1
|
Devan AR, Nair B, Pradeep GK, Alexander R, Vinod BS, Nath LR, Calina D, Sharifi-Rad J. The role of glypican-3 in hepatocellular carcinoma: Insights into diagnosis and therapeutic potential. Eur J Med Res 2024; 29:490. [PMID: 39369212 PMCID: PMC11453014 DOI: 10.1186/s40001-024-02073-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/22/2024] [Indexed: 10/07/2024] Open
Abstract
Glypican-3 (GPC-3) is predominantly found in the placenta and fetal liver, with limited expression in adult tissues. Its re-expression in hepatocellular carcinoma (HCC) and secretion into the serum highlights its potential as a diagnostic marker. GPC-3 is involved in important cellular processes such as proliferation, metastasis, apoptosis, and epithelial-mesenchymal transition through various signaling pathways including Wnt, IGF, YAP, and Hedgehog. To review the structure, biosynthesis, and post-translational modifications of GPC-3, and to elucidate its signaling mechanisms and role as a pro-proliferative protein in HCC, emphasizing its diagnostic and therapeutic potential. A comprehensive literature review was conducted, focusing on the expression of GPC-3 in various tumors, with a special emphasis on HCC. The review synthesized findings from experimental studies and clinical trials, analyzing the overexpression of GPC-3 in HCC, its differentiation from other liver diseases, and its potential as a diagnostic and therapeutic target. GPC-3 overexpression in HCC is linked to aggressive tumor behavior and poor prognosis, including shorter overall and disease-free survival. Additionally, GPC-3 has emerged as a promising therapeutic target. Ongoing investigations, including immunotherapies such as monoclonal antibodies and CAR-T cell therapies, demonstrate potential in inhibiting tumor growth and improving clinical outcomes. The review details the multifaceted roles of GPC-3 in tumorigenesis, including its impact on tumor-associated macrophages, glucose metabolism, and epithelial-mesenchymal transition, all contributing to HCC progression. GPC-3's re-expression in HCC and its involvement in key tumorigenic processes underscore its value as a biomarker for early diagnosis and a target for therapeutic intervention. Further research is warranted to fully exploit GPC-3's diagnostic and therapeutic potential in HCC management.
Collapse
Affiliation(s)
- Aswathy R Devan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala, 682041, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala, 682041, India
| | - Govind K Pradeep
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala, 682041, India
| | - Roshini Alexander
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala, 682041, India
| | - Balachandran S Vinod
- Department of Biochemistry, Sree Narayana College, Kollam, Kerala, 691001, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala, 682041, India.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, 092301, Ecuador.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
2
|
Wang Q, Jiang Y, Li J, Li J, He Y. Genetic structural analysis of different breeds and geographical groups of Fenneropenaeus chinensis reveals population diversity. Genomics 2024; 116:110843. [PMID: 38608736 DOI: 10.1016/j.ygeno.2024.110843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/30/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Fenneropenaeus chinensis is a commercially important shrimp species cultured in China. This study investigated eight F. chinensis populations in China, including four geographical populations, three commercial breeds, and one wild population captured from the Yellow Sea. Population stratification analysis revealed that the Hebei geographical population and commercial breeding "Huanghai No. 4" were relatively independent and stable, reflecting a relatively closed breeding environment, whereas gene introgression was present between other populations. Selective signature analysis detected artificial selection for vision, growth, and disease resistance in the Hebei population. Neuronal development-related genes were detected to be under selection in the Changyi and Rizhao populations. Fertility of the Rizhao population was also investigated. Additionally, genes in the glycosaminoglycan biosynthesis-chondroitin sulfate/dermatan sulfate pathway were involved in the high pH tolerance of the "Huanghai No. 4" population. This study provided support for the genetic mechanism of parsing economic traits and the development of molecular breeding technologies.
Collapse
Affiliation(s)
- Qiong Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, China
| | - Yuhan Jiang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jian Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, China
| | - Jitao Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, China.
| | - Yuying He
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, China.
| |
Collapse
|
3
|
Rampratap P, Lasorsa A, Perrone B, van der Wel PCA, Walvoort MTC. Production of isotopically enriched high molecular weight hyaluronic acid and characterization by solid-state NMR. Carbohydr Polym 2023; 316:121063. [PMID: 37321744 DOI: 10.1016/j.carbpol.2023.121063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023]
Abstract
Hyaluronic acid (HA) is a naturally occurring polysaccharide that is abundant in the extracellular matrix (ECM) of all vertebrate cells. HA-based hydrogels have attracted great interest for biomedical applications due to their high viscoelasticity and biocompatibility. In both ECM and hydrogel applications, high molecular weight (HMW)-HA can absorb a large amount of water to yield matrices with a high level of structural integrity. To understand the molecular underpinnings of structural and functional properties of HA-containing hydrogels, few techniques are available. Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for such studies, e.g. 13C NMR measurements can reveal the structural and dynamical features of (HMW) HA. However, a major obstacle to 13C NMR is the low natural abundance of 13C, necessitating the generation of HMW-HA that is enriched with 13C isotopes. Here we present a convenient method to obtain 13C- and 15N-enriched HMW-HA in good yield from Streptococcus equi subsp. zooepidemicus. The labeled HMW-HA has been characterized by solution and magic angle spinning (MAS) solid-state NMR spectroscopy, as well as other methods. These results will open new ways to study the structure and dynamics of HMW-HA-based hydrogels, and interactions of HMW-HA with proteins and other ECM components, using advanced NMR techniques.
Collapse
Affiliation(s)
- Pushpa Rampratap
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, the Netherlands.
| | - Alessia Lasorsa
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, the Netherlands.
| | - Barbara Perrone
- Bruker Switzerland AG, Industriestrasse 26, CH-8117, Switzerland.
| | - Patrick C A van der Wel
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, the Netherlands.
| | - Marthe T C Walvoort
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, the Netherlands.
| |
Collapse
|
4
|
Liu F, Wang Y, Huang X, Liu D, Ding W, Lai H, Wang C, Ji Q. LINC02015 modulates the cell proliferation and apoptosis of aortic vascular smooth muscle cells by transcriptional regulation and protein interaction network. Cell Death Discov 2023; 9:301. [PMID: 37596272 PMCID: PMC10439127 DOI: 10.1038/s41420-023-01601-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023] Open
Abstract
Long intergenic nonprotein coding RNA 2015 (LINC02015) is a long non-coding RNA that has been found elevated in various cell proliferation-related diseases. However, the functions and interactive mechanism of LINC02015 remain unknown. This study aimed to explore the role of LINC02015 in the cell proliferation and apoptosis of vascular smooth muscle cells (VSMCs) to explain the pathogenesis of aortic diseases. Ascending aorta samples and angiotensin-II (AT-II) treated primary human aortic VSMCs (HAVSMCs) were used to evaluate the LINC02015 expression. RNA sequencing, chromatin isolation by RNA purification sequencing, RNA pull-down, and mass spectrometry (MS) were applied to explore the potential interacting mechanisms. LINC02015 expression was found elevated in aortic dissection and AT-II-treated HAVSMCs. Cell proliferation and cell cycle were activated in HAVSMCs with LINC02015 knockdown. The cyclins family and caspase family were found to participate in regulating the cell cycle and apoptosis via the NF-κB signaling pathway. RXRA was discovered as a possible hub gene for LINC02015 transcriptional regulating networks. Besides, the protein interaction network of LINC02015 was revealed with candidate regulating molecules. It was concluded that the knockdown of LINC02015 could promote cell proliferation and inhibit the apoptosis of HAVSMCs through an RXRA-related transcriptional regulation network, which could provide a potential therapeutic target for aortic diseases.
Collapse
Affiliation(s)
- Fangyu Liu
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Municipal Institute for Cardiovascular Diseases, Shanghai, 200032, China
| | - Yulin Wang
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xitong Huang
- Department of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Dingqian Liu
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenjun Ding
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hao Lai
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chunsheng Wang
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Municipal Institute for Cardiovascular Diseases, Shanghai, 200032, China.
| | - Qiang Ji
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
5
|
Żuber Z, Kieć-Wilk B, Kałużny Ł, Wierzba J, Tylki-Szymańska A. Diagnosis and Management of Mucopolysaccharidosis Type II (Hunter Syndrome) in Poland. Biomedicines 2023; 11:1668. [PMID: 37371763 PMCID: PMC10296388 DOI: 10.3390/biomedicines11061668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/12/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Mucopolysaccharidosis type II (MPS II; also known as Hunter syndrome) is a rare, inherited lysosomal storage disease. The disease is caused by deficiency of the lysosomal enzyme iduronate-2-sulphatase (I2S) due to mutations in the IDS gene, which leads to accumulation of glycosaminoglycans (GAGs). Deficiency of I2S enzyme activity in patients with MPS II leads to progressive lysosomal storage of GAGs in the liver, spleen, heart, bones, joints, and respiratory tract. This process disturbs cellular functioning and leads to multisystemic disease manifestations. Symptoms and their time of onset differ among patients. Diagnosis of MPS II involves assessment of clinical features, biochemical parameters, and molecular characteristics. Life-long enzyme replacement therapy with idursulfase (recombinant human I2S) is the current standard of care. However, an interdisciplinary team of specialists is required to monitor and assess the patient's condition to ensure optimal care. An increasing number of patients with this rare disease reach adulthood and old age. The transition from pediatric care to the adult healthcare system should be planned and carried out according to guidelines to ensure maximum benefit for the patient.
Collapse
Affiliation(s)
- Zbigniew Żuber
- Department of Pediatrics, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, 30-705 Krakow, Poland
| | - Beata Kieć-Wilk
- Unit of Rare Metabolic Diseases, Department of Metabolic Diseases, Jagiellonian University Medical College, 31-008 Krakow, Poland
| | - Łukasz Kałużny
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Jolanta Wierzba
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Anna Tylki-Szymańska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland
| |
Collapse
|
6
|
Shikina E, Kovalevsky R, Shirkovskaya A, Toukach P. Prospective bacterial and fungal sources of hyaluronic acid: A review. Comput Struct Biotechnol J 2022; 20:6214-6236. [PMID: 36420162 PMCID: PMC9676211 DOI: 10.1016/j.csbj.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/05/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
The unique biological and rheological properties make hyaluronic acid a sought-after material for medicine and cosmetology. Due to very high purity requirements for hyaluronic acid in medical applications, the profitability of streptococcal fermentation is reduced. Production of hyaluronic acid by recombinant systems is considered a promising alternative. Variations in combinations of expressed genes and fermentation conditions alter the yield and molecular weight of produced hyaluronic acid. This review is devoted to the current state of hyaluronic acid production by recombinant bacterial and fungal organisms.
Collapse
|
7
|
Basu A, Patel NG, Nicholson ED, Weiss RJ. Spatiotemporal diversity and regulation of glycosaminoglycans in cell homeostasis and human disease. Am J Physiol Cell Physiol 2022; 322:C849-C864. [PMID: 35294848 PMCID: PMC9037703 DOI: 10.1152/ajpcell.00085.2022] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glycosaminoglycans (GAGs) are long, linear polysaccharides that are ubiquitously expressed on the cell surface and in the extracellular matrix of all animal cells. These complex carbohydrates play important roles in many cellular processes and have been implicated in many disease states, including cancer, inflammation, and genetic disorders. GAGs are among the most complex molecules in biology with enormous information content and extensive structural and functional heterogeneity. GAG biosynthesis is a nontemplate-driven process facilitated by a large group of biosynthetic enzymes that have been extensively characterized over the past few decades. Interestingly, the expression of the enzymes and the consequent structure and function of the polysaccharide chains can vary temporally and spatially during development and under certain pathophysiological conditions, suggesting their assembly is tightly regulated in cells. Due to their many key roles in cell homeostasis and disease, there is much interest in targeting the assembly and function of GAGs as a therapeutic approach. Recent advances in genomics and GAG analytical techniques have pushed the field and generated new perspectives on the regulation of mammalian glycosylation. This review highlights the spatiotemporal diversity of GAGs and the mechanisms guiding their assembly and function in human biology and disease.
Collapse
Affiliation(s)
- Amrita Basu
- 1Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Neil G. Patel
- 1Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia,2Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
| | - Elijah D. Nicholson
- 2Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
| | - Ryan J. Weiss
- 1Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia,2Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
| |
Collapse
|
8
|
Advances in the Immunomodulatory Properties of Glycoantigens in Cancer. Cancers (Basel) 2022; 14:cancers14081854. [PMID: 35454762 PMCID: PMC9032556 DOI: 10.3390/cancers14081854] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/28/2022] Open
Abstract
Simple Summary This work reviews the role of aberrant glycosylation in cancer cells during tumour growth and spreading, as well as in immune evasion. The interaction of tumour-associated glycans with the immune system through C-type lectin receptors can favour immune escape but can also provide opportunities to develop novel tumour immunotherapy strategies. This work highlights the main findings in this area and spotlights the challenges that remain to be investigated. Abstract Aberrant glycosylation in tumour progression is currently a topic of main interest. Tumour-associated carbohydrate antigens (TACAs) are expressed in a wide variety of epithelial cancers, being both a diagnostic tool and a potential treatment target, as they have impact on patient outcome and disease progression. Glycans affect both tumour-cell biology properties as well as the antitumor immune response. It has been ascertained that TACAs affect cell migration, invasion and metastatic properties both when expressed by cancer cells or by their extracellular vesicles. On the other hand, tumour-associated glycans recognized by C-type lectin receptors in immune cells possess immunomodulatory properties which enable tumour growth and immune response evasion. Yet, much remains unknown, concerning mechanisms involved in deregulation of glycan synthesis and how this affects cell biology on a major level. This review summarises the main findings to date concerning how aberrant glycans influence tumour growth and immunity, their application in cancer treatment and spotlights of unanswered challenges remaining to be solved.
Collapse
|
9
|
Kaczor-Kamińska M, Kamiński K, Wróbel M. Heparan Sulfate, Mucopolysaccharidosis IIIB and Sulfur Metabolism Disorders. Antioxidants (Basel) 2022; 11:antiox11040678. [PMID: 35453363 PMCID: PMC9026333 DOI: 10.3390/antiox11040678] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
Mucopolysaccharidosis, type IIIB (MPS IIIB) is a rare disease caused by mutations in the N-alpha-acetylglucosaminidase (NAGLU) gene resulting in decreased or absent enzyme activity. On the cellular level, the disorder is characterized by the massive lysosomal storage of heparan sulfate (HS)—one species of glycosaminoglycans. HS is a sulfur-rich macromolecule, and its accumulation should affect the turnover of total sulfur in cells; according to the studies presented here, it, indeed, does. The lysosomal degradation of HS in cells produces monosaccharides and inorganic sulfate (SO42−). Sulfate is a product of L-cysteine metabolism, and any disruption of its levels affects the entire L-cysteine catabolism pathway, which was first reported in 2019. It is known that L-cysteine level is elevated in cells with the Naglu−/− gene mutation and in selected tissues of individuals with MPS IIIB. The level of glutathione and the Naglu−/− cells’ antioxidant potential are significantly reduced, as well as the activity of 3-mercaptopyruvate sulfurtransferase (MPST, EC 2.8.1.2) and the level of sulfane sulfur-containing compounds. The direct reason is not yet known. This paper attempts to identify some of cause-and-effect correlations that may lead to this condition and identifies research directions that should be explored.
Collapse
Affiliation(s)
- Marta Kaczor-Kamińska
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Krakow, Poland;
- Correspondence: ; Tel.: +48-12-422-7400
| | - Kamil Kamiński
- Department of Physical Chemistry, Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa St., 30-387 Krakow, Poland;
| | - Maria Wróbel
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Krakow, Poland;
| |
Collapse
|
10
|
Bandzerewicz A, Gadomska-Gajadhur A. Into the Tissues: Extracellular Matrix and Its Artificial Substitutes: Cell Signalling Mechanisms. Cells 2022; 11:914. [PMID: 35269536 PMCID: PMC8909573 DOI: 10.3390/cells11050914] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
The existence of orderly structures, such as tissues and organs is made possible by cell adhesion, i.e., the process by which cells attach to neighbouring cells and a supporting substance in the form of the extracellular matrix. The extracellular matrix is a three-dimensional structure composed of collagens, elastin, and various proteoglycans and glycoproteins. It is a storehouse for multiple signalling factors. Cells are informed of their correct connection to the matrix via receptors. Tissue disruption often prevents the natural reconstitution of the matrix. The use of appropriate implants is then required. This review is a compilation of crucial information on the structural and functional features of the extracellular matrix and the complex mechanisms of cell-cell connectivity. The possibilities of regenerating damaged tissues using an artificial matrix substitute are described, detailing the host response to the implant. An important issue is the surface properties of such an implant and the possibilities of their modification.
Collapse
|
11
|
Shen CL, Mo H, Dunn DM, Watkins BA. Tocotrienol Supplementation Led to Higher Serum Levels of Lysophospholipids but Lower Acylcarnitines in Postmenopausal Women: A Randomized Double-Blinded Placebo-Controlled Clinical Trial. Front Nutr 2022; 8:766711. [PMID: 35004805 PMCID: PMC8740329 DOI: 10.3389/fnut.2021.766711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis is a major health problem in postmenopausal women. Herein we evaluated the effects of 12-week tocotrienols (TT) supplementation on serum metabolites in postmenopausal, osteopenic women. Eighty-nine participants (59.7 ± 6.8 yr, BMI 28.7 ± 5.7 kg/m2) were assigned to 3 treatments: placebo (860 mg olive oil/day), 300mg TT (300 mg TT/day), and 600mg TT (600 mg TT/day) for 12 weeks. TT consisted of 90% δ-TT and 10% γ-TT. In this metabolomic study, we evaluated the placebo and 600mgTT at baseline and 12 weeks. As expected, TT and its metabolite levels were higher in the supplemented group after 12 weeks. At baseline, there were no differences in demographic parameters or comprehensive metabolic panels (CMP). Metabolomics analysis of serum samples revealed that 48 biochemicals were higher and 65 were lower in the 600mg TT group at 12 weeks, compared to baseline. The results confirmed higher serum levels of tocotrienols and lysophospholipids, but lower acylcarnitines and catabolites of tryptophan and steroids in subjects given 600mg TT. In summary, 12-week TT supplementation altered many serum metabolite levels in postmenopausal women. The present study supports our previous findings that TT supplementation helps reduce bone loss in postmenopausal osteopenic women by suppressing inflammation and oxidative stress. Furthermore, the body incorporates TT which restructures biomembranes and modifies phospholipid metabolism, a response potentially linked to reduced inflammation and oxidative stress.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Huanbiao Mo
- Nutrition, Georgia State University, Atlanta, GA, United States
| | - Dale M Dunn
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Bruce A Watkins
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| |
Collapse
|
12
|
Chopra H, Kumar S, Singh I. Biopolymer-based Scaffolds for Tissue Engineering Applications. Curr Drug Targets 2021; 22:282-295. [PMID: 33143611 DOI: 10.2174/1389450121999201102140408] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/20/2020] [Accepted: 09/21/2020] [Indexed: 11/22/2022]
Abstract
Tissue engineering is governed by the use of cells and polymers. The cells may be accounted for the type of tissue to be targeted, while polymers may vary from natural to synthetic. The natural polymers have advantages such as non-immunogenic and complex structures that help in the formation of bonds in comparison to the synthetic ones. Various targeted drug delivery systems have been prepared using polymers and cells, such as nanoparticles, hydrogels, nanofibers, and microspheres. The design of scaffolds depends on the negative impact of material used on the human body and they have been prepared using surface modification technique or neo material synthesis. The dermal substitutes are a distinctive array that aims at the replacement of skin parts either through grafting or some other means. This review focuses on biomaterials for their use in tissue engineering. This article shall provide the bird's eye view of the scaffolds and dermal substitutes, which are naturally derived.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sandeep Kumar
- ASBASJSM College of Pharmacy, Bela, Ropar, Punjab, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
13
|
Modeling of Old Scars: Histopathological, Biochemical and Thermal Analysis of the Scar Tissue Maturation. BIOLOGY 2021; 10:biology10020136. [PMID: 33572335 PMCID: PMC7916157 DOI: 10.3390/biology10020136] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 12/26/2022]
Abstract
Simple Summary Severe skin scars (i.e., hypertrophic and keloid) induce physical and emotional discomfort and functional disorders such as contractures and body part deformations. Scar’s response to treatment depends on “maturity”, which increases with time but is not merely proportional to it. When “fresh”, scars are relatively more treatable by conservative methods, while the treatment is only partially efficient. In contrast, surgery is a preferred approach for the older scars, but it is associated with a risk of the scar regrowth and worsening after excision if unrecognized immature scar tissue remains in the operated lesion. Therefore, to develop better treatment and diagnostics of scars, understanding of the scar maturation is essential. This requires biologically accurate experimental models of skin scarring. The current models only mimic the early stages of skin scar development. They are useful for testing new scar-preventing approaches while not addressing the problem of the older scars that exist for years. In our study, we demonstrate a new rabbit model of “old” scars and explore what happens to the scar tissue during maturation. We define measurable signs to delineate the scar development stages and discuss how this knowledge can improve scar diagnostics and treatment. Abstract Mature hypertrophic scars (HSs) remain a challenging clinical problem, particularly due to the absence of biologically relevant experimental models as a standard rabbit ear HS model only reflects an early stage of scarring. The current study aims to adapt this animal model for simulation of mature HS by validating the time of the scar stabilization using qualitative and quantitative criteria. The full-thickness skin and perichondrium excision wounds were created on the ventral side of the rabbit ears. The tissue samples were studied on post-operation days (PODs) 30, 60, 90 and 120. The histopathological examination and morphometry were applied in parallel with biochemical analysis of protein and glycosaminoglycans (GAGs) content and amino acid composition. The supramolecular organization of collagen was explored by differential scanning calorimetry. Four stages of the rabbit ear HS maturation were delineated and attributed with the histolomorphometrical and physicochemical parameters of the tissue. The experimental scars formed in 30 days but stabilized structurally and biochemically only on POD 90–120. This evidence-based model can be used for the studies and testing of new treatments of the mature HSs.
Collapse
|
14
|
Listik E, Toma L. Glypican-1 in human glioblastoma: implications in tumorigenesis and chemotherapy. Oncotarget 2020; 11:828-845. [PMID: 32180897 PMCID: PMC7061737 DOI: 10.18632/oncotarget.27492] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma is one of the most common malignant brain tumors, with which patients have a mean survival of 24 months. Glypican-1 has been previously shown to be overexpressed in human glioblastoma and to be negatively correlated with patient’s survival. This study aimed to investigate how glypican-1 influences the tumoral profile of human glioblastoma using in vitro cell line models. By downregulating the expression of glypican-1 in U-251 MG cells, we observed that the cellular growth and proliferation were highly reduced, in which cells were significantly shifted towards G0 as opposed to G1 phases. Cellular migration was severely affected, and glypican-1 majorly impacted the affinity towards laminin-binding of glioblastoma U-251 MG cells. This proteoglycan was highly prevalent in glioblastoma cells, being primarily localized in the cellular membrane and extracellular vesicles, occasionally with glypican-3. Glypican-1 could also be found in cell-cell junctions with syndecan-4 but was not identified in lipid rafts in this study. Glypican-1-silenced cells were much more susceptible to temozolomide than in U-251 MG itself. Therefore, we present evidence not only to support facts that glypican-1 is an elementary macromolecule in glioblastoma tumoral microenvironment but also to introduce this proteoglycan as a promising therapeutic target for this lethal tumor.
Collapse
Affiliation(s)
- Eduardo Listik
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Leny Toma
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
15
|
Mohamed S, He QQ, Singh AA, Ferro V. Mucopolysaccharidosis type II (Hunter syndrome): Clinical and biochemical aspects of the disease and approaches to its diagnosis and treatment. Adv Carbohydr Chem Biochem 2019; 77:71-117. [PMID: 33004112 DOI: 10.1016/bs.accb.2019.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mucopolysaccharidosis type II (MPS II, Hunter syndrome) is a rare X-linked lysosomal storage disease caused by mutations of the gene encoding the lysosomal enzyme iduronate-2-sulfatase (IDS), the role of which is to hydrolytically remove O-linked sulfates from the two glycosaminoglycans (GAGs) heparan sulfate (HS) and dermatan sulfate (DS). HS and DS are linear, heterogeneous polysaccharides composed of repeating disaccharide subunits of l-iduronic acid (IdoA) or d-glucuronic acid, (1→4)-linked to d-glucosamine (for HS), or (1→3)-linked to 2-acetamido-2-deoxy-d-galactose (N-acetyl-d-galactosamine) (for DS). In healthy cells, IDS cleaves the sulfo group found at the C-2 position of terminal non-reducing end IdoA residues in HS and DS. The loss of IDS enzyme activity leads to progressive lysosomal storage of HS and DS in tissues and organs such as the brain, liver, spleen, heart, bone, joints and airways. Consequently, this leads to the phenotypic features characteristic of the disease. This review provides an overview of the disease profile and clinical manifestation, with a particular focus on the biochemical basis of the disease and chemical approaches to the development of new diagnostics, as well as discussing current treatment options and emerging new therapies.
Collapse
Affiliation(s)
- Shifaza Mohamed
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Qi Qi He
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Arti A Singh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
16
|
Ghiselli G. Heparin Binding Proteins as Therapeutic Target: An Historical Account and Current Trends. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E80. [PMID: 31362364 PMCID: PMC6789896 DOI: 10.3390/medicines6030080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 12/16/2022]
Abstract
The polyanionic nature and the ability to interact with proteins with different affinities are properties of sulfated glycosaminoglycans (GAGs) that determine their biological function. In designing drugs affecting the interaction of proteins with GAGs the challenge has been to generate agents with high binding specificity. The example to emulated has been a heparin-derived pentasaccharide that binds to antithrombin-III with high affinity. However, the portability of this model to other biological situations is questioned on several accounts. Because of their structural flexibility, oligosaccharides with different sulfation and uronic acid conformation can display the same binding proficiency to different proteins and produce comparable biological effects. This circumstance represents a formidable obstacle to the design of drugs based on the heparin scaffold. The conceptual framework discussed in this article is that through a direct intervention on the heparin-binding functionality of proteins is possible to achieve a high degree of action specificity. This objective is currently pursued through two strategies. The first makes use of small molecules for which in the text we provide examples from past and present literature concerning angiogenic factors and enzymes. The second approach entails the mutagenesis of the GAG-binding site of proteins as a means to generate a new class of biologics of therapeutic interest.
Collapse
Affiliation(s)
- Giancarlo Ghiselli
- Independent Researcher, 1326 Spruce Street Suite 706, Philadephia, PA 19107, USA.
| |
Collapse
|
17
|
Exploring Structure⁻Property Relationships of GAGs to Tailor ECM-Mimicking Hydrogels. Polymers (Basel) 2018; 10:polym10121376. [PMID: 30961301 PMCID: PMC6401775 DOI: 10.3390/polym10121376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/03/2018] [Accepted: 12/09/2018] [Indexed: 12/31/2022] Open
Abstract
Glycosaminoglycans (GAGs) are a class of linear polysaccharides that are ubiquitous in the extracellular matrix (ECM) and on cell surfaces. Due to their key role in development, homeostasis, pathogenesis, and regeneration, GAGs are increasingly used in the design of ECM-mimicking hydrogels to stimulate tissue formation and regenerative processes via specifically orchestrated cell-instructive signals. These applications first and foremost build on the ability of GAGs to effectively bind, protect, and release morphogens. The specificity and strength of morphogen-GAG interactions are largely governed by the number and spatial distribution of negatively charged sulfate groups carried by GAGs. Herein, we summarize a mean-field approach to quantify the density of ionizable groups, GAG concentration, and cross-linking degree of GAG-containing hydrogels on the basis of microslit electrokinetic experiments. We further present and discuss a continuum model of mucosa that accounts for charge regulation by glycan-ion pairing in biological contexts and under conditions of macromolecular crowding. Finally, we discuss the modulation of the morphogen binding and transport in GAG hydrogels by selective desulfation of the GAG component.
Collapse
|
18
|
Affiliation(s)
- Xue-Long Sun
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University
| |
Collapse
|
19
|
Gas-Pascual E, Ichikawa HT, Sheikh MO, Serji MI, Deng B, Mandalasi M, Bandini G, Samuelson J, Wells L, West CM. CRISPR/Cas9 and glycomics tools for Toxoplasma glycobiology. J Biol Chem 2018; 294:1104-1125. [PMID: 30463938 DOI: 10.1074/jbc.ra118.006072] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/12/2018] [Indexed: 01/25/2023] Open
Abstract
Infection with the protozoan parasite Toxoplasma gondii is a major health risk owing to birth defects, its chronic nature, ability to reactivate to cause blindness and encephalitis, and high prevalence in human populations. Unlike most eukaryotes, Toxoplasma propagates in intracellular parasitophorous vacuoles, but like nearly all other eukaryotes, Toxoplasma glycosylates many cellular proteins and lipids and assembles polysaccharides. Toxoplasma glycans resemble those of other eukaryotes, but species-specific variations have prohibited deeper investigations into their roles in parasite biology and virulence. The Toxoplasma genome encodes a suite of likely glycogenes expected to assemble N-glycans, O-glycans, a C-glycan, GPI-anchors, and polysaccharides, along with their precursors and membrane transporters. To investigate the roles of specific glycans in Toxoplasma, here we coupled genetic and glycomics approaches to map the connections between 67 glycogenes, their enzyme products, the glycans to which they contribute, and cellular functions. We applied a double-CRISPR/Cas9 strategy, in which two guide RNAs promote replacement of a candidate gene with a resistance gene; adapted MS-based glycomics workflows to test for effects on glycan formation; and infected fibroblast monolayers to assess cellular effects. By editing 17 glycogenes, we discovered novel Glc0-2-Man6-GlcNAc2-type N-glycans, a novel HexNAc-GalNAc-mucin-type O-glycan, and Tn-antigen; identified the glycosyltransferases for assembling novel nuclear O-Fuc-type and cell surface Glc-Fuc-type O-glycans; and showed that they are important for in vitro growth. The guide sequences, editing constructs, and mutant strains are freely available to researchers to investigate the roles of glycans in their favorite biological processes.
Collapse
Affiliation(s)
- Elisabet Gas-Pascual
- Department of Biochemistry and Molecular Biology, Athens, Georgia 30602; Center for Tropical and Emerging Global Diseases, Athens, Georgia 30602
| | | | | | | | - Bowen Deng
- Department of Biochemistry and Molecular Biology, Athens, Georgia 30602; Center for Tropical and Emerging Global Diseases, Athens, Georgia 30602
| | - Msano Mandalasi
- Department of Biochemistry and Molecular Biology, Athens, Georgia 30602; Center for Tropical and Emerging Global Diseases, Athens, Georgia 30602
| | - Giulia Bandini
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts 02118
| | - John Samuelson
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts 02118
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, Athens, Georgia 30602; Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Christopher M West
- Department of Biochemistry and Molecular Biology, Athens, Georgia 30602; Center for Tropical and Emerging Global Diseases, Athens, Georgia 30602; Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602.
| |
Collapse
|
20
|
Sankaranarayanan NV, Nagarajan B, Desai UR. So you think computational approaches to understanding glycosaminoglycan-protein interactions are too dry and too rigid? Think again! Curr Opin Struct Biol 2018; 50:91-100. [PMID: 29328962 PMCID: PMC6037615 DOI: 10.1016/j.sbi.2017.12.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/17/2017] [Accepted: 12/15/2017] [Indexed: 12/20/2022]
Abstract
Glycosaminoglycans (GAGs) play key roles in virtually all biologic responses through their interaction with proteins. A major challenge in understanding these roles is their massive structural complexity. Computational approaches are extremely useful in navigating this bottleneck and, in some cases, the only avenue to gain comprehensive insight. We discuss the state-of-the-art on computational approaches and present a flowchart to help answer most basic, and some advanced, questions on GAG-protein interactions. For example, firstly, does my protein bind to GAGs?; secondly, where does the GAG bind?; thirdly, does my protein preferentially recognize a particular GAG type?; fourthly, what is the most optimal GAG chain length?; fifthly, what is the structure of the most favored GAG sequence?; and finally, is my GAG-protein system 'specific', 'non-specific', or a combination of both? Recent advances show the field is now poised to enable a non-computational researcher perform advanced experiments through the availability of various tools and online servers.
Collapse
Affiliation(s)
- Nehru Viji Sankaranarayanan
- Department of Medicinal Chemistry & Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
| | - Balaji Nagarajan
- Department of Medicinal Chemistry & Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
| | - Umesh R Desai
- Department of Medicinal Chemistry & Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
21
|
Wang J, Chang Y, Dong X, Zhang R, Tang Y, Zhang M, Yu R, Jiang T, Zhang L. Cytotoxic and glycosaminoglycan priming activities of novel 4-anilinequinazoline β-D-xylosides. Carbohydr Res 2018; 463:6-13. [PMID: 29689449 DOI: 10.1016/j.carres.2018.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 01/26/2023]
Abstract
β-D-xylosides with cytotoxic aglycones have augmented cytotoxicity towards animal cells because β-D-xyloside-primed glycosaminoglycans further enhance the aglycone's cytotoxicity. In this study, we designed and synthesized different 4-anilinequinazoline β-D-xylosides and found that compounds 7-10 possessing 3-chloro-4-((3-fluorobenzyl)oxy)aniline group as in anticancer drug lapatinib also primed glycosaminoglycans and were highly cytotoxic to cancer cells.
Collapse
Affiliation(s)
- Jinpeng Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Yajing Chang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China; Systems Biology & Medicine Center for Complex Diseases, Qingdao, 266071, PR China
| | - Xueyang Dong
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Renshuai Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Yang Tang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China; Systems Biology & Medicine Center for Complex Diseases, Qingdao, 266071, PR China
| | - Meng Zhang
- Systems Biology & Medicine Center for Complex Diseases, Qingdao, 266071, PR China
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China.
| | - Lijuan Zhang
- Systems Biology & Medicine Center for Complex Diseases, Qingdao, 266071, PR China.
| |
Collapse
|
22
|
Tang Y, Zhang S, Chang Y, Fan D, Agostini AD, Zhang L, Jiang T. Aglycone Ebselen and β-d-Xyloside Primed Glycosaminoglycans Co-contribute to Ebselen β-d-Xyloside-Induced Cytotoxicity. J Med Chem 2018; 61:2937-2948. [PMID: 29584939 DOI: 10.1021/acs.jmedchem.7b01835] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Most β-d-xylosides with hydrophobic aglycones are nontoxic primers for glycosaminoglycan assembly in animal cells. However, when Ebselen was conjugated to d-xylose, d-glucose, d-galactose, and d-lactose (8A-D), only Ebselen β-d-xyloside (8A) showed significant cytotoxicity in human cancer cells. The following facts indicated that the aglycone Ebselen and β-d-xyloside primed glycosaminoglycans co-contributed to the observed cytotoxicity: 1. Ebselen induced S phase cell cycle arrest, whereas 8A induced G2/M cell cycle arrest; 2. 8A augmented early and late phase cancer cell apoptosis significantly compared to that of Ebselen and 8B-D; 3. Both 8A and phenyl-β-d-xyloside primed glycosaminoglycans with similar disaccharide compositions in CHO-pgsA745 cells; 4. Glycosaminoglycans could be detected inside of cells only when treated with 8A, indicating Ebselen contributed to the unique property of intracellular localization of the primed glycosaminoglycans. Thus, 8A represents a lead compound for the development of novel antitumor strategy by targeting glycosaminoglycans.
Collapse
Affiliation(s)
- Yang Tang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266071 , P. R. China.,Medical Systems Biology Center for Complex Diseases , Affiliated Hospital of Qingdao University , Qingdao 266003 , P. R. China
| | - Siqi Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266071 , P. R. China
| | - Yajing Chang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266071 , P. R. China.,Medical Systems Biology Center for Complex Diseases , Affiliated Hospital of Qingdao University , Qingdao 266003 , P. R. China
| | - Dacheng Fan
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266071 , P. R. China
| | - Ariane De Agostini
- Department of Gynecology and Obstetrics , Geneva University Hospitals and University of Geneva , Geneva 14 , Switzerland
| | - Lijuan Zhang
- Medical Systems Biology Center for Complex Diseases , Affiliated Hospital of Qingdao University , Qingdao 266003 , P. R. China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266071 , P. R. China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National of Laboratory for Marine Science and Technology , Qingdao 266003 , P. R. China
| |
Collapse
|
23
|
Wen Y, Li P, Hao J, Duan C, Han J, He A, Du Y, Liu L, Liang X, Zhang F, Guo X. Integrating genome-wide DNA methylation and mRNA expression profiles identified different molecular features between Kashin-Beck disease and primary osteoarthritis. Arthritis Res Ther 2018. [PMID: 29514696 PMCID: PMC5842623 DOI: 10.1186/s13075-018-1531-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background Kashin-Beck disease (KBD) is an endemic osteochondropathy of unknown etiology. Osteoarthritis (OA) is a form of degenerative joint disease sharing similar clinical manifestations and pathological changes to articular cartilage with KBD. Methods A genome-wide DNA methylation profile of articular cartilage from five KBD patients and five OA patients was first performed using the Illumina Infinium HumanMethylation450 BeadChip. Together with a previous gene expression profiling dataset comparing KBD cartilage with OA cartilage, an integrative pathway enrichment analysis of the genome-wide DNA methylation and the mRNA expression profiles conducted in articular cartilage was performed by InCroMAP software. Results We identified 241 common genes altered in both the DNA methylation profile and the mRNA expression profile of articular cartilage of KBD versus OA, including CHST13 (NM_152889, fold-change = 0.5979, Pmethy = 0.0430), TGFBR1 (NM_004612, fold-change = 2.077, Pmethy = 0.0430), TGFBR2 (NM_001024847, fold-change = 1.543, Pmethy = 0.037), TGFBR3 (NM_001276, fold-change = 0.4515, Pmethy = 6.04 × 10−4), and ADAM12 (NM_021641, fold-change = 1.9768, Pmethy = 0.0178). Integrative pathway enrichment analysis identified 19 significant KEGG pathways, including mTOR signaling (P = 0.0301), glycosaminoglycan biosynthesis-chondroitin sulfate/dermatan sulfate (P = 0.0391), glycosaminoglycan biosynthesis-keratan sulfate (P = 0.0278), and PI3K-Akt signaling (P = 0.0243). Conclusion This study identified different molecular features between Kashin-Beck disease and primary osteoarthritis and provided novel clues for clarifying the pathogenetic differences between KBD and OA. Electronic supplementary material The online version of this article (10.1186/s13075-018-1531-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University, Health Science Center, No.76 Yan Ta West Road, Xi'an, 710061, People's Republic of China
| | - Ping Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University, Health Science Center, No.76 Yan Ta West Road, Xi'an, 710061, People's Republic of China
| | - Jingcan Hao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University, Health Science Center, No.76 Yan Ta West Road, Xi'an, 710061, People's Republic of China.,The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Chen Duan
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University, Health Science Center, No.76 Yan Ta West Road, Xi'an, 710061, People's Republic of China
| | - Jing Han
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University, Health Science Center, No.76 Yan Ta West Road, Xi'an, 710061, People's Republic of China
| | - Awen He
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University, Health Science Center, No.76 Yan Ta West Road, Xi'an, 710061, People's Republic of China
| | - Yanan Du
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University, Health Science Center, No.76 Yan Ta West Road, Xi'an, 710061, People's Republic of China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University, Health Science Center, No.76 Yan Ta West Road, Xi'an, 710061, People's Republic of China
| | - Xiao Liang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University, Health Science Center, No.76 Yan Ta West Road, Xi'an, 710061, People's Republic of China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University, Health Science Center, No.76 Yan Ta West Road, Xi'an, 710061, People's Republic of China.
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University, Health Science Center, No.76 Yan Ta West Road, Xi'an, 710061, People's Republic of China.
| |
Collapse
|