed: 12/18/2022] Open
Abstract
Hymenochirin-1B is a cationic, amphipathic, α-helical host-defense peptide with 29 residues, which was isolated from skin secretions of the Congo clawed frog and showed potent cytotoxic activities against a range of tumor cell lines. However, the application of hymenochirin-1B as a drug is limited due to its conformational flexibility and poor proteolytic stability. In this research, a series of hydrocarbon-stapled analogs of hymenochirin-1B were designed, synthesized, and tested. Some analogs showed remarkable improvement not only in α-helicity, but also in antitumor activity and protease resistance when compared to the parent peptide. The results indicated that most stapled peptide analogues possessed improved activities against a series of tumor cells; in particular, the bicyclic stapled peptide H-10 showed promising prospects for novel anti-tumor drug development. Our data demonstrated the important impacts of the all-hydrocarbon crosslink stapling strategy on the biological activity, proteolytic stability and helicity of hymenochirin-1B. A series of stapled peptide analogs of hymenochirin-1B were efficiently prepared by an Fmoc-SPPS procedure. The peptide stapling strategy can improve the helicity, proteolytic stability and tumor cell-killing activity of linear peptide hymenochirin-1B.![]()
Collapse
Affiliation(s)
- Yulei Li
- Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| | - Minghao Wu
- Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| | - Qi Chang
- Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| | - Xia Zhao
- Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| |
Collapse
|
5
|
Ong HK, Tan WS, Ho KL. Virus like particles as a platform for cancer vaccine development. PeerJ 2017; 5:e4053. [PMID: 29158984 PMCID: PMC5694210 DOI: 10.7717/peerj.4053] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/27/2017] [Indexed: 12/17/2022] Open
Abstract
Cancers have killed millions of people in human history and are still posing a serious health problem worldwide. Therefore, there is an urgent need for developing preventive and therapeutic cancer vaccines. Among various cancer vaccine development platforms, virus-like particles (VLPs) offer several advantages. VLPs are multimeric nanostructures with morphology resembling that of native viruses and are mainly composed of surface structural proteins of viruses but are devoid of viral genetic materials rendering them neither infective nor replicative. In addition, they can be engineered to display multiple, highly ordered heterologous epitopes or peptides in order to optimize the antigenicity and immunogenicity of the displayed entities. Like native viruses, specific epitopes displayed on VLPs can be taken up, processed, and presented by antigen-presenting cells to elicit potent specific humoral and cell-mediated immune responses. Several studies also indicated that VLPs could overcome the immunosuppressive state of the tumor microenvironment and break self-tolerance to elicit strong cytotoxic lymphocyte activity, which is crucial for both virus clearance and destruction of cancerous cells. Collectively, these unique characteristics of VLPs make them optimal cancer vaccine candidates. This review discusses current progress in the development of VLP-based cancer vaccines and some potential drawbacks of VLPs in cancer vaccine development. Extracellular vesicles with close resembling to viral particles are also discussed and compared with VLPs as a platform in cancer vaccine developments.
Collapse
Affiliation(s)
- Hui Kian Ong
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
6
|
Heider S, Dangerfield JA, Metzner C. Biomedical applications of glycosylphosphatidylinositol-anchored proteins. J Lipid Res 2016; 57:1778-1788. [PMID: 27542385 PMCID: PMC5036375 DOI: 10.1194/jlr.r070201] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Indexed: 01/13/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) use a unique posttranslational modification to link proteins to lipid bilayer membranes. The anchoring structure consists of both a lipid and carbohydrate portion and is highly conserved in eukaryotic organisms regarding its basic characteristics, yet highly variable in its molecular details. The strong membrane targeting property has made the anchors an interesting tool for biotechnological modification of lipid membrane-covered entities from cells through extracellular vesicles to enveloped virus particles. In this review, we will take a closer look at the mechanisms and fields of application for GPI-APs in lipid bilayer membrane engineering and discuss their advantages and disadvantages for biomedicine.
Collapse
Affiliation(s)
- Susanne Heider
- Institute of Virology, University of Veterinary Medicine, 1210 Vienna, Austria
| | | | - Christoph Metzner
- Institute of Virology, University of Veterinary Medicine, 1210 Vienna, Austria.
| |
Collapse
|
7
|
Patel JM, Vartabedian VF, Kim MC, He S, Kang SM, Selvaraj P. Influenza virus-like particles engineered by protein transfer with tumor-associated antigens induces protective antitumor immunity. Biotechnol Bioeng 2015; 112:1102-10. [PMID: 25689082 PMCID: PMC4621003 DOI: 10.1002/bit.25537] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/18/2014] [Accepted: 12/30/2014] [Indexed: 01/06/2023]
Abstract
Delivery of antigen in particulate form using either synthetic or natural particles induces stronger immunity than soluble forms of the antigen. Among naturally occurring particles, virus-like particles (VLPs) have been genetically engineered to express tumor-associated antigens (TAAs) and have shown to induce strong TAA-specific immune responses due to their nano-particulate size and ability to bind and activate antigen-presenting cells. In this report, we demonstrate that influenza VLPs can be modified by a protein transfer technology to express TAAs for induction of effective antitumor immune responses. We converted the breast cancer HER-2 antigen to a glycosylphosphatidylinositol (GPI)-anchored form and incorporated GPI-HER-2 onto VLPs by a rapid protein transfer process. Expression levels on VLPs depended on the GPI-HER-2 concentration added during protein transfer. Vaccination of mice with protein transferred GPI-HER-2-VLPs induced a strong Th1 and Th2-type anti-HER-2 antibody response and protected mice against a HER-2-expressing tumor challenge. The Soluble form of GPI-HER-2 induced only a weak Th2 response under similar conditions. These results suggest that influenza VLPs can be enriched with TAAs by protein transfer to develop effective VLP-based subunit vaccines against cancer without chemical or genetic modifications and thus preserve the immune stimulating properties of VLPs for easier production of antigen-specific therapeutic cancer vaccines.
Collapse
MESH Headings
- Animals
- Antibodies, Neoplasm/blood
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Disease Models, Animal
- Drug Carriers
- Humans
- Immunity
- Mice
- Neoplasms/immunology
- Neoplasms/prevention & control
- Orthomyxoviridae/genetics
- Orthomyxoviridae/metabolism
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/immunology
- Receptor, ErbB-2/metabolism
- Vaccines, Virus-Like Particle/administration & dosage
- Vaccines, Virus-Like Particle/genetics
- Vaccines, Virus-Like Particle/immunology
Collapse
Affiliation(s)
- Jaina M. Patel
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322. USA
| | - Vincent F. Vartabedian
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322. USA
| | - Min-Chul Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
- Animal and Plant Quarantine Agency, Anyang City, Gyeonggi-do, Korea
| | - Sara He
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322. USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Periasamy Selvaraj
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322. USA
| |
Collapse
|
8
|
Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin Cancer Biol 2015; 35 Suppl:S185-S198. [PMID: 25818339 DOI: 10.1016/j.semcancer.2015.03.004] [Citation(s) in RCA: 1013] [Impact Index Per Article: 112.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 12/27/2022]
Abstract
Cancer immune evasion is a major stumbling block in designing effective anticancer therapeutic strategies. Although considerable progress has been made in understanding how cancers evade destructive immunity, measures to counteract tumor escape have not kept pace. There are a number of factors that contribute to tumor persistence despite having a normal host immune system. Immune editing is one of the key aspects why tumors evade surveillance causing the tumors to lie dormant in patients for years through "equilibrium" and "senescence" before re-emerging. In addition, tumors exploit several immunological processes such as targeting the regulatory T cell function or their secretions, antigen presentation, modifying the production of immune suppressive mediators, tolerance and immune deviation. Besides these, tumor heterogeneity and metastasis also play a critical role in tumor growth. A number of potential targets like promoting Th1, NK cell, γδ T cell responses, inhibiting Treg functionality, induction of IL-12, use of drugs including phytochemicals have been designed to counter tumor progression with much success. Some natural agents and phytochemicals merit further study. For example, use of certain key polysaccharide components from mushrooms and plants have shown to possess therapeutic impact on tumor-imposed genetic instability, anti-growth signaling, replicative immortality, dysregulated metabolism etc. In this review, we will discuss the advances made toward understanding the basis of cancer immune evasion and summarize the efficacy of various therapeutic measures and targets that have been developed or are being investigated to enhance tumor rejection.
Collapse
|
9
|
Yang J, Zhang Q, Li K, Yin H, Zheng JN. Composite peptide-based vaccines for cancer immunotherapy (Review). Int J Mol Med 2014; 35:17-23. [PMID: 25395173 DOI: 10.3892/ijmm.2014.2000] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 11/03/2014] [Indexed: 11/06/2022] Open
Abstract
The use of peptide-based vaccines as therapeutics aims to elicit immune responses through antigenic epitopes derived from tumor antigens. Peptide-based vaccines are easily synthesized and chemically stable entities, and of note, they are absent of oncogenic potential. However, their application is more complicated as the success of an effective peptide-based vaccine is determined by numerous parameters. The success thus far has been limited by the choice of tumor antigenic peptides, poor immunogenicity and incorporation of strategies to reverse cancer-mediated immune suppression. In the present review, an overview of the mechanisms of peptide-based vaccines is provided and antigenic peptides are categorized with respect to their tissue distribution in order to determine their usefulness as targets. Furthermore, certain approaches are proposed that induce and maintain T cells for immunotherapy. The recent progress indicates that peptide-based vaccines are preferential for targeted therapy in cancer patients.
Collapse
Affiliation(s)
- Jie Yang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu 221000, P.R. China
| | - Qing Zhang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu 221000, P.R. China
| | - Ke Li
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu 221000, P.R. China
| | - Hong Yin
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu 221000, P.R. China
| | - Jun-Nian Zheng
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu 221000, P.R. China
| |
Collapse
|
10
|
Adenovirus expressing β2-microglobulin recovers HLA class I expression and antitumor immunity by increasing T-cell recognition. Cancer Gene Ther 2014; 21:317-32. [PMID: 24971583 DOI: 10.1038/cgt.2014.32] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 05/31/2014] [Accepted: 06/04/2014] [Indexed: 01/11/2023]
Abstract
Optimal tumor cell surface expression of human leukocyte antigen (HLA) class I molecules is essential for the presentation of tumor-associated peptides to T-lymphocytes. However, a hallmark of many types of tumor is the loss or downregulation of HLA class I expression associated with ineffective tumor antigen presentation to T cells. Frequently, HLA loss can be caused by structural alterations in genes coding for HLA class I complex, including the light chain of the complex, β2-microglobulin (β2m). Its best-characterized function is to interact with HLA heavy chain and stabilize the complex leading to a formation of antigen-binding cleft recognized by T-cell receptor on CD8+ T cells. Our previous study demonstrated that alterations in the β2m gene are frequently associated with cancer immune escape leading to metastatic progression and resistance to immunotherapy. These types of defects require genetic transfer strategies to recover normal expression of HLA genes. Here we characterize a replication-deficient adenoviral vector carrying human β2m gene, which is efficient in recovering proper tumor cell surface HLA class I expression in β2m-negative tumor cells without compromising the antigen presentation machinery. Tumor cells transduced with β2m induced strong activation of T cells in a peptide-specific HLA-restricted manner. Gene therapy using recombinant adenoviral vectors encoding HLA genes increases tumor antigen presentation and represents a powerful tool for modulation of tumor cell immunogenicity by restoration of missing or altered HLA genes. It should be considered as part of cancer treatment in combination with immunotherapy.
Collapse
|
11
|
Brimijoin S, Shen X, Orson F, Kosten T. Prospects, promise and problems on the road to effective vaccines and related therapies for substance abuse. Expert Rev Vaccines 2013; 12:323-32. [PMID: 23496671 DOI: 10.1586/erv.13.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review addresses potential new treatments for stimulant drugs of abuse, especially cocaine. Clinical trials of vaccines against cocaine and nicotine have been completed with the generally encouraging result that subjects showing high titers of antidrug antibody experience a reduction in drug reward, which may aid in cessation. New vaccine technologies, including gene transfer of highly optimized monoclonal antibodies, are likely to improve such outcomes further. In the special case of cocaine abuse, a metabolic enzyme is emerging as an alternative or added therapeutic intervention, which would also involve gene transfer. Such approaches still require extensive studies of safety and efficacy, but they may eventually contribute to a robust form of in vivo drug interception that greatly reduces the risks of addiction relapse.
Collapse
Affiliation(s)
- Stephen Brimijoin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.
| | | | | | | |
Collapse
|
12
|
Li X, Gao J, Yang Y, Fang H, Han Y, Wang X, Ge W. Nanomaterials in the application of tumor vaccines: advantages and disadvantages. Onco Targets Ther 2013; 6:629-34. [PMID: 23776336 PMCID: PMC3681402 DOI: 10.2147/ott.s41902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tumor vaccines are a novel approach to the treatment of malignancy, and are attracting the attention of the medical profession. Nanomaterials have significant advantages in the preparation of a tumor vaccine, including their ability to penetrate and target cancer tissue and their antigenic properties. In this review, we focus on several nanomaterials, ie, carbon nanotubes, nanoemulsions, nanosized aluminum, and nanochitosan. Applications for these nanomaterials in nanovaccines and their biological characteristics, as well as their potential toxicity, are discussed.
Collapse
Affiliation(s)
- Xd Li
- Department of Equipment, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
13
|
Tao K, Li YJ, Wang D, Qi JY, Deng YP, Wang HX, Hu J, Feng WL. Enhancement of specific cellular immune response induced by glycosyl-phosphatidylinositol-anchored BCR/ABL and mIL-12. Cancer Biol Ther 2011; 12:881-7. [PMID: 22024730 DOI: 10.4161/cbt.12.10.17674] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
bcr/abl fusion gene is thought to be a promising target for chronic myelogenous leukemia (CML) patients to enhance immune response after attaining complete remission. In this study, we sought to enhance cellular immunity by co-expression of BCR/ABL and murine IL-12 gene on the tumor cell surface as a glycosyl-phosphatidylinositol (GPI)-form. The successfully constructed plasmid pBudCE4.1-BCR/ABL-GPI-mIL12 resulted in high levels of splenocyte proliferative responses, significant levels of IL-2 and IFNγ, and strong cytotoxic T-lymphocyte (CTL) responses in vitro. In a murine transplant model, the vaccinated mice showed decreased infiltration of leukemia cells and reduced expression of BCR/ABL transcripts and protein in bone marrow cells. Results of the present study indicated that this novel immunization strategy is useful in enhancing immune protection in mice, which would provide new insights into the development of effective vaccines for treating CML.
Collapse
Affiliation(s)
- Kun Tao
- Department of Immunology, Molecular Medicine and Cancer Research, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|