1
|
Bozzi D, Neuenschwander S, Cruz Dávalos DI, Sousa da Mota B, Schroeder H, Moreno-Mayar JV, Allentoft ME, Malaspinas AS. Towards predicting the geographical origin of ancient samples with metagenomic data. Sci Rep 2024; 14:21794. [PMID: 39294129 PMCID: PMC11411106 DOI: 10.1038/s41598-023-40246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/07/2023] [Indexed: 09/20/2024] Open
Abstract
Reconstructing the history-such as the place of birth and death-of an individual sample is a fundamental goal in ancient DNA (aDNA) studies. However, knowing the place of death can be particularly challenging when samples come from museum collections with incomplete or erroneous archives. While analyses of human DNA and isotope data can inform us about the ancestry of an individual and provide clues about where the person lived, they cannot specifically trace the place of death. Moreover, while ancient human DNA can be retrieved, a large fraction of the sequenced molecules in ancient DNA studies derive from exogenous DNA. This DNA-which is usually discarded in aDNA analyses-is constituted mostly by microbial DNA from soil-dwelling microorganisms that have colonized the buried remains post-mortem. In this study, we hypothesize that remains of individuals buried in the same or close geographic areas, exposed to similar microbial communities, could harbor more similar metagenomes. We propose to use metagenomic data from ancient samples' shotgun sequencing to locate the place of death of a given individual which can also help to solve cases of sample mislabeling. We used a k-mer-based approach to compute similarity scores between metagenomic samples from different locations and propose a method based on dimensionality reduction and logistic regression to assign a geographical origin to target samples. We apply our method to several public datasets and observe that individual samples from closer geographic locations tend to show higher similarities in their metagenomes compared to those of different origin, allowing good geographical predictions of test samples. Moreover, we observe that the genus Streptomyces commonly infiltrates ancient remains and represents a valuable biomarker to trace the samples' geographic origin. Our results provide a proof of concept and show how metagenomic data can also be used to shed light on the place of origin of ancient samples.
Collapse
Affiliation(s)
- Davide Bozzi
- Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland.
| | - Samuel Neuenschwander
- Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
- Vital-IT, SIB Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Diana Ivette Cruz Dávalos
- Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Bárbara Sousa da Mota
- Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Hannes Schroeder
- Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - J Víctor Moreno-Mayar
- Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Morten E Allentoft
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Anna-Sapfo Malaspinas
- Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland.
| |
Collapse
|
2
|
Hodgins HP, Chen P, Lobb B, Wei X, Tremblay BJM, Mansfield MJ, Lee VCY, Lee PG, Coffin J, Duggan AT, Dolphin AE, Renaud G, Dong M, Doxey AC. Ancient Clostridium DNA and variants of tetanus neurotoxins associated with human archaeological remains. Nat Commun 2023; 14:5475. [PMID: 37673908 PMCID: PMC10482840 DOI: 10.1038/s41467-023-41174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
The analysis of microbial genomes from human archaeological samples offers a historic snapshot of ancient pathogens and provides insights into the origins of modern infectious diseases. Here, we analyze metagenomic datasets from 38 human archaeological samples and identify bacterial genomic sequences related to modern-day Clostridium tetani, which produces the tetanus neurotoxin (TeNT) and causes the disease tetanus. These genomic assemblies had varying levels of completeness, and a subset of them displayed hallmarks of ancient DNA damage. Phylogenetic analyses revealed known C. tetani clades as well as potentially new Clostridium lineages closely related to C. tetani. The genomic assemblies encode 13 TeNT variants with unique substitution profiles, including a subgroup of TeNT variants found exclusively in ancient samples from South America. We experimentally tested a TeNT variant selected from an ancient Chilean mummy sample and found that it induced tetanus muscle paralysis in mice, with potency comparable to modern TeNT. Thus, our ancient DNA analysis identifies DNA from neurotoxigenic C. tetani in archaeological human samples, and a novel variant of TeNT that can cause disease in mammals.
Collapse
Affiliation(s)
- Harold P Hodgins
- Department of Biology and the Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, ON, Canada
| | - Pengsheng Chen
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery and Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Briallen Lobb
- Department of Biology and the Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, ON, Canada
| | - Xin Wei
- Department of Biology and the Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, ON, Canada
| | - Benjamin J M Tremblay
- Department of Biology and the Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, ON, Canada
| | - Michael J Mansfield
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Victoria C Y Lee
- Department of Biology and the Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, ON, Canada
| | - Pyung-Gang Lee
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery and Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Jeffrey Coffin
- Department of Anthropology, University of Waterloo, Waterloo, ON, Canada
| | - Ana T Duggan
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, Hamilton, ON, Canada
| | - Alexis E Dolphin
- Department of Anthropology, University of Waterloo, Waterloo, ON, Canada
| | - Gabriel Renaud
- Department of Health Technology, Section of Bioinformatics, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Boston, MA, USA.
- Department of Surgery and Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| | - Andrew C Doxey
- Department of Biology and the Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
3
|
Kambouris ME, Patrinos GP, Velegraki A, Manoussopoulos Y. Historical microbiology: researching past bioevents by integrating scholarship (re)sources with paleomicrobiology assets. Future Microbiol 2023; 18:681-693. [PMID: 37584528 DOI: 10.2217/fmb-2023-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
The analysis of past epidemics and pandemics, either spontaneous or of human origin, may revise the physical history of microbiota and create a temporal context in our understanding regarding pathogen attributes like virulence, evolution, transmission and disease dynamics. The data of high-tech scientific methods seem reliable, but their interpretation may still be biased when tackling events of the distant past. Such endeavors should be adjusted to other cognitive resources including historical accounts reporting the events of interest and references in alien medical cultures and terminologies; the latter may contextualize them differently from current practices. Thus 'historical microbiology' emerges. Validating such resources requires utmost care, as these may be susceptible to different biases regarding the interpretation of facts and phenomena; biases partly due to methodological limitations.
Collapse
Affiliation(s)
| | - George P Patrinos
- Department of Pharmacy, University of Patras, Rio Patras, 26504, Greece
- Department of Genetics & Genomics, College of Medicine & Health Sciences & Zayed Center of Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | | | - Yiannis Manoussopoulos
- Plant Protection Division of Patras, Institute of Industrial & Forage Plants, NEO & Amerikis, Patras, 26004, Greece
| |
Collapse
|
4
|
Boualam MA, Heitzmann A, Mousset F, Aboudharam G, Drancourt M, Pradines B. Use of rapid diagnostic tests for the detection of ancient malaria infections in dental pulp from the sixth century in Versailles, France. Malar J 2023; 22:151. [PMID: 37161537 PMCID: PMC10169320 DOI: 10.1186/s12936-023-04582-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/03/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Paleomicrobiological data have clarified that Plasmodium spp. was circulating in the past in southern European populations, which are now devoid of malaria. The aim of this study was to evaluate the efficacy of immunodetection and, more particularly, rapid diagnostic tests (RDT), in order to further assess Plasmodium infections in ancient northern European populations. METHODS A commercially available RDT, PALUTOP® + 4 OPTIMA, which is routinely used to detect malaria, was used to detect Plasmodium antigens from proteins recovered from ancient specimens extracted from 39 dental pulp samples. These samples were collected from 39 individuals who were buried in the sixth century, near the site of the current Palace of Versailles in France. Positive and negative controls were also used. Antigens detected were quantified using chemiluminescence imaging system analysis. RESULTS Plasmodium antigens were detected in 14/39 (35.9%) individuals, including Plasmodium vivax antigens in 11 individuals and Plasmodium falciparum antigens co-detected in two individuals, while Pan-Plasmodium antigens were detected in three individuals. Controls all yielded expected results. CONCLUSIONS The data reported here showed that RDTs are a suitable tool for detecting Plasmodium spp. antigens in ancient dental pulp samples, and demonstrated the existence of malaria in Versailles, France, in the sixth century. Plasmodium vivax, which is regarded as being responsible for an attenuated form of malaria and less deadly forms, was the most prevalent species. This illustrates, for the first time in ancient populations, co-infection with P. falciparum, bringing into question the climate-driven ecosystems prevailing at that time in the Versailles area.
Collapse
Affiliation(s)
- Mahmoud A Boualam
- IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France
- Aix-Marseille Univ, IRD, MEPHI, AP-HM, 19-21 Bd Jean Moulin, 13005, Marseille, France
| | - Annick Heitzmann
- Direction du Patrimoine et des Jardins, Château de Versailles, Place d'Armes, 78008, Versailles, France
| | - Florence Mousset
- Direction régionale des affaires culturelles d'Île-de-France, Service Régional de l'archéologie, 311 Rue Le Peletier, 75009, Paris, France
| | - Gérard Aboudharam
- IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France
- Aix-Marseille Univ, IRD, MEPHI, AP-HM, 19-21 Bd Jean Moulin, 13005, Marseille, France
- Ecole de Médecine Dentaire, Aix-Marseille Univ, Bd Jean Moulin, 13005, Marseille, France
| | - Michel Drancourt
- IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France
- Aix-Marseille Univ, IRD, MEPHI, AP-HM, 19-21 Bd Jean Moulin, 13005, Marseille, France
| | - Bruno Pradines
- IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France.
- Unité parasitologie et entomologie, Département microbiologie et maladies infectieuses, Institut de recherche biomédicale des armées, 19-21 Bd Jean Moulin, 13005, Marseille, France.
- Aix-Marseille Univ, IRD, SSA, AP-HM, VITROME, 19-21 Bd Jean Moulin, 13005, Marseille, France.
- Centre national de référence du paludisme, 19-21 Bd Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
5
|
Chiappelli F, Penhaskashi J. Permafrost Immunity. Bioinformation 2022; 18:734-738. [PMID: 37426494 PMCID: PMC10326340 DOI: 10.6026/97320630018734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 10/28/2023] Open
Abstract
Thawing permafrost is a serious and worrisome threat to the environment, because it releases trapped heavy metals and greenhouse gasses. Thawing permafrost is also a health threat because, in addition to releasing these noxious gasses, thawing permafrost may free novel and undiscovered antibiotic-resistant bacteria, viruses, fungi and parasites among a plethora of dormant pathogens. Our immune system is ill-prepared to counter these challenges, and will require significant adaptation, or allostasis, which can be subsumed under the generic term of permafrost immunity. Since most of the most gravely threatening pathogens released by thawing permafrost are likely to penetrate the organism through the oral cavity, permafrost immunity may first be identified in the oral mucosa.
Collapse
Affiliation(s)
| | - Jaden Penhaskashi
- West Valley Dental Implant Center, Encino, CA 91316 (minimallyinvasiveperio.com)
| |
Collapse
|
6
|
Antibiofilm and immunomodulatory resorbable nanofibrous filing for dental pulp regenerative procedures. Bioact Mater 2022; 16:173-186. [PMID: 35386316 PMCID: PMC8965695 DOI: 10.1016/j.bioactmat.2022.01.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/05/2022] [Accepted: 01/17/2022] [Indexed: 12/22/2022] Open
|
7
|
Abstract
During the two World Wars, Bartonella quintana was responsible for trench fever and is now recognised as an agent of re-emerging infection. Many reports have indicated widespread B. quintana exposure since the 1990s. In order to evaluate its prevalence in ancient populations, we used real-time PCR to detect B. quintana DNA in 400 teeth collected from 145 individuals dating from the 1st to 19th centuries in nine archaeological sites, with the presence of negative controls. Fisher’s exact test was used to compare the prevalence of B. quintana in civil and military populations. B. quintana DNA was confirmed in a total of 28/145 (19.3%) individuals, comprising 78 citizens and 67 soldiers, 20.1% and 17.9% of which were positive for B. quintana bacteraemia, respectively. This study analysed previous studies on these ancient samples and showed that the presence of B. quintana infection followed the course of time in human history; a total of 14/15 sites from five European countries had a positive prevalence. The positive rate in soldiers was higher than those of civilians, with 20% and 18.8%, respectively, in the 18th and 19th centuries, but the difference in frequency was not significant. These results confirmed the role of dental pulp in diagnosing B. quintana bacteraemia in ancient populations and showed the incidence of B. quintana in both civilians and soldiers.
Collapse
|
8
|
Mai BHA, Drancourt M, Aboudharam G. Ancient dental pulp: Masterpiece tissue for paleomicrobiology. Mol Genet Genomic Med 2020; 8:e1202. [PMID: 32233019 PMCID: PMC7284042 DOI: 10.1002/mgg3.1202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022] Open
Abstract
Introduction Dental pulp with special structure has become a good reference sample in paleomicrobiology‐related blood‐borne diseases, many pathogens were detected by different methods based on the diagnosis of nucleic acids and proteins. Objectives This review aims to propose the preparation process from ancient teeth collection to organic molecule extraction of dental pulp and summary, analyze the methods that have been applied to detect septicemic pathogens through ancient dental pulps during the past 20 years following the first detection of an ancient microbe. Methods The papers used in this review with two main objectives were obtained from PubMed and Google scholar with combining keywords: “ancient,” “dental pulp,” “teeth,” “anatomy,” “structure,” “collection,” “preservation,” “selection,” “photography,” “radiography,” “contamination,” “decontamination,” “DNA,” “protein,” “extraction,” “bone,” “paleomicrobiology,” “bacteria,” “virus,” “pathogen,” “molecular biology,” “proteomics,” “PCR,” “MALDI‐TOF,” “LC/MS,” “ELISA,” “immunology,” “immunochromatography,” “genome,” “microbiome,” “metagenomics.” Results The analysis of ancient dental pulp should have a careful preparation process with many different steps to give highly accurate results, each step complies with the rules in archaeology and paleomicrobiology. After the collection of organic molecules from dental pulp, they were investigated for pathogen identification based on the analysis of DNA and protein. Actually, DNA approach takes a principal role in diagnosis while the protein approach is more and more used. A total of seven techniques was used and ten bacteria (Yersinia pestis, Bartonella quintana, Salmonella enterica serovar Typhi, Salmonella enterica serovar Paratyphi C, Mycobacterium leprae, Mycobacterium tuberculosis, Rickettsia prowazeki, Staphylococcus aureus, Borrelia recurrentis, Bartonella henselae) and one virus (Anelloviridae) were identified. Y. pestis had the most published in quantity and all methods were investigated for this pathogen, S. aureus and B. recurrentis were identified by three different methods and others only by one. The combining methods interestingly increase the positive rate with ELISA, PCR and iPCR in Yersinia pestis diagnosis. Twenty‐seven ancient genomes of Y. pestis and one ancient genome of B. recurrentis were reconstructed. Comparing to the ancient bone, ancient teeth showed more advantage in septicemic diagnosis. Beside pathogen identification, ancient pulp help to distinguish species. Conclusions Dental pulp with specific tissue is a suitable sample for detection of the blood infection in the past through DNA and protein identification with the correct preparation process, furthermore, it helps to more understand the pathogens of historic diseases and epidemics.
Collapse
Affiliation(s)
- Ba Hoang Anh Mai
- Aix-Marseille Université, IRD, MEPHI, IHU-Méditerranée Infection, Marseille, France.,Hue University of Medicine and Pharmacy, Thua Thien Hue, Vietnam
| | - Michel Drancourt
- Aix-Marseille Université, IRD, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Gérard Aboudharam
- Aix-Marseille Université, IRD, MEPHI, IHU-Méditerranée Infection, Marseille, France.,UFR Odontologie, Aix-Marseille Université, Marseille, France
| |
Collapse
|