1
|
Lu X, Liu L. Genome stability from the perspective of telomere length. Trends Genet 2024; 40:175-186. [PMID: 37957036 DOI: 10.1016/j.tig.2023.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
Telomeres and their associated proteins protect the ends of chromosomes to maintain genome stability. Telomeres undergo progressive shortening with each cell division in mammalian somatic cells without telomerase, resulting in genome instability. When telomeres reach a critically short length or are recognized as a damage signal, cells enter a state of senescence, followed by cell cycle arrest, programmed cell death, or immortalization. This review provides an overview of recent advances in the intricate relationship between telomeres and genome instability. Alongside well-established mechanisms such as chromosomal fusion and telomere fusion, we will delve into the perspective on genome stability by examining the role of retrotransposons. Retrotransposons represent an emerging pathway to regulate genome stability through their interactions with telomeres.
Collapse
Affiliation(s)
- Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, Tianjin 300350, China.
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, Tianjin 300350, China; Frontiers Science Center for Cell Responses, College of Life Science, Nankai University, Tianjin, Tianjin 300071, China; Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China; Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin 300000, China.
| |
Collapse
|
2
|
Wu Z, Kou R, Ni K, Song R, Li Y, Li T, Zhang H. Extraordinarily Stable Hairpin-Based Biosensors for Rapid Detection of DNA Ligases. BIOSENSORS 2023; 13:875. [PMID: 37754109 PMCID: PMC10527192 DOI: 10.3390/bios13090875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/26/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023]
Abstract
DNA ligases are essential enzymes involved in DNA replication and repair processes in all organisms. These enzymes seal DNA breaks by catalyzing the formation of phosphodiester bonds between juxtaposed 5' phosphate and 3' hydroxyl termini in double-stranded DNA. In addition to their critical roles in maintaining genomic integrity, DNA ligases have been recently identified as diagnostic biomarkers for several types of cancers and recognized as potential drug targets for the treatment of various diseases. Although DNA ligases are significant in basic research and medical applications, developing strategies for efficiently detecting and precisely quantifying these crucial enzymes is still challenging. Here, we report our design and fabrication of a highly sensitive and specific biosensor in which a stable DNA hairpin is utilized to stimulate the generation of fluorescence signals. This probe is verified to be stable under a wide range of experimental conditions and exhibits promising performance in detecting DNA ligases. We anticipate that this hairpin-based biosensor will significantly benefit the development of new targeting strategies and diagnostic tools for certain diseases.
Collapse
Affiliation(s)
- Ziang Wu
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
- School of Physical Sciences, Great Bay University & Great Bay Institute for Advanced Study, Dongguan 523000, China
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China
| | - Roujuan Kou
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China
| | - Kun Ni
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China
| | - Rui Song
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China
| | - Yuxuan Li
- School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Tianhu Li
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China
| | - Hao Zhang
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
- School of Physical Sciences, Great Bay University & Great Bay Institute for Advanced Study, Dongguan 523000, China
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China
| |
Collapse
|
3
|
Novel Curcumin Monocarbonyl Analogue-Dithiocarbamate hybrid molecules target human DNA ligase I and show improved activity against colon cancer. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02983-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Sun L, Liu X, Song S, Feng L, Shi C, Sun Z, Chen B, Hou H. Identification of LIG1 and LIG3 as prognostic biomarkers in breast cancer. Open Med (Wars) 2021; 16:1705-1717. [PMID: 34825062 PMCID: PMC8590111 DOI: 10.1515/med-2021-0388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/25/2021] [Accepted: 10/13/2021] [Indexed: 11/29/2022] Open
Abstract
DNA ligase (LIG) plays a key role in connecting the 3′-OH end of a DNA strand to the 5′-P end of another DNA strand, resulting in the formation of a phosphodiester bond. It has been reported that LIGs (including LIG1, LIG3 and LIG4) play important roles in the occurrence and progression of many cancers. However, the role of LIGs in breast cancer (BC) is still unclear. In this study, we aim to reveal the expression level, function, and prognostic value of LIGs in BC. Bioinformatic tools were used to study the expression level, potential function and prognostic value of LIG1 and LIG3 in BC patients. ENCORI was used to predict microRNAs (miRNAs) that regulate LIG1 and LIG3 and established a valuable miRNA–mRNA regulation network for BC. We found that the expression of LIG1 and LIG3 was upregulated in BC and predicted high relapse-free survival (RFS) in BC patients. Functional annotation analysis was performed to reveal the role of LIG1 and LIG3 in BC. In addition, hsa-miR-22-3p was identified to be potentially involved in the regulation of LIG3. We suggest that LIG1 and LIG3 are novel valuable prognostic biomarkers for BC and has-miRNA-22-3p may be a potential therapeutic target for BC.
Collapse
Affiliation(s)
- Lin Sun
- Health Management Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| | - Xinyu Liu
- Department of School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, 266071, China
| | - Siqi Song
- Department of School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, 266071, China
| | - Lingjun Feng
- Department of Thyroid & Breast Surgery, Hospital of Weifang Medical University, Weifang, 261031, China
| | - Chunying Shi
- Department of School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhipeng Sun
- Department of School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, 266071, China
| | - Bo Chen
- Department of School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, 266071, China
| | - Haiqing Hou
- Department of Clinical Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China
| |
Collapse
|
5
|
Base excision repair and its implications to cancer therapy. Essays Biochem 2021; 64:831-843. [PMID: 32648895 PMCID: PMC7588666 DOI: 10.1042/ebc20200013] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/15/2022]
Abstract
Base excision repair (BER) has evolved to preserve the integrity of DNA following cellular oxidative stress and in response to exogenous insults. The pathway is a coordinated, sequential process involving 30 proteins or more in which single strand breaks are generated as intermediates during the repair process. While deficiencies in BER activity can lead to high mutation rates and tumorigenesis, cancer cells often rely on increased BER activity to tolerate oxidative stress. Targeting BER has been an attractive strategy to overwhelm cancer cells with DNA damage, improve the efficacy of radiotherapy and/or chemotherapy, or form part of a lethal combination with a cancer specific mutation/loss of function. We provide an update on the progress of inhibitors to enzymes involved in BER, and some of the challenges faced with targeting the BER pathway.
Collapse
|
6
|
Withdrawn: In vitro single-strand DNA damage and cancer cell cytotoxicity of temozolomide. Cancer Med 2020; 9:7793. [PMID: 31568693 PMCID: PMC7571816 DOI: 10.1002/cam4.786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
7
|
Stratigopoulou M, van Dam TP, Guikema JEJ. Base Excision Repair in the Immune System: Small DNA Lesions With Big Consequences. Front Immunol 2020; 11:1084. [PMID: 32547565 PMCID: PMC7272602 DOI: 10.3389/fimmu.2020.01084] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
The integrity of the genome is under constant threat of environmental and endogenous agents that cause DNA damage. Endogenous damage is particularly pervasive, occurring at an estimated rate of 10,000–30,000 per cell/per day, and mostly involves chemical DNA base lesions caused by oxidation, depurination, alkylation, and deamination. The base excision repair (BER) pathway is primary responsible for removing and repairing these small base lesions that would otherwise lead to mutations or DNA breaks during replication. Next to preventing DNA mutations and damage, the BER pathway is also involved in mutagenic processes in B cells during immunoglobulin (Ig) class switch recombination (CSR) and somatic hypermutation (SHM), which are instigated by uracil (U) lesions derived from activation-induced cytidine deaminase (AID) activity. BER is required for the processing of AID-induced lesions into DNA double strand breaks (DSB) that are required for CSR, and is of pivotal importance for determining the mutagenic outcome of uracil lesions during SHM. Although uracils are generally efficiently repaired by error-free BER, this process is surprisingly error-prone at the Ig loci in proliferating B cells. Breakdown of this high-fidelity process outside of the Ig loci has been linked to mutations observed in B-cell tumors and DNA breaks and chromosomal translocations in activated B cells. Next to its role in preventing cancer, BER has also been implicated in immune tolerance. Several defects in BER components have been associated with autoimmune diseases, and animal models have shown that BER defects can cause autoimmunity in a B-cell intrinsic and extrinsic fashion. In this review we discuss the contribution of BER to genomic integrity in the context of immune receptor diversification, cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Maria Stratigopoulou
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Tijmen P van Dam
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
8
|
Amir M, Mohammad T, Dohare R, Islam A, Ahmad F, Imtaiyaz Hassan M. Structure, function and therapeutic implications of OB-fold proteins: A lesson from past to present. Brief Funct Genomics 2020; 19:377-389. [PMID: 32393969 DOI: 10.1093/bfgp/elaa008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Oligonucleotide/oligosaccharide-binding (OB)-fold proteins play essential roles in the regulation of genome and its correct transformation to the subsequent generation. To maintain the genomic stability, OB-fold proteins are implicated in various cellular processes including DNA replication, DNA repair, cell cycle regulation and maintenance of telomere. The diverse functional spectrums of OB-fold proteins are mainly due to their involvement in protein-DNA and protein-protein complexes. Mutations and consequential structural alteration in the OB-fold proteins often lead to severe diseases. Here, we have investigated the structure, function and mode of action of OB-fold proteins (RPA, BRCA2, DNA ligases and SSBs1/2) in cellular pathways and their relationship with diseases and their possible use in therapeutic intervention. Due to the crucial role of OB-fold proteins in regulating the key physiological process, a detailed structural understanding in the context of underlying mechanism of action and cellular complexity offers a new avenue to target OB-proteins for therapeutic intervention.
Collapse
|
9
|
Saquib M, Ansari MI, Johnson CR, Khatoon S, Kamil Hussain M, Coop A. Recent advances in the targeting of human DNA ligase I as a potential new strategy for cancer treatment. Eur J Med Chem 2019; 182:111657. [PMID: 31499361 DOI: 10.1016/j.ejmech.2019.111657] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/24/2019] [Accepted: 08/28/2019] [Indexed: 11/29/2022]
Abstract
The emergence of drug resistance, coupled with the issue of low tumor selectivity and toxicity is a major pitfall in cancer chemotherapy. It has necessitated the urgent need for the discovery of less toxic and more potent new anti-cancer pharmaceuticals, which target the interactive mechanisms involved in division and metastasis of cancer cells. Human DNA ligase I (hligI) plays an important role in DNA replication by linking Okazaki fragments on the lagging strand of DNA, and also participates in DNA damage repair processes. Dysregulation of the functioning of such ligases can severely impact DNA replication and repair pathways events that are generally targeted in cancer treatment. Although, several human DNA ligase inhibitors have been reported in the literature but unfortunately not a single inhibitor is currently being used in cancer chemotherapy. Results of pre-clinical studies also support the fact that human DNA ligases are an attractive target for the development of new anticancer agents which work by the selective inhibition of rapidly proliferating cancer cells. In this manuscript, we discuss, in brief, the structure, synthesis, structure-activity-relationship (SAR) and anticancer activity of recently reported hLigI inhibitors.
Collapse
Affiliation(s)
- Mohammad Saquib
- Department of Chemistry, University of Allahabad, Allahabad, 211002, India
| | - Mohd Imran Ansari
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine St., Baltimore, MD, 21201, USA
| | - Chad R Johnson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine St., Baltimore, MD, 21201, USA
| | | | - Mohd Kamil Hussain
- Department of Chemistry, Govt. Raza Post Graduate College, Rampur, 244901, India.
| | - Andrew Coop
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine St., Baltimore, MD, 21201, USA.
| |
Collapse
|
10
|
Çağlayan M. Interplay between DNA Polymerases and DNA Ligases: Influence on Substrate Channeling and the Fidelity of DNA Ligation. J Mol Biol 2019; 431:2068-2081. [PMID: 31034893 DOI: 10.1016/j.jmb.2019.04.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023]
Abstract
DNA ligases are a highly conserved group of nucleic acid enzymes that play an essential role in DNA repair, replication, and recombination. This review focuses on functional interaction between DNA polymerases and DNA ligases in the repair of single- and double-strand DNA breaks, and discusses the notion that the substrate channeling during DNA polymerase-mediated nucleotide insertion coupled to DNA ligation could be a mechanism to minimize the release of potentially mutagenic repair intermediates. Evidence suggesting that DNA ligases are essential for cell viability includes the fact that defects or insufficiency in DNA ligase are casually linked to genome instability. In the future, it may be possible to develop small molecule inhibitors of mammalian DNA ligases and/or their functional protein partners that potentiate the effects of chemotherapeutic compounds and improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Melike Çağlayan
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
11
|
Ngo M, Wechter N, Tsai E, Shun TY, Gough A, Schurdak ME, Schwacha A, Vogt A. A High-Throughput Assay for DNA Replication Inhibitors Based upon Multivariate Analysis of Yeast Growth Kinetics. SLAS DISCOVERY 2019; 24:669-681. [PMID: 30802412 DOI: 10.1177/2472555219829740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mcm2-7 is the molecular motor of eukaryotic replicative helicase, and the regulation of this complex is a major focus of cellular S-phase regulation. Despite its cellular importance, few small-molecule inhibitors of this complex are known. Based upon our genetic analysis of synthetic growth defects between mcm alleles and a range of other alleles, we have developed a high-throughput screening (HTS) assay using a well-characterized mcm mutant (containing the mcm2DENQ allele) to identify small molecules that replicate such synthetic growth defects. During assay development, we found that aphidicolin (inhibitor of DNA polymerase alpha) and XL413 (inhibitor of the DNA replication-dependent kinase CDC7) preferentially inhibited growth of the mcm2DENQ strain relative to the wild-type parental strain. However, as both strains demonstrated some degree of growth inhibition with these compounds, small and variable assay windows can result. To increase assay sensitivity and reproducibility, we developed a strategy combining the analysis of cell growth kinetics with linear discriminant analysis (LDA). We found that LDA greatly improved assay performance and captured a greater range of synthetic growth inhibition phenotypes, yielding a versatile analysis platform conforming to HTS requirements.
Collapse
Affiliation(s)
- Marilyn Ngo
- 1 Drug Discovery Institute, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Nick Wechter
- 2 Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emily Tsai
- 3 Apollo Medical Optics, Ltd., Taipei City, Taiwan (R.O.C.)
| | - Tong Ying Shun
- 1 Drug Discovery Institute, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Albert Gough
- 1 Drug Discovery Institute, University of Pittsburgh Medical School, Pittsburgh, PA, USA.,4 Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark E Schurdak
- 1 Drug Discovery Institute, University of Pittsburgh Medical School, Pittsburgh, PA, USA.,4 Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.,5 Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Anthony Schwacha
- 2 Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andreas Vogt
- 1 Drug Discovery Institute, University of Pittsburgh Medical School, Pittsburgh, PA, USA.,4 Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.,5 Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Visnes T, Grube M, Hanna BMF, Benitez-Buelga C, Cázares-Körner A, Helleday T. Targeting BER enzymes in cancer therapy. DNA Repair (Amst) 2018; 71:118-126. [PMID: 30228084 DOI: 10.1016/j.dnarep.2018.08.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Base excision repair (BER) repairs mutagenic or genotoxic DNA base lesions, thought to be important for both the etiology and treatment of cancer. Cancer phenotypic stress induces oxidative lesions, and deamination products are responsible for one of the most prevalent mutational signatures in cancer. Chemotherapeutic agents induce genotoxic DNA base damage that are substrates for BER, while synthetic lethal approaches targeting BER-related factors are making their way into the clinic. Thus, there are three strategies by which BER is envisioned to be relevant in cancer chemotherapy: (i) to maintain cellular growth in the presence of endogenous DNA damage in stressed cancer cells, (ii) to maintain viability after exogenous DNA damage is introduced by therapeutic intervention, or (iii) to confer synthetic lethality in cancer cells that have lost one or more additional DNA repair pathways. Here, we discuss the potential treatment strategies, and briefly summarize the progress that has been made in developing inhibitors to core BER-proteins and related factors.
Collapse
Affiliation(s)
- Torkild Visnes
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden; Department of Biotechnology and Nanomedicine, SINTEF Industry, N-7034 Trondheim, Norway
| | - Maurice Grube
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Bishoy Magdy Fekry Hanna
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Carlos Benitez-Buelga
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Armando Cázares-Körner
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden; Sheffield Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK.
| |
Collapse
|
13
|
Bathula SR, Sharma K, Singh DK, Reddy MP, Sajja PR, Deshmukh AL, Banerjee D. siRNA Delivery Using a Cationic-Lipid-Based Highly Selective Human DNA Ligase I Inhibitor. ACS APPLIED MATERIALS & INTERFACES 2018; 10:1616-1622. [PMID: 29256581 DOI: 10.1021/acsami.7b19193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The present article illustrates the serendipitous discovery of a cationic-lipid-based human DNA ligase (hLig) I inhibitor and the development of siRNA delivering, a hLigI-targeted cationic-lipid-based nonviral vector. We have tested a small in-house library of structurally similar cationic lipo-anisamides for antiligase activity, and amongst tested, N-dodecyl-N-(2-(4-methoxybenzamido)ethyl)-N-methyldodecan-1-ammonium iodide (C12M) selectively and efficiently inhibited the enzyme activity of hLigI, compared to other human ligases (hLigIIIβ and hLigIV/XRCC4) and bacterial T4 DNA ligase. Furthermore, upon hydration with equimolar cholesterol, C12M produced antiligase cationic liposomes, which transfected survivin siRNA and showed significant inhibition of tumor growth.
Collapse
Affiliation(s)
- Surendar R Bathula
- Division of Natural Products Chemistry, CSIR Indian Institute of Chemical Technology , Hyderabad 500007, India
| | - Komal Sharma
- Division of Natural Products Chemistry, CSIR Indian Institute of Chemical Technology , Hyderabad 500007, India
| | - Deependra K Singh
- Molecular and Structural Biology Division, CSIR Central Drug Research Institute , Lucknow 226 031, Uttar Pradesh, India
| | - Muktapuram P Reddy
- Division of Natural Products Chemistry, CSIR Indian Institute of Chemical Technology , Hyderabad 500007, India
| | - Pushpa R Sajja
- Division of Natural Products Chemistry, CSIR Indian Institute of Chemical Technology , Hyderabad 500007, India
| | - Amit L Deshmukh
- Molecular and Structural Biology Division, CSIR Central Drug Research Institute , Lucknow 226 031, Uttar Pradesh, India
| | - Dibyendu Banerjee
- Molecular and Structural Biology Division, CSIR Central Drug Research Institute , Lucknow 226 031, Uttar Pradesh, India
| |
Collapse
|
14
|
Baird DM, Hendrickson EA. Telomeres and Chromosomal Translocations : There's a Ligase at the End of the Translocation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1044:89-112. [PMID: 29956293 DOI: 10.1007/978-981-13-0593-1_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chromosomal translocations are now well understood to not only constitute signature molecular markers for certain human cancers but often also to be causative in the genesis of that tumor. Despite the obvious importance of such events, the molecular mechanism of chromosomal translocations in human cells remains poorly understood. Part of the explanation for this dearth of knowledge is due to the complexity of the reaction and the need to archaeologically work backwards from the final product (a translocation) to the original unrearranged chromosomes to infer mechanism. Although not definitive, these studies have indicated that the aberrant usage of endogenous DNA repair pathways likely lies at the heart of the problem. An equally obfuscating aspect of this field, however, has also originated from the unfortunate species-specific differences that appear to exist in the relevant model systems that have been utilized to investigate this process. Specifically, yeast and murine systems (which are often used by basic science investigators) rely on different DNA repair pathways to promote chromosomal translocations than human somatic cells. In this chapter, we will review some of the basic concepts of chromosomal translocations and the DNA repair systems thought to be responsible for their genesis with an emphasis on underscoring the differences between other species and human cells. In addition, we will focus on a specific subset of translocations that involve the very end of a chromosome (a telomere). A better understanding of the relationship between DNA repair pathways and chromosomal translocations is guaranteed to lead to improved therapeutic treatments for cancer.
Collapse
Affiliation(s)
- Duncan M Baird
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
15
|
Gupta S, Maurya P, Upadhyay A, Kushwaha P, Krishna S, Siddiqi MI, Sashidhara KV, Banerjee D. Synthesis and bio-evaluation of indole-chalcone based benzopyrans as promising antiligase and antiproliferative agents. Eur J Med Chem 2018; 143:1981-1996. [DOI: 10.1016/j.ejmech.2017.11.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/16/2017] [Accepted: 11/04/2017] [Indexed: 02/06/2023]
|
16
|
Cheung CHY, Hsu CL, Chen KP, Chong ST, Wu CH, Huang HC, Juan HF. MCM2-regulated functional networks in lung cancer by multi-dimensional proteomic approach. Sci Rep 2017; 7:13302. [PMID: 29038488 PMCID: PMC5643318 DOI: 10.1038/s41598-017-13440-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/25/2017] [Indexed: 12/17/2022] Open
Abstract
DNA replication control is vital for maintaining genome stability and the cell cycle, perhaps most notably during cell division. Malignancies often exhibit defective minichromosome maintenance protein 2 (MCM2), a cancer proliferation biomarker that serves as a licensing factor in the initiation of DNA replication. MCM2 is also known to be one of the ATPase active sites that facilitates conformational changes and drives DNA unwinding at the origin of DNA replication. However, the biological networks of MCM2 in lung cancer cells via protein phosphorylation remain unmapped. The RNA-seq datasets from The Cancer Genome Atlas (TCGA) revealed that MCM2 overexpression is correlated with poor survival rate in lung cancer patients. To uncover MCM2-regulated functional networks in lung cancer, we performed multi-dimensional proteomic approach by integrating analysis of the phosphoproteome and proteome, and identified a total of 2361 phosphorylation sites on 753 phosphoproteins, and 4672 proteins. We found that the deregulation of MCM2 is involved in lung cancer cell proliferation, the cell cycle, and migration. Furthermore, HMGA1S99 phosphorylation was found to be differentially expressed under MCM2 perturbation in opposite directions, and plays an important role in regulating lung cancer cell proliferation. This study therefore enhances our capacity to therapeutically target cancer-specific phosphoproteins.
Collapse
Affiliation(s)
- Chantal Hoi Yin Cheung
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Chia-Lang Hsu
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Kai-Pu Chen
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 10617, Taiwan
| | - Siao-Ting Chong
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Chang-Hsun Wu
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei, 11221, Taiwan.
| | - Hsueh-Fen Juan
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 10617, Taiwan. .,Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan. .,Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
17
|
Hussain MK, Singh DK, Singh A, Asad M, Ansari MI, Shameem M, Krishna S, Valicherla GR, Makadia V, Meena S, Deshmukh AL, Gayen JR, Imran Siddiqi M, Datta D, Hajela K, Banerjee D. A Novel Benzocoumarin-Stilbene Hybrid as a DNA ligase I inhibitor with in vitro and in vivo anti-tumor activity in breast cancer models. Sci Rep 2017; 7:10715. [PMID: 28878282 PMCID: PMC5587642 DOI: 10.1038/s41598-017-10864-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 08/16/2017] [Indexed: 11/21/2022] Open
Abstract
Existing cancer therapies are often associated with drug resistance and toxicity, which results in poor prognosis and recurrence of cancer. This necessitates the identification and development of novel therapeutics against existing as well as novel cellular targets. In this study, a novel class of Benzocoumarin-Stilbene hybrid molecules were synthesized and evaluated for their antiproliferative activity against various cancer cell lines followed by in vivo antitumor activity in a mouse model of cancer. The most promising molecule among the series, i.e. compound (E)-4-(3,5-dimethoxystyryl)-2H-benzo[h]chromen-2-one (19) showed maximum antiproliferative activity in breast cancer cell lines (MDA-MB-231 and 4T1) and decreased the tumor size in the in-vivo 4T1 cell-induced orthotopic syngeneic mouse breast cancer model. The mechanistic studies of compound 19 by various biochemical, cell biology and biophysical approaches suggest that the compound binds to and inhibits the human DNA ligase I enzyme activity that might be the cause for significant reduction in tumor growth and may constitute a promising next-generation therapy against breast cancers.
Collapse
Affiliation(s)
- Mohd Kamil Hussain
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226031, India.,Department of Chemistry Govt. Raza Post Graduate College, Rampur, 244901, India
| | | | - Akhilesh Singh
- Biochemistry Division, CSIR-CDRI, Lucknow, 226031, India
| | - Mohd Asad
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226031, India
| | - Mohd Imran Ansari
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226031, India
| | - Mohammad Shameem
- Molecular and Structural Biology Division, CSIR-CDRI, Lucknow, 226031, India
| | - Shagun Krishna
- Molecular and Structural Biology Division, CSIR-CDRI, Lucknow, 226031, India
| | - Guru R Valicherla
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.,Pharmacokinetics and Metabolism Division, CSIR-CDRI, Lucknow, 226031, India
| | - Vishal Makadia
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raibarelly, India
| | - Sanjeev Meena
- Biochemistry Division, CSIR-CDRI, Lucknow, 226031, India
| | | | - Jiaur R Gayen
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.,Pharmacokinetics and Metabolism Division, CSIR-CDRI, Lucknow, 226031, India
| | - Mohammad Imran Siddiqi
- Molecular and Structural Biology Division, CSIR-CDRI, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Dipak Datta
- Biochemistry Division, CSIR-CDRI, Lucknow, 226031, India. .,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.
| | - Kanchan Hajela
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226031, India. .,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.
| | - Dibyendu Banerjee
- Molecular and Structural Biology Division, CSIR-CDRI, Lucknow, 226031, India. .,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.
| |
Collapse
|
18
|
A comprehensive look of poly(ADP-ribose) polymerase inhibition strategies and future directions for cancer therapy. Future Med Chem 2016; 9:37-60. [PMID: 27995810 DOI: 10.4155/fmc-2016-0113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The finding of promising drugs represents a huge challenge in cancer therapeutics, therefore it is important to seek out novel approaches and elucidate essential cellular processes in order to identify potential drug targets. Studies on DNA repair pathway suggested that an enzyme, PARP, which plays a significant role in DNA repair responses, could be targeted in cancer therapy. Hence, the efficacy of PARP inhibitors in cancer therapy has been investigated and has progressed from the laboratory to clinics, with olaparib having already been approved by the US FDA for ovarian cancer treatment. Here, we have discussed the development of PARP inhibitors, strategies to improve their selectivity and efficacy, including innovative combinational and synthetic lethality approaches to identify effective PARP inhibitors in cancer treatment.
Collapse
|
19
|
Telegina DV, Korbolina EE, Ershov NI, Kolosova NG, Kozhevnikova OS. Identification of functional networks associated with cell death in the retina of OXYS rats during the development of retinopathy. Cell Cycle 2016; 14:3544-56. [PMID: 26440064 DOI: 10.1080/15384101.2015.1080399] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Age-related macular degeneration (AMD) is a major cause of blindness in developed countries, and the molecular pathogenesis of early events in AMD is poorly understood. Senescence-accelerated OXYS rats develop AMD-like retinopathy. The aim of this study was to explore the differences in retinal gene expression between OXYS and Wistar (control) rats at age 20 d and to identify the pathways of retinal cell death involved in the OXYS retinopathy initiation and progression. Retinal mRNA profiles of 20-day-old OXYS and Wistar rats were generated at the sequencing read depth 40 mln, in triplicate, using Illumina GAIIx. A terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) assay was performed to measure the apoptosis level. GeneMANIA was used to construct interaction networks for differentially expressed (DE) apoptosis-related genes at ages 20 d and 3 and 18 months. Functional analysis was suggestive of a developmental process, signal transduction, and cell differentiation as the most enriched biological processes among 245 DE genes at age 20 d An increased level of apoptosis was observed in OXYS rats at age 20 d but not at advanced stages. We identified functional clusters in the constructed interaction networks and possible hub genes (Rasa1, cFLAR, Birc3, Cdk1, Hspa1b, Erbb3, and Ntf3). We also demonstrated the significance of the extrinsic apoptotic pathway at preclinical, early, and advanced stages of retinopathy development. Besides the cell death signaling pathways, immune system-related processes and lipid-metabolic processes showed overrepresentation in the clusters of all networks. These characteristics of the expression profile of the genes functionally associated with apoptosis may contribute to the pathogenesis of AMD-like retinopathy in senescence-accelerated OXYS rats.
Collapse
Affiliation(s)
| | | | | | - Nataliya G Kolosova
- a Institute of Cytology and Genetics ; Novosibirsk , Russia.,b Novosibirsk State University ; Novosibirsk , Russia
| | | |
Collapse
|
20
|
Pandey M, Kumar S, Goldsmith G, Srivastava M, Elango S, Shameem M, Bannerjee D, Choudhary B, Karki SS, Raghavan SC. Identification and characterization of novel ligase I inhibitors. Mol Carcinog 2016; 56:550-566. [PMID: 27312791 DOI: 10.1002/mc.22516] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 06/06/2016] [Accepted: 06/14/2016] [Indexed: 12/17/2022]
Abstract
The terminal step of ligation of single and/or double-strand breaks during physiological processes such as DNA replication, repair and recombination requires participation of DNA ligases in all mammals. DNA Ligase I has been well characterised to play vital roles during these processes. Considering the indispensable role of DNA Ligase I, a therapeutic strategy to impede proliferation of cancer cells is by using specific small molecule inhibitors against it. In the present study, we have designed and chemically synthesised putative DNA Ligase I inhibitors. Based on various biochemical and biophysical screening approaches, we identify two prospective DNA Ligase I inhibitors, SCR17 and SCR21. Both the inhibitors blocked ligation of nicks on DNA in a concentration-dependent manner, when catalysed by cell-free extracts or purified Ligase I. Docking studies in conjunction with biolayer interferometry and gel shift assays revealed that both SCR17 and SCR21 can bind to Ligase I, particularly to the DNA Binding Domain of Ligase I with KD values in nanomolar range. The inhibitors did not show significant affinity towards DNA Ligase III and DNA Ligase IV. Further, addition of Ligase I could restore the joining, when the inhibitors were treated with testicular cell-free extracts. Ex vivo studies using multiple assays showed that even though cell death was limited in the presence of inhibitors in cancer cells, their proliferation was compromised. Hence, we identify two promising DNA Ligase I inhibitors, which can be used in biochemical and cellular assays, and could be further modified and optimised to target cancer cells. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Monica Pandey
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sujeet Kumar
- Department of Pharmaceutical Chemistry, KLE University's College of Pharmacy, Bangalore, India
| | - Gunaseelan Goldsmith
- Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, India
| | - Mrinal Srivastava
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Santhini Elango
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | | | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, India
| | - Subhas S Karki
- Department of Pharmaceutical Chemistry, KLE University's College of Pharmacy, Bangalore, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
21
|
Mandalapu D, Singh DK, Gupta S, Balaramnavar VM, Shafiq M, Banerjee D, Sharma VL. Discovery of monocarbonyl curcumin hybrids as a novel class of human DNA ligase I inhibitors: in silico design, synthesis and biology. RSC Adv 2016. [DOI: 10.1039/c5ra25853g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A pharmacophore model identified a novel class of hLigI inhibitors to treat cancer. 36 compounds were synthesized and the identified inhibitor, compound 23 shown antiligase activity at IC50 24.9 μM by abolishing the interaction between hLigI and DNA.
Collapse
Affiliation(s)
- Dhanaraju Mandalapu
- Medicinal & Process Chemistry Division
- CSIR-Central Drug Research Institute (CSIR-CDRI)
- Lucknow
- India
| | - Deependra Kumar Singh
- Molecular & Structural Biology Division
- CSIR-Central Drug Research Institute (CSIR-CDRI)
- Lucknow
- India
| | - Sonal Gupta
- Medicinal & Process Chemistry Division
- CSIR-Central Drug Research Institute (CSIR-CDRI)
- Lucknow
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Vishal M. Balaramnavar
- Molecular & Structural Biology Division
- CSIR-Central Drug Research Institute (CSIR-CDRI)
- Lucknow
- India
| | - Mohammad Shafiq
- Molecular & Structural Biology Division
- CSIR-Central Drug Research Institute (CSIR-CDRI)
- Lucknow
- India
| | - Dibyendu Banerjee
- Molecular & Structural Biology Division
- CSIR-Central Drug Research Institute (CSIR-CDRI)
- Lucknow
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Vishnu Lal Sharma
- Medicinal & Process Chemistry Division
- CSIR-Central Drug Research Institute (CSIR-CDRI)
- Lucknow
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
22
|
Sashidhara KV, Singh LR, Shameem M, Shakya S, Kumar A, Laxman TS, Krishna S, Siddiqi MI, Bhatta RS, Banerjee D. Design, synthesis and anticancer activity of dihydropyrimidinone–semicarbazone hybrids as potential human DNA ligase 1 inhibitors. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00447d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A series of rationally designed new class of hLig1 inhibitors with potentin vitroanti-cancer properties is presented.
Collapse
Affiliation(s)
- Koneni V. Sashidhara
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - L. Ravithej Singh
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Mohammad Shameem
- Molecular and Structural Biology Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Sarika Shakya
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Anoop Kumar
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | | | - Shagun Krishna
- Molecular and Structural Biology Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Mohammad Imran Siddiqi
- Molecular and Structural Biology Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Rabi S. Bhatta
- Pharmacokinetics and Metabolism Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Dibyendu Banerjee
- Molecular and Structural Biology Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| |
Collapse
|
23
|
Singh DK, Hussain MK, Krishna S, Deshmukh AL, Shameem M, Maurya P, Hajela K, Siddiqi MI, Banerjee D. Identification of a novel human DNA ligase I inhibitor that promotes cellular apoptosis in DLD-1 cells: an in silico and in vitro mechanistic study. RSC Adv 2016. [DOI: 10.1039/c6ra22364h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The compound S-097/98 is a specific inhibitor of hLig1. As shown in the figure, the compound inhibits only hLig1 while other human and non-human DNA ligases are not inhibited.
Collapse
Affiliation(s)
- Deependra Kumar Singh
- Molecular and Structural Biology Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Mohd. Kamil Hussain
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Shagun Krishna
- Molecular and Structural Biology Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Amit Laxmikant Deshmukh
- Molecular and Structural Biology Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Mohammad Shameem
- Molecular and Structural Biology Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Pooja Maurya
- Molecular and Structural Biology Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Kanchan Hajela
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Mohammad Imran Siddiqi
- Molecular and Structural Biology Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Dibyendu Banerjee
- Molecular and Structural Biology Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
24
|
Shameem M, Kumar R, Krishna S, Kumar C, Siddiqi MI, Kundu B, Banerjee D. Synthetic modified pyrrolo[1,4] benzodiazepine molecules demonstrate selective anticancer activity by targeting the human ligase 1 enzyme: An in silico and in vitro mechanistic study. Chem Biol Interact 2015; 237:115-24. [PMID: 26079053 DOI: 10.1016/j.cbi.2015.05.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/15/2015] [Accepted: 05/26/2015] [Indexed: 11/18/2022]
Abstract
Human DNA ligase1 (hLig1) is the major replicative enzyme in proliferating mammalian cells that join Okazaki fragments of the lagging strand during DNA replication. Interruptions in the process of ligation cause DNA damage to accumulate, resulting in cytotoxicity and cell death. In the present study we demonstrate that pyrrolo[1,4] benzodiazepine (PBD) derivatives exhibit anticancer properties by targeting the nick sealing activity of hLig1 as opposed to the DNA interaction activity known for such compounds. Our in silico and in vitro assays demonstrate the binding of these molecules with amino acid residues present in the DNA binding domain (DBD) of the hLig1 enzyme. Two of these hLig1 inhibitors S010-015 and S010-018 demonstrated selective cytotoxicity against DLD-1 (colon cancer) and HepG2 (hepatic cancer) cells in a dose dependant manner. The molecules also reduced cell viability and colony formation at concentrations of ⩽20μM in DLD-1 and HepG2 cells and induced apoptotic cell death. In yet another significant finding, the molecules reduced the migration of cancer cells in wound healing experiments, indicating their anti-metastatic property. In summary, we report the anticancer activity of PBD derivatives against DLD-1 and HepG2 cells and propose a new molecular target for their activity.
Collapse
Affiliation(s)
- Mohammad Shameem
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Janakipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Ravi Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, B.S. 10/1, Janakipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Shagun Krishna
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Janakipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Chandan Kumar
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Janakipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Mohammad Imran Siddiqi
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Janakipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Bijoy Kundu
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, B.S. 10/1, Janakipuram Extension, Sitapur Road, Lucknow 226031, India.
| | - Dibyendu Banerjee
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Janakipuram Extension, Sitapur Road, Lucknow 226031, India.
| |
Collapse
|
25
|
Yadav N, Khanam T, Shukla A, Rai N, Hajela K, Ramachandran R. Tricyclic dihydrobenzoxazepine and tetracyclic indole derivatives can specifically target bacterial DNA ligases and can distinguish them from human DNA ligase I. Org Biomol Chem 2015; 13:5475-87. [DOI: 10.1039/c5ob00439j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA ligases are critical components for DNA metabolism in all organisms.
Collapse
Affiliation(s)
- Nisha Yadav
- From Medicinal and Process Chemistry
- CSIR-Central Drug Research Institute
- India
| | - Taran Khanam
- From the Molecular and Structural Biology Division
- CSIR-Central Drug Research Institute
- India
| | - Ankita Shukla
- From the Molecular and Structural Biology Division
- CSIR-Central Drug Research Institute
- India
| | - Niyati Rai
- From the Molecular and Structural Biology Division
- CSIR-Central Drug Research Institute
- India
| | - Kanchan Hajela
- From Medicinal and Process Chemistry
- CSIR-Central Drug Research Institute
- India
| | | |
Collapse
|
26
|
The Mcm2-7 replicative helicase: a promising chemotherapeutic target. BIOMED RESEARCH INTERNATIONAL 2014; 2014:549719. [PMID: 25243149 PMCID: PMC4163376 DOI: 10.1155/2014/549719] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/08/2014] [Accepted: 08/10/2014] [Indexed: 02/05/2023]
Abstract
Numerous eukaryotic replication factors have served as chemotherapeutic targets. One replication factor that has largely escaped drug development is the Mcm2-7 replicative helicase. This heterohexameric complex forms the licensing system that assembles the replication machinery at origins during initiation, as well as the catalytic core of the CMG (Cdc45-Mcm2-7-GINS) helicase that unwinds DNA during elongation. Emerging evidence suggests that Mcm2-7 is also part of the replication checkpoint, a quality control system that monitors and responds to DNA damage. As the only replication factor required for both licensing and DNA unwinding, Mcm2-7 is a major cellular regulatory target with likely cancer relevance. Mutations in at least one of the six MCM genes are particularly prevalent in squamous cell carcinomas of the lung, head and neck, and prostrate, and MCM mutations have been shown to cause cancer in mouse models. Moreover various cellular regulatory proteins, including the Rb tumor suppressor family members, bind Mcm2-7 and inhibit its activity. As a preliminary step toward drug development, several small molecule inhibitors that target Mcm2-7 have been recently discovered. Both its structural complexity and essential role at the interface between DNA replication and its regulation make Mcm2-7 a potential chemotherapeutic target.
Collapse
|
27
|
Krishna S, Singh DK, Meena S, Datta D, Siddiqi MI, Banerjee D. Pharmacophore-based screening and identification of novel human ligase I inhibitors with potential anticancer activity. J Chem Inf Model 2014; 54:781-92. [PMID: 24593844 DOI: 10.1021/ci5000032] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human DNA ligases are enzymes that are indispensable for DNA replication and repair processes. Among the three human ligases, ligase I is attributed to the ligation of thousands of Okazaki fragments that are formed during lagging strand synthesis during DNA replication. Blocking ligation therefore can lead to the accumulation of thousands of single strands and subsequently double strand breaks in the DNA, which is lethal for the cells. The reports of the high expression level of ligase I protein in several cancer cells (versus the low ligase expression level and the low rate of division of most normal cells in the adult body) support the belief that ligase I inhibitors can target cancer cells specifically with minimum side effects to normal cells. Recent publications showing exciting data for a ligase IV inhibitor exhibiting antitumor activity in mouse models also strengthens the argument for ligases as valid antitumor targets. Keeping this in view, we performed a pharmacophore-based screening for potential ligase inhibitors in the Maybridge small molecule library and procured some of the top-ranking compounds for enzyme-based and cell-based in vitro screening. We report here the identification of novel ligase I inhibitors with potential anticancer activity against a colon cancer cell line.
Collapse
Affiliation(s)
- Shagun Krishna
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute , Lucknow 226031, India
| | | | | | | | | | | |
Collapse
|