1
|
Gippert S, Wagner M, Brunet T, Berruti R, Brugger M, Schwaibold EMC, Haack TB, Hoffmann GF, Bettendorf M, Choukair D. Exome sequencing (ES) of a pediatric cohort with chronic endocrine diseases: a single-center study (within the framework of the TRANSLATE-NAMSE project). Endocrine 2024; 85:444-453. [PMID: 37940764 PMCID: PMC11246252 DOI: 10.1007/s12020-023-03581-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Endocrine disorders are heterogeneous and include a significant number of rare monogenic diseases. METHODS We performed exome sequencing (ES) in 106 children recruited from a single center within the TRANSLATE‑NAMSE project. They were categorized into subgroups: proportionate short stature (PSS), disproportionate short stature (DSS), hypopituitarism (H), differences in sexual development (DSD), syndromic diseases (SD) and others. RESULTS The overall diagnostic yield was 34.9% (n = 37/106), including 5 patients with variants in candidate genes, which have contributed to collaborations to identify gene-disease associations. The diagnostic yield varied significantly between subgroups: PSS: 16.6% (1/6); DSS: 18.8% (3/16); H: 17.1% (6/35); DSD: 37.5% (3/8); SD: 66.6% (22/33); others: 25% (2/8). Confirmed diagnoses included 75% ultrarare diseases. Three patients harbored more than one disease-causing variant, resulting in dual diagnoses. CONCLUSIONS ES is an effective tool for genetic diagnosis in pediatric patients with complex endocrine diseases. An accurate phenotypic description, including comprehensive endocrine diagnostics, as well as the evaluation of variants in multidisciplinary case conferences involving geneticists, are necessary for personalized diagnostic care. Here, we illustrate the broad spectrum of genetic endocrinopathies that have led to the initiation of specific treatment, surveillance, and family counseling.
Collapse
Affiliation(s)
- Sebastian Gippert
- Division of Pediatric Endocrinology and Diabetes, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany and Center for Rare Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Matias Wagner
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Institute for Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Theresa Brunet
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Pediatric Neurology and Developmental Medicine, Hauner Children's Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Riccardo Berruti
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Melanie Brugger
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | | | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tübingen, Germany and Centre for Rare Diseases, University of Tuebingen, Tübingen, Germany
| | - Georg F Hoffmann
- Division of Pediatric Endocrinology and Diabetes, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany and Center for Rare Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Markus Bettendorf
- Division of Pediatric Endocrinology and Diabetes, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany and Center for Rare Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Daniela Choukair
- Division of Pediatric Endocrinology and Diabetes, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany and Center for Rare Diseases, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
2
|
Radziwonik-Fraczyk W, Elert-Dobkowska E, Karpinski M, Pilch J, Ziora-Jakutowicz K, Kubalska J, Szczesniak D, Stepniak I, Zaremba J, Sulek A. Next generation sequencing panel as an effective approach to genetic testing in patients with a highly variable phenotype of neuromuscular disorders. Neurogenetics 2024; 25:233-247. [PMID: 38758368 PMCID: PMC11249508 DOI: 10.1007/s10048-024-00762-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
Neuromuscular disorders (NMDs) include a wide range of diseases affecting the peripheral nervous system. The genetic diagnoses are increasingly obtained with using the next generation sequencing (NGS). We applied the custom-design targeted NGS panel including 89 genes, together with genotyping and multiplex ligation-dependent probe amplification (MLPA) to identify a genetic spectrum of NMDs in 52 Polish patients. As a result, the genetic diagnosis was determined by NGS panel in 29 patients so its diagnostic utility is estimated at 55.8%. The most pathogenic variants were found in CLCN1, followed by CAPN3, SCN4A, and SGCA genes. Genotyping of myotonic dystrophy type 1 and 2 (DM1 and DM2) as a secondary approach has been performed. The co-occurrence of CAPN3 and CNBP mutations in one patient as well as DYSF and CNBP mutations in another suggests possibly more complex inheritance as well as expression of a phenotype. In 7 individuals with single nucleotide variant found in NGS testing, the MLPA of the CAPN3 gene was performed detecting the deletion encompassing exons 2-8 in the CAPN3 gene in one patient, confirming recessive limb-girdle muscular dystrophy type 1 (LGMDR1). Thirty patients obtained a genetic diagnosis (57.7%) after using NGS testing, genotyping and MLPA analysis. The study allowed for the identification of 27 known and 4 novel pathogenic/likely pathogenic variants and variants of uncertain significance (VUS) associated with NMDs.In conclusion, the diagnostic approach with diverse molecular techniques enables to broaden the mutational spectrum and maximizes the diagnostic yield. Furthermore, the co-occurrence of DM2 and LGMD has been detected in 2 individuals.
Collapse
Affiliation(s)
| | | | | | - Jacek Pilch
- Department of Pediatric Neurology, Medical University of Silesia, Katowice, Poland
| | | | - Jolanta Kubalska
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Dominika Szczesniak
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Iwona Stepniak
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Jacek Zaremba
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Anna Sulek
- Faculty of Medicine, Lazarski University, Warsaw, Poland.
| |
Collapse
|
3
|
Piñeros-Fernández MC, Morte B, García-Giménez JL. Utility of exome sequencing for the diagnosis of pediatric-onset neuromuscular diseases beyond diagnostic yield: a narrative review. Neurol Sci 2024; 45:1455-1464. [PMID: 37989827 PMCID: PMC10942921 DOI: 10.1007/s10072-023-07210-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023]
Abstract
Diagnosis of neuromuscular diseases (NMD) can be challenging because of the heterogeneity of this group of diseases. This review aimed to describe the diagnostic yield of whole exome sequencing (WES) for pediatric-onset neuromuscular disease diagnosis, as well as other benefits of this approach in patient management since WES can contribute to appropriate treatment selection in NMD patients. WES increases the possibility of reaching a conclusive genetic diagnosis when other technologies have failed and even exploring new genes not previously associated with a specific NMD. Moreover, this strategy can be useful when a dual diagnosis is suspected in complex congenital anomalies and undiagnosed cases.
Collapse
Affiliation(s)
- Martha Cecilia Piñeros-Fernández
- Servicio de Neurología Pediátrica, Hospital Pediátrico, Fundación Cardio Infantil-LaCardio, Bogotá, Colombia
- Unidad Pediátrica, Los Cobos Medical Center, Bogotá, Colombia
- Consulta Externa Especializada, Virrey Solís IPS, Bogotá, Colombia
| | - Beatriz Morte
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - José Luis García-Giménez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
- Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain.
- Departamento de Fisiología, Facultad de Medicina y Odontología, Universitat de València, València, Spain.
| |
Collapse
|
4
|
Tian Y, Xing J, Shi Y, Yuan E. Exploring the relationship between IGHMBP2 gene mutations and spinal muscular atrophy with respiratory distress type 1 and Charcot-Marie-Tooth disease type 2S: a systematic review. Front Neurosci 2023; 17:1252075. [PMID: 38046662 PMCID: PMC10690808 DOI: 10.3389/fnins.2023.1252075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
Background IGHMBP2 is a crucial gene for the development and maintenance of the nervous system, especially in the survival of motor neurons. Mutations in this gene have been associated with spinal muscular atrophy with respiratory distress type 1 (SMARD1) and Charcot-Marie-Tooth disease type 2S (CMT2S). Methods We conducted a systematic literature search using the PubMed database to identify studies published up to April 1st, 2023, that investigated the association between IGHMBP2 mutations and SMARD1 or CMT2S. We compared the non-truncating mutations and truncating mutations of the IGHMBP2 gene and selected high-frequency mutations of the IGHMBP2 gene. Results We identified 52 articles that investigated the association between IGHMBP2 mutations and SMARD1/CMT2S. We found 6 hotspot mutations of the IGHMBP2 gene. The truncating mutations in trans were all associated with SMARD1. Conclusion This study provides evidence that the complete LOF mechanism of the IGHMBP2 gene defect may be an important cause of SMARD1.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinfang Xing
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Shi
- Screening Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Enwu Yuan
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Meyer AP, Ma J, Brock G, Hashimoto S, Cottrell CE, Mathew M, Hunter JM, Leung ML, Corsmeier D, Jayaraman V, Waldrop MA, Flanigan KM. Exome sequencing in the pediatric neuromuscular clinic leads to more frequent diagnosis of both neuromuscular and neurodevelopmental conditions. Muscle Nerve 2023; 68:833-840. [PMID: 37789688 DOI: 10.1002/mus.27976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 10/05/2023]
Abstract
INTRODUCTION/AIMS Exome sequencing (ES) has proven to be a valuable diagnostic tool for neuromuscular disorders, which often pose a diagnostic challenge. The aims of this study were to investigate the clinical outcomes associated with utilization of ES in the pediatric neuromuscular clinic and to determine if specific phenotypic features or abnormal neurodiagnostic tests were predictive of a diagnostic result. METHODS This was a retrospective medical record review of 76 pediatric neuromuscular clinic patients who underwent ES. Based upon clinical assessment prior to ES, patients were divided into two groups: affected by neuromuscular (n = 53) or non-neuromuscular (n = 23) syndromes. RESULTS A diagnosis was made in 28/76 (36.8%), with 29 unique disorders identified. In the neuromuscular group, a neuromuscular condition was confirmed in 78% of those receiving a genetic diagnosis. Early age of symptom onset was associated with a significantly higher diagnostic yield. The most common reason neuromuscular diagnoses were not detected on prior testing was due to causative genes not being present on disease-specific panels. Changes to medical care were made in 57% of individuals receiving a diagnosis on ES. DISCUSSION These data further support ES as a powerful diagnostic tool in the pediatric neuromuscular clinic and highlight the advantages of ES over gene panels, including the ability to identify diagnoses regardless of etiology, identify genes newly associated with disease, and identify multiple confounding diagnoses. Rapid and accurate diagnosis by ES can not only end the patient's diagnostic odyssey, but often impacts patients' medical management and genetic counseling of families.
Collapse
Affiliation(s)
- Alayne P Meyer
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Jianing Ma
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - Guy Brock
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - Sayaka Hashimoto
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Catherine E Cottrell
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Mariam Mathew
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Jesse M Hunter
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Marco L Leung
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Don Corsmeier
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Vijayakumar Jayaraman
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Megan A Waldrop
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Department of Neurology, Nationwide Children's Hospital & The Ohio State University, Columbus, Ohio, USA
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kevin M Flanigan
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Department of Neurology, Nationwide Children's Hospital & The Ohio State University, Columbus, Ohio, USA
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
6
|
Ek M, Nilsson D, Engvall M, Malmgren H, Thonberg H, Pettersson M, Anderlid BM, Hammarsjö A, Helgadottir HT, Arnardottir S, Naess K, Nennesmo I, Paucar M, Hjartarson HT, Press R, Solders G, Sejersen T, Lindstrand A, Kvarnung M. Genome sequencing with comprehensive variant calling identifies structural variants and repeat expansions in a large fraction of individuals with ataxia and/or neuromuscular disorders. Front Neurol 2023; 14:1170005. [PMID: 37273706 PMCID: PMC10234573 DOI: 10.3389/fneur.2023.1170005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/21/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction Neuromuscular disorders (NMDs) have a heterogeneous etiology. A genetic diagnosis is key to personalized healthcare and access to targeted treatment for the affected individuals. Methods In this study, 861 patients with NMDs were analyzed with genome sequencing and comprehensive variant calling including single nucleotide variants, small insertions/deletions (SNVs/INDELs), and structural variants (SVs) in a panel of 895 NMD genes, as well as short tandem repeat expansions (STRs) at 28 loci. In addition, for unsolved cases with an unspecific clinical presentation, the analysis of a panel with OMIM disease genes was added. Results In the cohort, 27% (232/861) of the patients harbored pathogenic variants, of which STRs and SVs accounted for one-third of the patients (71/232). The variants were found in 107 different NMD genes. Furthermore, 18 pediatric patients harbored pathogenic variants in non-NMD genes. Discussion Our results highlight that for children with unspecific hypotonia, a genome-wide analysis rather than a disease-based gene panel should be considered as a diagnostic approach. More importantly, our results clearly show that it is crucial to include STR- and SV-analyses in the diagnostics of patients with neuromuscular disorders.
Collapse
Affiliation(s)
- Marlene Ek
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Science for Life Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet Science Park, Solna, Sweden
| | - Martin Engvall
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Centre for Inherited Metabolic Diseases, Stockholm, Sweden
| | - Helena Malmgren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Håkan Thonberg
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Pettersson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Hammarsjö
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Hafdis T. Helgadottir
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | | | - Karin Naess
- Karolinska University Hospital, Centre for Inherited Metabolic Diseases, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Inger Nennesmo
- Department of Oncology-Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Paucar
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Helgi Thor Hjartarson
- Department of Neuropediatrics, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Rayomand Press
- Department of Clinical Neurophysiology, Karolinska University Hospital, Stockholm, Sweden
| | - Göran Solders
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neurophysiology, Karolinska University Hospital, Stockholm, Sweden
| | - Thomas Sejersen
- Department of Neuropediatrics, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Malin Kvarnung
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Wiener EK, Buchanan J, Krause A, Lombard Z. Retrospective file review shows limited genetic services fails most patients - an argument for the implementation of exome sequencing as a first-tier test in resource-constraint settings. Orphanet J Rare Dis 2023; 18:81. [PMID: 37046271 PMCID: PMC10091645 DOI: 10.1186/s13023-023-02642-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/12/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Exome sequencing is recommended as a first-line investigation for patients with a developmental delay or intellectual disability. This approach has not been implemented in most resource-constraint settings, including Africa, due to the high cost of implementation. Instead, patients have limited access to services and testing options. Here, we evaluate the effectiveness of a limited genetic testing strategy and contrast the findings to a conceivable outcome if exome sequencing were available instead. RESULTS A retrospective audit of 934 patient files presenting to a medical genetics clinic in South Africa showed that 83% of patients presented with developmental delay as a clinical feature. Patients could be divided into three groups, representing distinct diagnostic pathways. Patient Group A (18%; mean test cost $131) were confirmed with aneuploidies, following a simple, inexpensive test. Patient Group B (25%; mean test cost $140) presented with clinically recognizable conditions but only 39% received a genetic diagnostic confirmation due to limited testing options. Patient Group C - the largest group (57%; mean test cost $337) - presented with heterogenous conditions and DD, and 92% remained undiagnosed after limited available testing was performed. CONCLUSIONS Patients with DD are the largest group of patients seen in medical genetics clinics in South Africa. When clinical features are not distinct, limited testing options drastically restricts diagnostic yield. A cost- and time analysis shows most patients would benefit from first-line exome sequencing, reducing their individual diagnostic odysseys.
Collapse
Affiliation(s)
- Emma K Wiener
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - James Buchanan
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Amanda Krause
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Zané Lombard
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
8
|
Ng KWP, Chin HL, Chin AXY, Goh DLM. Using gene panels in the diagnosis of neuromuscular disorders: A mini-review. Front Neurol 2022; 13:997551. [PMID: 36313509 PMCID: PMC9602396 DOI: 10.3389/fneur.2022.997551] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/21/2022] [Indexed: 09/26/2023] Open
Abstract
The diagnosis of inherited neuromuscular disorders is challenging due to their genetic and phenotypic variability. Traditionally, neurophysiology and histopathology were primarily used in the initial diagnostic approach to these conditions. Sanger sequencing for molecular diagnosis was less frequently utilized as its application was a time-consuming and cost-intensive process. The advent and accessibility of next-generation sequencing (NGS) has revolutionized the evaluation process of genetically heterogenous neuromuscular disorders. Current NGS diagnostic testing approaches include gene panels, whole exome sequencing (WES), and whole genome sequencing (WGS). Gene panels are often the most widely used, being more accessible due to availability and affordability. In this mini-review, we describe the benefits and risks of clinical genetic testing. We also discuss the utility, benefits, challenges, and limitations of using gene panels in the evaluation of neuromuscular disorders.
Collapse
Affiliation(s)
- Kay W. P. Ng
- Division of Neurology, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Hui-Lin Chin
- Division of Genetics and Metabolism, Department of Paediatrics, Khoo Teck Puat - National University Children's Medical Institute, National University Hospital, Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amanda X. Y. Chin
- Division of Neurology, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Denise Li-Meng Goh
- Division of Genetics and Metabolism, Department of Paediatrics, Khoo Teck Puat - National University Children's Medical Institute, National University Hospital, Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
9
|
Wortmann SB, Oud MM, Alders M, Coene KLM, van der Crabben SN, Feichtinger RG, Garanto A, Hoischen A, Langeveld M, Lefeber D, Mayr JA, Ockeloen CW, Prokisch H, Rodenburg R, Waterham HR, Wevers RA, van de Warrenburg BPC, Willemsen MAAP, Wolf NI, Vissers LELM, van Karnebeek CDM. How to proceed after "negative" exome: A review on genetic diagnostics, limitations, challenges, and emerging new multiomics techniques. J Inherit Metab Dis 2022; 45:663-681. [PMID: 35506430 PMCID: PMC9539960 DOI: 10.1002/jimd.12507] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/28/2022]
Abstract
Exome sequencing (ES) in the clinical setting of inborn metabolic diseases (IMDs) has created tremendous improvement in achieving an accurate and timely molecular diagnosis for a greater number of patients, but it still leaves the majority of patients without a diagnosis. In parallel, (personalized) treatment strategies are increasingly available, but this requires the availability of a molecular diagnosis. IMDs comprise an expanding field with the ongoing identification of novel disease genes and the recognition of multiple inheritance patterns, mosaicism, variable penetrance, and expressivity for known disease genes. The analysis of trio ES is preferred over singleton ES as information on the allelic origin (paternal, maternal, "de novo") reduces the number of variants that require interpretation. All ES data and interpretation strategies should be exploited including CNV and mitochondrial DNA analysis. The constant advancements in available techniques and knowledge necessitate the close exchange of clinicians and molecular geneticists about genotypes and phenotypes, as well as knowledge of the challenges and pitfalls of ES to initiate proper further diagnostic steps. Functional analyses (transcriptomics, proteomics, and metabolomics) can be applied to characterize and validate the impact of identified variants, or to guide the genomic search for a diagnosis in unsolved cases. Future diagnostic techniques (genome sequencing [GS], optical genome mapping, long-read sequencing, and epigenetic profiling) will further enhance the diagnostic yield. We provide an overview of the challenges and limitations inherent to ES followed by an outline of solutions and a clinical checklist, focused on establishing a diagnosis to eventually achieve (personalized) treatment.
Collapse
Affiliation(s)
- Saskia B. Wortmann
- Radboud Center for Mitochondrial and Metabolic Medicine, Department of PediatricsAmalia Children's Hospital, Radboud University Medical CenterNijmegenThe Netherlands
- University Children's Hospital, Paracelsus Medical UniversitySalzburgAustria
| | - Machteld M. Oud
- United for Metabolic DiseasesAmsterdamThe Netherlands
- Department of Human GeneticsDonders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegenThe Netherlands
| | - Mariëlle Alders
- Department of Human GeneticsAmsterdam UMC, University of Amsterdam, Amsterdam Reproduction and Development Research InstituteAmsterdamThe Netherlands
| | - Karlien L. M. Coene
- United for Metabolic DiseasesAmsterdamThe Netherlands
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Saskia N. van der Crabben
- Department of Human GeneticsAmsterdam University Medical Centers, University of AmsterdamAmsterdamThe Netherlands
| | - René G. Feichtinger
- University Children's Hospital, Paracelsus Medical UniversitySalzburgAustria
| | - Alejandro Garanto
- Radboud Center for Mitochondrial and Metabolic Medicine, Department of PediatricsAmalia Children's Hospital, Radboud University Medical CenterNijmegenThe Netherlands
- Department of PediatricsAmalia Children's Hospital, Radboud Institute for Molecular LifesciencesNijmegenThe Netherlands
- Department of Human GeneticsRadboud Institute for Molecular LifesciencesNijmegenThe Netherlands
| | - Alex Hoischen
- Department of Human Genetics, Department of Internal Medicine and Radboud Center for Infectious DiseasesRadboud Institute of Medical Life Sciences, Radboud University Medical CenterNijmegenthe Netherlands
| | - Mirjam Langeveld
- Department of Endocrinology and MetabolismAmsterdam University Medical Centers, location AMC, University of AmsterdamAmsterdamThe Netherlands
| | - Dirk Lefeber
- United for Metabolic DiseasesAmsterdamThe Netherlands
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CenterNijmegenThe Netherlands
- Department of Neurology, Donders Institute for BrainCognition and Behaviour, Radboud University Medical CenterNijmegenThe Netherlands
| | - Johannes A. Mayr
- University Children's Hospital, Paracelsus Medical UniversitySalzburgAustria
| | - Charlotte W. Ockeloen
- Department of Human GeneticsRadboud Institute for Molecular LifesciencesNijmegenThe Netherlands
| | - Holger Prokisch
- School of MedicineInstitute of Human Genetics, Technical University Munich and Institute of NeurogenomicsNeuherbergGermany
| | - Richard Rodenburg
- Radboud Center for Mitochondrial and Metabolic MedicineTranslational Metabolic Laboratory, Department of Pediatrics, Radboud University Medical CenterNijmegenThe Netherlands
| | - Hans R. Waterham
- United for Metabolic DiseasesAmsterdamThe Netherlands
- Laboratory Genetic Metabolic Diseases, Department of Clinical ChemistryAmsterdam University Medical Centers, location AMC, University of AmsterdamAmsterdamThe Netherlands
| | - Ron A. Wevers
- United for Metabolic DiseasesAmsterdamThe Netherlands
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Bart P. C. van de Warrenburg
- Department of Neurology, Donders Institute for BrainCognition and Behaviour, Radboud University Medical CenterNijmegenThe Netherlands
| | - Michel A. A. P. Willemsen
- Departments of Pediatric Neurology and PediatricsAmalia Children's Hospital, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical CenterNijmegenThe Netherlands
| | - Nicole I. Wolf
- Amsterdam Leukodystrophy Center, Department of Child NeurologyEmma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Lisenka E. L. M. Vissers
- Department of Human GeneticsDonders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegenThe Netherlands
| | - Clara D. M. van Karnebeek
- Radboud Center for Mitochondrial and Metabolic Medicine, Department of PediatricsAmalia Children's Hospital, Radboud University Medical CenterNijmegenThe Netherlands
- United for Metabolic DiseasesAmsterdamThe Netherlands
- Department of Human GeneticsAmsterdam UMC, University of Amsterdam, Amsterdam Reproduction and Development Research InstituteAmsterdamThe Netherlands
- Department of Pediatrics, Emma Center for Personalized MedicineAmsterdam University Medical Centers, Amsterdam, Amsterdam Genetics Endocrinology Metabolism Research Institute, University of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
10
|
Chen B, Zhang Z, Chen N, Li W, Pan H, Wang X, Ren Y, Shi Y, Tai H, Niu S. Two Novel Myelin Protein Zero Mutations in a Group of Chinese Patients. Front Neurol 2021; 12:734515. [PMID: 34925207 PMCID: PMC8674198 DOI: 10.3389/fneur.2021.734515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Mutations in the myelin protein zero gene are responsible for the autosomal dominant Charcot-Marie-Tooth disease (CMT). We summarized the genetic and clinical features of six unrelated Chinese families and the genetic spectrum of Chinese patients with myelin protein zero (MPZ) mutations. Our study reports data from a group of Chinese patients consisting of five males and one female with the age of disease onset ranging from 16 to 55 years. The initial symptom in all the patients was the weakness of the lower limbs. Electrophysiological presentations suggested chronic progressive sensorimotor demyelinating polyneuropathy. Overall six mutations were identified in the cohort, including four known mutations [c.103G>T (p.D35Y), c.233C>T (p.S78L), c.293G>A (p.R98H), and c.449-1G>T], and two novel mutations [c.67+4A>G with a mild CMT1B phenotype, and (c.79delG) p.A27fs with a rapidly progressive CMT1B phenotype]. According to the literature review, there are 35 Chinese families with 28 different MPZ mutations. The MPZ mutational spectrum in Chinese patients is very heterogeneous and differs from that of Japanese and Korean individuals, although they do share several common hot spot mutations.
Collapse
Affiliation(s)
- Bin Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zaiqiang Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Na Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wei Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Monogenic Disease Diagnosis Center for Neurological Disorders, Precision Medicine Research Center for Neurological Disorders, Beijing, China
| | - Hua Pan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xingao Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yuting Ren
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yuzhi Shi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hongfei Tai
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Songtao Niu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
11
|
Zhang S, Lei L, Fan Z, Su S, Duo J, Luan Q, Lu Y, Di L, Wang M, Da Y. Delayed Respiratory Insufficiency and Extramuscular Abnormalities in Selenoprotein N-Related Myopathies. Front Neurol 2021; 12:766942. [PMID: 34867752 PMCID: PMC8639696 DOI: 10.3389/fneur.2021.766942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/15/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Selenoprotein N-related myopathies (SEPN1-RMs) are a subset of congenital myopathies caused by mutations of Selenoprotein N gene (SELENON or SEPN1). Clinical phenotype is considered as highly consistent and little attention has been given to the extramuscular abnormalities. Methods: We reported clinical, histopathological, and genetic features of four Chinese patients with SEPN1-RM and performed literature review on delayed respiratory insufficiency and extramuscular involvement. Results: A total of four patients exhibited both the typical and atypical clinical features of SEPN1-RM. The classical manifestations included axial and limb girdle weakness, spinal rigidity, scoliosis, respiratory insufficiency, and multiminicore morphological lesions. However, high interindividual variability was noticed on disease severity, especially the onset of respiratory involvement. Two adult patients postponed respiratory insufficiency to the third decade of life, while two juvenile patients manifested early hypoventilation with puberty exacerbation. As atypical features, extramuscular involvement of weight gain, subcutaneous adipose tissue accumulation, intellectual disability, and mild cardiac changes were observed. Molecular findings revealed three novel mutations of SELENON such as c.1286_1288 del CCT, c.1078_1086dupGGCTACATA, and c.785 G>C. Ten cases with delayed respiratory insufficiency were identified from previous publications. A total of 18 studies described extramuscular abnormalities including joint contractures, alterations of body mass index (BMI), mild cardiac changes, and insulin resistance. Intellectual impairment was extremely rare. Conclusion: SEPN1-RM should be considered as a differential diagnosis in adult patients with delayed respiratory involvement. Extramuscular involvement such as body composition alterations deserves more clinical attention. The novel mutations of SELENON widened the genetic spectrum of patients with SEPN1-RM.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yuwei Da
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Rzepnikowska W, Kochański A. Models for IGHMBP2-associated diseases: an overview and a roadmap for the future. Neuromuscul Disord 2021; 31:1266-1278. [PMID: 34785121 DOI: 10.1016/j.nmd.2021.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/16/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022]
Abstract
Models are practical tools with which to establish the basic aspects of a diseases. They allow systematic research into the significance of mutations, of cellular and molecular pathomechanisms, of therapeutic options and of functions of diseases associated proteins. Thus, disease models are an integral part of the study of enigmatic proteins such as immunoglobulin mu-binding protein 2 (IGHMBP2). IGHMBP2 has been well defined as a helicase, however there is little known about its role in cellular processes. Notably, it is unclear why changes in such an abundant protein lead to specific neuronal disorders including spinal muscular atrophy with respiratory distress type 1 (SMARD1) and Charcot-Marie-Tooth type 2S (CMT2S). SMARD1 is caused by a loss of motor neurons in the spinal cord that results in muscle atrophy and is accompanied by rapid respiratory failure. In contrast, CMT2S manifests as a severe neuropathy, but typically without critical breathing problems. Here, we present the clinical manifestation of IGHMBP2 mutations, function of protein and models that may be used for the study of IGHMBP2-associated disorders. We highlight the strengths and weaknesses of specific models and discuss the orthologs of IGHMBP2 that are found in different systems with regard to their similarity to human IGHMBP2.
Collapse
Affiliation(s)
- Weronika Rzepnikowska
- Neuromuscular Unit, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw 02-106, Poland.
| | - Andrzej Kochański
- Neuromuscular Unit, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw 02-106, Poland
| |
Collapse
|
13
|
Babić Božović I, Maver A, Leonardis L, Meznaric M, Osredkar D, Peterlin B. Diagnostic yield of exome sequencing in myopathies: Experience of a Slovenian tertiary centre. PLoS One 2021; 16:e0252953. [PMID: 34106991 PMCID: PMC8189452 DOI: 10.1371/journal.pone.0252953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/25/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Our aim was to present the experience of systematic, routine use of next generation sequencing (NGS) in clinical diagnostics of myopathies. METHODS Exome sequencing was performed on patients with high risk for inherited myopathy, which were selected based on the history of the disease, family history, clinical presentation, and diagnostic workup. Exome target capture was performed, followed by sequencing on HiSeq 2500 or MiSeq platforms. Data analysis was performed using internally developed bioinformatic pipeline. RESULTS The study comprised 86 patients, including 22 paediatric cases (26%). The largest group were patients referred with an unspecified myopathy (47%), due to non-specific or incomplete clinical and laboratory findings, followed by congenital myopathies (22%) and muscular dystrophies (22%), congenital myotonias (6%), and mitochondrial myopathies (3%). Altogether, a diagnostic yield was 52%; a high diagnostic rate was present in paediatric patients (64%), while in patients with unspecified myopathies the rate was 35%. We found 51 pathogenic/likely pathogenic variants in 23 genes and two pathogenic copy number variations. CONCLUSION Our results provide evidence that phenotype driven exome analysis diagnostic approach facilitates the diagnostic rate of complex, heterogeneous disorders, such as myopathies, particularly in paediatric patients and patients with unspecified myopathies.
Collapse
Affiliation(s)
- Ivana Babić Božović
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Aleš Maver
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Lea Leonardis
- Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Department of Neurology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Marija Meznaric
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Damjan Osredkar
- Department of Paediatric Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Borut Peterlin
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
14
|
Tsang MHY, Chiu ATG, Kwong BMH, Liang R, Yu MHC, Yeung KS, Ho WHL, Mak CCY, Leung GKC, Pei SLC, Fung JLF, Wong VCN, Muntoni F, Chung BHY, Chan SHS. Diagnostic value of whole-exome sequencing in Chinese pediatric-onset neuromuscular patients. Mol Genet Genomic Med 2020; 8:e1205. [PMID: 32154989 PMCID: PMC7216811 DOI: 10.1002/mgg3.1205] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/08/2020] [Accepted: 02/22/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Neuromuscular disorders (NMDs) comprise a group of heterogeneous genetic diseases with a broad spectrum of overlapping the clinical presentations that makes diagnosis challenging. Notably, the recent introduction of whole-exome sequencing (WES) is introducing rapid changes on the genetic diagnosis of NMDs. We aimed to investigate the diagnostic value of WES for pediatric-onset NMDs. METHODS We applied integrated diagnostic approach and performed WES in 50 Chinese subjects (30 males, 20 females) with undiagnosed pediatric-onset NMDs despite previous specific tests. The patients were categorized in four subgroups according to phenotyping and investigation findings. Variants on NMDs gene list and open exome analysis for those with initial negative findings were identified. RESULTS WES identified causative variants in ACTA1 (n = 2), POMT1, COL6A1 (n = 2), MTMR2, LMNA, SELENON, DNM2, TGFB1, MPZ, IGHMBP2, and LAMA2 in 13 patients. Two subjects have variants of uncertain significance (VUSs) in TTN and SCN11A, unlikely to be pathogenic due to incompatible phenotypes. The mean interval time from symptom onset to genetic diagnosis was 10.4 years (range from 1 month to 33 years). The overall diagnostic yield of WES in our cohort was 26%. Open exome analysis was necessary to identify the pathogenic variant in TGFB1 that caused skeletal dysplasia with neuromuscular presentation. CONCLUSION Our study shows a clear role of WES in the pathway of integrated diagnostic approach to shorten the diagnostic odyssey in patients with rare NMDs.
Collapse
Affiliation(s)
- Mandy H Y Tsang
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Annie T G Chiu
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Bernard M H Kwong
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Rui Liang
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Mullin H C Yu
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Kit-San Yeung
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Wetor H L Ho
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Christopher C Y Mak
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Gordon K C Leung
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Steven L C Pei
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Jasmine L F Fung
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Virginia C N Wong
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, University College London, Institute of Child Health, London, UK
| | - Brian H Y Chung
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Sophelia H S Chan
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| |
Collapse
|