1
|
Su D, Chen Z, An X, Yang J, Yang J, Wang X, Qu Y, Gong C, Chai Y, Liu X, Cheng W, Wang D, Wu Y, Ma J, Zhao X, Wang Q, Xu Y, Peng H, Ai J. MicroRNA-195 liposomes for therapy of Alzheimer's disease. J Control Release 2024; 365:583-601. [PMID: 38048963 DOI: 10.1016/j.jconrel.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
The complex etiologies and mechanisms of Alzheimer's disease (AD) underscore the importance for devising multitarget drugs to achieve effective therapy. MicroRNAs (miRNAs) are capable of concurrently regulating the expression of multiple proteins by selectively targeting disease- associated genes in a sequence-specific fashion. Nonetheless, as RNA-based drugs, their stability in the circulation and capacity of traversing the blood-brain barrier (BBB) is largely compromised, thereby limiting their potential clinical applications. In this study, we formulated the nanoliposomes encapsulating polyethyleneimine (PEI)/miR-195 complex (DPMT@PEI/miR-195) that was engineered through dual modifications to contain P-aminophenyl-alpha-d-mannopyranoside (MAN) and cationic cell-penetrating peptide (TAT). DPMT@PEI/miR-195 exhibited the enhanced BBB- and cell membrane penetrating capability. As expected, we observed that DPMT@PEI/miR-195 administered through intravenous tail injection of produced greater effectiveness than donepezil and the same range of effect as aducanumab in alleviating the cognitive decline in 7-month-old APP/PS1 mice. Moreover, the combination treatment with DPMT@PEI/miR-195 and donepezil effectively ameliorated the deterioration of cognition in 16-month-old APP/PS1 mice, with enhanced effects than either DPMT@PEI/miR-195 or donepezil alone. Furthermore, DPMT@PEI/miR-195 effectively attenuated the positive signals of Aβ, AT8, and CD68 in APP/PS1 mice without notable side effects. Our findings indicate DPMT@PEI/miR-195 as a promising potentially new agent or approach for the prophylaxis and treatment of early and advanced stages of Alzheimer's disease.
Collapse
Affiliation(s)
- Dan Su
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zhong Chen
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, China
| | - Xiaobin An
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Junkai Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jinan Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xuqiao Wang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yang Qu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Chen Gong
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, China
| | - Yani Chai
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xiaoying Liu
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, China
| | - Wei Cheng
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Dongyang Wang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yan Wu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jing Ma
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xinyue Zhao
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Qin Wang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu Province, China.
| | - Haisheng Peng
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, Daqing, Heilongjiang Province, China; Departmentof Pharmacology, Medical College, University of Shaoxing, Shaoxing, Zhejiang Province, China.
| | - Jing Ai
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, China.
| |
Collapse
|
2
|
Mockett BG, Ryan MM. The therapeutic potential of the neuroactive peptides of soluble amyloid precursor protein-alpha in Alzheimer's disease and related neurological disorders. Semin Cell Dev Biol 2023; 139:93-101. [PMID: 35654665 DOI: 10.1016/j.semcdb.2022.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 12/31/2022]
Abstract
Soluble amyloid precursor protein-alpha (sAPPα) is a multi-functional brain-derived protein that has neuroprotective, neurogenic and neurotropic properties. Moreover, it is known to facilitate synaptic function and promote neural repair. These properties suggest sAPPα may be useful as a therapeutic agent for the treatment of neurological diseases characterized by synaptic failure and neuronal loss, such as occurs in Alzheimer's disease, and for neural repair following traumatic brain injury and stroke. However, sAPPα's relatively large size and the difficulty of ongoing delivery of therapeutics to the brain mean this is not currently practicable. Importantly, however, sAPPα is composed of several neuroactive domains that each possess properties that collectively are remarkably similar to those of sAPPα itself. Here, we review the molecular structure of sAPPα and identify the domains that contribute to its overall functionality. Four peptide motifs present as possible targets for therapeutic development. We review their physiochemical and neuroactive properties, both within sAPPα and as isolated peptides, and discuss their potential for future development as multipurpose therapeutic agents for the treatment of Alzheimer's disease and other disorders of neuronal function. Further, we discuss the role of heparin binding sites, found within sAPPα's structure and overlapping with the neuroactive domains, as sites for interactions with effector proteins and synaptic receptors. The potential role of the neuroactive peptides known as Cationic Arginine-Rich Peptides (CARPs) as neuroprotective motifs is also reviewed. Mechanisms of peptide delivery to the brain are briefly discussed. Finally, we summarise the potential benefits and pitfalls of using the isolated peptides, either individually or in combination, for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Bruce G Mockett
- Department of Psychology, University of Otago, PO Box 56, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Margaret M Ryan
- Department of Anatomy, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
3
|
Tiwari V, Shukla S. Lipidomics and proteomics: An integrative approach for early diagnosis of dementia and Alzheimer's disease. Front Genet 2023; 14:1057068. [PMID: 36845373 PMCID: PMC9946989 DOI: 10.3389/fgene.2023.1057068] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder and considered to be responsible for majority of worldwide prevalent dementia cases. The number of patients suffering from dementia are estimated to increase up to 115.4 million cases worldwide in 2050. Hence, AD is contemplated to be one of the major healthcare challenge in current era. This disorder is characterized by impairment in various signaling molecules at cellular and nuclear level including aggregation of Aβ protein, tau hyper phosphorylation altered lipid metabolism, metabolites dysregulation, protein intensity alteration etc. Being heterogeneous and multifactorial in nature, the disease do not has any cure or any confirmed diagnosis before the onset of clinical manifestations. Hence, there is a requisite for early diagnosis of AD in order to downturn the progression/risk of the disorder and utilization of newer technologies developed in this field are aimed to provide an extraordinary assistance towards the same. The lipidomics and proteomics constitute large scale study of cellular lipids and proteomes in biological matrices at normal stage or any stage of a disease. The study involves high throughput quantification and detection techniques such as mass spectrometry, liquid chromatography, nuclear mass resonance spectroscopy, fluorescence spectroscopy etc. The early detection of altered levels of lipids and proteins in blood or any other biological matrices could aid in preventing the progression of AD and dementia. Therefore, the present review is designed to focus on the recent techniques and early diagnostic criteria for AD, revealing the role of lipids and proteins in this disease and their assessment through different techniques.
Collapse
Affiliation(s)
- Virendra Tiwari
- Division of Neuroscience and Ageing Biology, CSIR- Central Drug Research Institute, Lucknow, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shubha Shukla
- Division of Neuroscience and Ageing Biology, CSIR- Central Drug Research Institute, Lucknow, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,*Correspondence: Shubha Shukla,
| |
Collapse
|
4
|
Insight into potent TLR2 inhibitors for the treatment of disease caused by Mycoplasma pneumoniae based on machine learning approaches. Mol Divers 2023; 27:371-387. [PMID: 35488091 DOI: 10.1007/s11030-022-10433-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/01/2022] [Indexed: 02/08/2023]
Abstract
Mycoplasma pneumoniae (MP) is one of the most common pathogens that causes acute respiratory tract infections. Children experiencing MP infection often suffer severe complications, lung injury, and even death. Previous studies have demonstrated that Toll-like receptor 2 (TLR2) is a potential therapeutic target for treating the MP-induced inflammatory response. However, the screening of natural compounds has received more attention for the treatment of bacterial infections to reduce the likelihood of bacterial resistance. Herein, we screened compounds by combining molecular docking and machine learning approaches to find potential lead compounds for treating MP infection. First, all compounds were docked with the TLR2 receptor protein to screen for potential candidates. To predict drug bioactivity, a machine learning model (random forest) was trained for TLR2 inhibitors to obtain the predictive model. The model achieved significant squared correlation coefficient (R2) values for the training set (0.85) and validation set (0.84) of compounds. The developed machine learning model was then used to predict the pIC50 values of the top 50 candidates from the Traditional Chinese compounds and Discovery Diversity sets of compounds. As a result, these compounds are capable of inhibiting the inflammatory response induced by MP. However, prior to bringing these compounds to market, it is necessary to verify these results with additional biological testing, including preclinical and clinical studies. Moreover, the present study provides a theoretical basis for the use of natural compounds as potential candidates to treat pneumonia caused by MP.
Collapse
|
5
|
Vincent B. Plasma extracellular vesicles from the periphery as spreading vectors of Alzheimer's disease pathogenesis? EBioMedicine 2022; 78:103961. [PMID: 35325782 PMCID: PMC8938881 DOI: 10.1016/j.ebiom.2022.103961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 11/28/2022] Open
|
6
|
The Potential Role of Cytokines and Growth Factors in the Pathogenesis of Alzheimer's Disease. Cells 2021; 10:cells10102790. [PMID: 34685770 PMCID: PMC8534363 DOI: 10.3390/cells10102790] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most prominent neurodegenerative diseases, which impairs cognitive function in afflicted individuals. AD results in gradual decay of neuronal function as a consequence of diverse degenerating events. Several neuroimmune players (such as cytokines and growth factors that are key players in maintaining CNS homeostasis) turn aberrant during crosstalk between the innate and adaptive immunities. This aberrance underlies neuroinflammation and drives neuronal cells toward apoptotic decline. Neuroinflammation involves microglial activation and has been shown to exacerbate AD. This review attempted to elucidate the role of cytokines, growth factors, and associated mechanisms implicated in the course of AD, especially with neuroinflammation. We also evaluated the propensities and specific mechanism(s) of cytokines and growth factors impacting neuron upon apoptotic decline and further shed light on the availability and accessibility of cytokines across the blood-brain barrier and choroid plexus in AD pathophysiology. The pathogenic and the protective roles of macrophage migration and inhibitory factors, neurotrophic factors, hematopoietic-related growth factors, TAU phosphorylation, advanced glycation end products, complement system, and glial cells in AD and neuropsychiatric pathology were also discussed. Taken together, the emerging roles of these factors in AD pathology emphasize the importance of building novel strategies for an effective therapeutic/neuropsychiatric management of AD in clinics.
Collapse
|
7
|
Koyiparambath VP, Oh JM, Khames A, Abdelgawad MA, Nair AS, Nath LR, Gambacorta N, Ciriaco F, Nicolotti O, Kim H, Mathew B. Trimethoxylated Halogenated Chalcones as Dual Inhibitors of MAO-B and BACE-1 for the Treatment of Neurodegenerative Disorders. Pharmaceutics 2021; 13:pharmaceutics13060850. [PMID: 34201128 PMCID: PMC8226672 DOI: 10.3390/pharmaceutics13060850] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 02/05/2023] Open
Abstract
Six halogenated trimethoxy chalcone derivatives (CH1-CH6) were synthesized and spectrally characterized. The compounds were further evaluated for their inhibitory potential against monoamine oxidases (MAOs) and β-secretase (BACE-1). Six compounds inhibited MAO-B more effectively than MAO-A, and the 2',3',4'-methoxy moiety in CH4-CH6 was more effective for MAO-B inhibition than the 2',4',6'-methoxy moiety in CH1-CH3. Compound CH5 most potently inhibited MAO-B, with an IC50 value of 0.46 µM, followed by CH4 (IC50 = 0.84 µM). In 2',3',4'-methoxy derivatives (CH4-CH6), the order of inhibition was -Br in CH5 > -Cl in CH4 > -F in CH6 at the para-position in ring B of chalcone. CH4 and CH5 were selective for MAO-B, with selectivity index (SI) values of 15.1 and 31.3, respectively, over MAO-A. CH4 and CH5 moderately inhibited BACE-1 with IC50 values of 13.6 and 19.8 µM, respectively. When CH4 and CH5 were assessed for their cell viability studies on the normal African Green Monkey kidney cell line (VERO) using MTT assays, it was noted that both compounds were found to be safe, and only a slightly toxic effect was observed in concentrations above 200 µg/mL. CH4 and CH5 decreased reactive oxygen species (ROS) levels of VERO cells treated with H2O2, indicating both compounds retained protective effects on the cells by antioxidant activities. All compounds showed high blood brain barrier permeabilities analyzed by a parallel artificial membrane permeability assay (PAMPA). Molecular docking and ADME prediction of the lead compounds provided more insights into the rationale behind the binding and the CNS drug likeness. From non-test mutagenicity and cardiotoxicity studies, CH4 and CH5 were non-mutagenic and non-/weak-cardiotoxic. These results suggest that CH4 and CH5 could be considered candidates for the cure of neurological dysfunctions.
Collapse
Affiliation(s)
- Vishal Payyalot Koyiparambath
- Department of Pharmaceutical Chemistry, AIMS Health Sciences Campus, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi 682041, India; (V.P.K.); (A.S.N.)
| | - Jong Min Oh
- Department of Pharmacy, Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea;
| | - Ahmed Khames
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box-11099, Taif 21944, Saudi Arabia;
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62514, Egypt
| | - Aathira Sujathan Nair
- Department of Pharmaceutical Chemistry, AIMS Health Sciences Campus, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi 682041, India; (V.P.K.); (A.S.N.)
| | - Lekshmi R. Nath
- Department of Pharmacogonosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India;
| | - Nicola Gambacorta
- Dipartimento di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, I-70125 Bari, Italy; (N.G.); (O.N.)
| | - Fulvio Ciriaco
- Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, I-70125 Bari, Italy;
| | - Orazio Nicolotti
- Dipartimento di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, I-70125 Bari, Italy; (N.G.); (O.N.)
| | - Hoon Kim
- Department of Pharmacy, Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea;
- Correspondence: (H.K.); (B.M.)
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, AIMS Health Sciences Campus, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi 682041, India; (V.P.K.); (A.S.N.)
- Correspondence: (H.K.); (B.M.)
| |
Collapse
|
8
|
Su D, Chai Y, Yang J, Wang X, Liu Y, Ma J, Tang X, Mishra C, Chandra SR, Yue W, Ai J. Lentivirus-Carried microRNA-195 Rescues Memory Deficits of Alzheimer's Disease Transgenic Mouse by Attenuating the Generation of Amyloid Plaques. Front Pharmacol 2021; 12:633805. [PMID: 33981225 PMCID: PMC8109030 DOI: 10.3389/fphar.2021.633805] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/04/2021] [Indexed: 11/13/2022] Open
Abstract
Although lots of new drugs are developed to treat Alzheimer's disease (AD), many clinical trials of monotherapy have failed to affect disease progression or symptoms compared with placebo. Recently, scientists believe that combination treatment is more promising than monotherapy. Previous studies found that microRNA-195 (miR-195) was down-regulated in the hippocampi and cortices of chronic brain hypoperfusion (CBH) rats and ApoE4(+/+) mice, and up-regulation of miR-195 can improve the declined cognitive function of ApoE4(+/+) mice and CBH rats by targeting multi-genes that are related to AD pathology, including amyloid precursor protein (APP) and β-site APP cleaving enzyme 1 (BACE1) genes. However, whether the gain-of-function of miR-195 could improve the impaired learning and memory ability of APP/PS1 transgenic mouse has not been reported. In this study, we stereotaxically injected lentiviral-carried miR-195 into the bilateral hippocampus of 4-month-old (4M) APP/PS1 mice. Morris water maze (MWM) was performed to detect the effect of miR-195 on the cognitive function of APP/PS1 mice after 1M, 2M, and 3M treatment. Western blot was used to detect the expression of APP, BACE1, and AT8. Aβ plagues were quantitatively assessed by immunofluorescence technique. We found that the declined cognitive phenotype of APP/PS1 mice occurred at the age of 6M, not at the age of 5M. And treatment of Lv-pre-miR-195 to APP/PS1 mice for 1M did not achieve any changes. Although Lv-pre-miR-195 treatment for 2M improved the declined learning ability of APP/PS1 mice, it did not affect the memory functions. However, Lv-pre-miR-195 treatment in APP/PS1 mice for 3M can effectively improve both the learning and memory ability of APP/PS1 mice at the age of 7M. Further studies demonstrated that gain-of-function of miR-195 by Lv-pre-miR-195 injection could inhibit the increased APP and AT8 expression of APP/PS1 mice but did not affect BACE1 level that was not changed in both hippocampus and cortex. By counting the number of Aβ plaques of different sizes, we found that Lv-pre-miR-195 treatment mainly reduced the number of Aβ plaques of less than 20 μm, but did not affect the number of Aβ plaques of greater than 50 μm. Taken together, the gain-of -function of miR-195 in the hippocampus can improve the cognition of APP/PS1 mice, probably by blocking the formation of Aβ plagues rather than clearing those that have already formed Aβ plagues.
Collapse
Affiliation(s)
- Dan Su
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, China
| | - Yani Chai
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, China
| | - Junkai Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, China
| | - Xuqiao Wang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, China
| | - Ying Liu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, China
| | - Jing Ma
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, China
| | - Xin Tang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, China
| | - Chandan Mishra
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, China
| | - Shah Ram Chandra
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, China
| | - Weidong Yue
- Department of the 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Ai
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, China
| |
Collapse
|
9
|
Sun W, Liu C, Wang Y, Zhou X, Sui W, Zhang Y, Zhang Q, Han J, Li X, Han F. Rhodiola crenulata protects against Alzheimer's disease in rats: A brain lipidomics study by Fourier-transform ion cyclotron resonance mass spectrometry coupled with high-performance reversed-phase liquid chromatography and hydrophilic interaction liquid chromatography. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e8969. [PMID: 33047398 DOI: 10.1002/rcm.8969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Alzheimer's disease (AD) is a chronic, severe, progressive neurodegenerative disorder associated with cognitive and memory impairment that ultimately causes death. Most approved drugs can only alleviate some of the symptoms of AD, but no interventions have been found that reverse the underlying disease mechanisms. Rhodiola crenulata extract (RCE) has been reported to alleviate AD symptoms in rats. However, its underlying mechanism of action is still unclear. METHODS A brain lipidomics study was conducted to investigate the protective effects of RCE against AD in rats to identify potential biomarkers of AD using Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) coupled with high-performance reversed-phase liquid chromatography (RPLC) and hydrophilic interaction liquid chromatography (HILIC). Differences in lipid metabolism profiles were evaluated using multivariate statistical analysis. Finally, the possible mechanism of action of RCE on AD was investigated by analysing metabolic pathways. RESULTS The RPLCHILIC/FT-ICR MS results showed 20 lipid components with significant differences between the control and model groups. After administration of RCE, the levels of 10 lipids in AD rats tended to shift toward reference levels. The pathway analysis revealed that the protective effect of RCE against AD might be related to regulation of glycerophospholipid metabolism. CONCLUSIONS This study provides a novel perspective on the potential intervention mechanism of RCE in the treatment of AD.
Collapse
Affiliation(s)
- Wei Sun
- Department of Biomedical Engineering School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chun Liu
- Hainan Institute for Drug Control, Haikou, 570311, China
| | - Yanan Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xing Zhou
- Hainan Institute of Materia Medica, Haikou, 570311, China
| | - Wenwen Sui
- Shenyang Harmony Health Medical Laboratory, 15 Buildings, 19 Wenhui Street, JinPenglong Hightech Industry Park, Shenyang, 110016, China
| | - Yu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Qingyu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Jing Han
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xintong Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Fei Han
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| |
Collapse
|
10
|
Celik I, Erol M, Temiz Arpaci O, Sezer Senol F, Erdogan Orhan I. Evaluation of Activity of Some 2,5-Disubstituted Benzoxazole Derivatives against Acetylcholinesterase, Butyrylcholinesterase and Tyrosinase: ADME Prediction, DFT and Comparative Molecular Docking Studies. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1737827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Meryem Erol
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Ozlem Temiz Arpaci
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Fatma Sezer Senol
- Faculty of Pharmacy, Department of Pharmacognosy, Gazi University, Ankara, Turkey
| | - Ilkay Erdogan Orhan
- Faculty of Pharmacy, Department of Pharmacognosy, Gazi University, Ankara, Turkey
| |
Collapse
|
11
|
Kumar V, Ojha PK, Saha A, Roy K. Exploring 2D-QSAR for prediction of beta-secretase 1 (BACE1) inhibitory activity against Alzheimer's disease. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2020; 31:87-133. [PMID: 31865778 DOI: 10.1080/1062936x.2019.1695226] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
We have developed a robust quantitative structure-activity relationship (QSAR) model employing a dataset of 98 heterocycle compounds to identify structural features responsible for BACE1 (beta-secretase 1) enzyme inhibition. We have used only 2D descriptors for model development purpose thus avoiding the conformational complications arising due to 3D geometry considerations. Following the strict Organization for Economic Co-operation and Development (OECD) guidelines, we have developed models using stepwise regression analysis followed by the best subset selection, while the final model was developed by partial least squares regression technique. The model was validated using various internationally accepted stringent validation parameters. From the insights obtained from the developed model, we have concluded that heteroatoms (nitrogen, oxygen, etc.) present within to an aromatic nucleus and the structural features such as hydrophobic, ring aromatic and hydrogen bond acceptor/donor are responsible for the enhancement of the BACE1 enzyme inhibitory activity. Moreover, we have performed the pharmacophore modelling to unveil the structural requirements for the inhibitory activity against the BACE1 enzyme. Furthermore, molecular docking studies were carried out to understand the molecular interactions involved in binding, and the results are then correlated with the requisite structural features obtained from the QSAR and pharmacophore models.
Collapse
Affiliation(s)
- V Kumar
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - P K Ojha
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - A Saha
- Department of Chemical Technology, University of Calcutta, Kolkata, India
| | - K Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
12
|
Ahmad SS, Khan S, Kamal MA, Wasi U. The Structure and Function of α, β and γ-Secretase as Therapeutic Target Enzymes in the Development of Alzheimer’s Disease: A Review. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:657-667. [DOI: 10.2174/1871527318666191011145941] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/20/2019] [Accepted: 09/04/2019] [Indexed: 12/22/2022]
Abstract
:Alzheimer's disease is a progressive neurodegenerative disorder that affects the central nervous system. There are several factors that cause AD, like, intracellular hyperphosphorylated Tau tangles, collection of extracellular Amyloid-β42 and generation of reactive oxygen species due to mitochondrial dysfunction. This review analyses the most active target of AD and both types of AD-like early-onset AD and late-onset AD. BACE1 is a β-secretase involved in the cleavage of amyloid precursor protein and the pathogenesis of Alzheimer's disease. The presenilin proteins play a critical role in the pathogenesis of Alzheimer malady by intervening the intramembranous cleavage of amyloid precursor protein and the generation of amyloid β. The two homologous proteins PS1 and PS2 speak to the reactant subunits of particular γ-secretase edifices that intercede an assortment of cellular processes. Natural products are common molecular platforms in drug development in AD. Many natural products are being tested in various animal model systems for their role as a potential therapeutic target in AD. Presently, there are a few theories clarifying the early mechanisms of AD pathogenesis. Recently, research advancements in the field of nanotechnology, which utilize macromolecular strategies to make drugs in nanoscale measurements, offer nanotechnology-based diagnostic tools and drug carriers which are highly sensitive for effective drug targeting in the treatment of Alzheimer’s disease.
Collapse
Affiliation(s)
- Syed S. Ahmad
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, India
| | - Shahzad Khan
- Wuhan University, School of Medicine, Wuhan, Hubei, China
| | - Mohammad A. Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Umam Wasi
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, India
| |
Collapse
|
13
|
Moussa-Pacha NM, Abdin SM, Omar HA, Alniss H, Al-Tel TH. BACE1 inhibitors: Current status and future directions in treating Alzheimer's disease. Med Res Rev 2019; 40:339-384. [PMID: 31347728 DOI: 10.1002/med.21622] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/22/2019] [Accepted: 06/13/2019] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is an irreversible, progressive neurodegenerative brain disorder with no current cure. One of the important therapeutic approaches of AD is the inhibition of β-site APP cleaving enzyme-1 (BACE1), which is involved in the rate-limiting step of the cleavage process of the amyloid precursor protein (APP) leading to the generation of the neurotoxic amyloid β (Aβ) protein after the γ-secretase completes its function. The produced insoluble Aβ aggregates lead to plaques deposition and neurodegeneration. BACE1 is, therefore, one of the attractive targets for the treatment of AD. This approach led to the development of potent BACE1 inhibitors, many of which were advanced to late stages in clinical trials. Nonetheless, the high failure rate of lead drug candidates targeting BACE1 brought to the forefront the need for finding new targets to uncover the mystery behind AD. In this review, we aim to discuss the most promising classes of BACE1 inhibitors with a description and analysis of their pharmacodynamic and pharmacokinetic parameters, with more focus on the lead drug candidates that reached late stages of clinical trials, such as MK8931, AZD-3293, JNJ-54861911, E2609, and CNP520. In addition, the manuscript discusses the safety concerns and insignificant physiological effects, which were highlighted for the most successful BACE1 inhibitors. Furthermore, the review demonstrates with increasing evidence that despite tremendous efforts and promising results conceived with BACE1 inhibitors, the latest studies suggest that their clinical use for treating Alzheimer's disease should be reconsidered. Finally, the review sheds light on alternative therapeutic options for targeting AD.
Collapse
Affiliation(s)
- Nour M Moussa-Pacha
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Shifaa M Abdin
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Hany A Omar
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,College of Pharmacy and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Hasan Alniss
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,College of Pharmacy and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,College of Pharmacy and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
14
|
Nanowired delivery of cerebrolysin with neprilysin and p-Tau antibodies induces superior neuroprotection in Alzheimer's disease. PROGRESS IN BRAIN RESEARCH 2019; 245:145-200. [DOI: 10.1016/bs.pbr.2019.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|