1
|
Wijekoon N, Gonawala L, Ratnayake P, Liyanage R, Amaratunga D, Hathout Y, Steinbusch HWM, Dalal A, Hoffman EP, de Silva KRD. Title-molecular diagnostics of dystrophinopathies in Sri Lanka towards phenotype predictions: an insight from a South Asian resource limited setting. Eur J Med Res 2024; 29:37. [PMID: 38195599 PMCID: PMC10775540 DOI: 10.1186/s40001-023-01600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND The phenotype of Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) patients is determined by the type of DMD gene variation, its location, effect on reading frame, and its size. The primary objective of this investigation was to determine the frequency and distribution of DMD gene variants (deletions/duplications) in Sri Lanka through the utilization of a combined approach involving multiplex polymerase chain reaction (mPCR) followed by Multiplex Ligation Dependent Probe Amplification (MLPA) and compare to the international literature. The current consensus is that MLPA is a labor efficient yet expensive technique for identifying deletions and duplications in the DMD gene. METHODOLOGY Genetic analysis was performed in a cohort of 236 clinically suspected pediatric and adult myopathy patients in Sri Lanka, using mPCR and MLPA. A comparative analysis was conducted between our findings and literature data. RESULTS In the entire patient cohort (n = 236), mPCR solely was able to identify deletions in the DMD gene in 131/236 patients (DMD-120, BMD-11). In the same cohort, MLPA confirmed deletions in 149/236 patients [DMD-138, BMD -11]. These findings suggest that mPCR has a detection rate of 95% (131/138) among all patients who received a diagnosis. The distal and proximal deletion hotspots for DMD were exons 45-55 and 6-15. Exon 45-60 identified as a novel in-frame variation hotspot. Exon 45-59 was a hotspot for BMD deletions. Comparisons with the international literature show significant variations observed in deletion and duplication frequencies in DMD gene across different populations. CONCLUSION DMD gene deletions and duplications are concentrated in exons 45-55 and 2-20 respectively, which match global variation hotspots. Disparities in deletion and duplication frequencies were observed when comparing our data to other Asian and Western populations. Identified a 95% deletion detection rate for mPCR, making it a viable initial molecular diagnostic approach for low-resource countries where MLPA could be used to evaluate negative mPCR cases and cases with ambiguous mutation borders. Our findings may have important implications in the early identification of DMD with limited resources in Sri Lanka and to develop tailored molecular diagnostic algorithms that are regional and population specific and easily implemented in resource limited settings.
Collapse
Affiliation(s)
- Nalaka Wijekoon
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6200, Maastricht, The Netherlands
| | - Lakmal Gonawala
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6200, Maastricht, The Netherlands
| | | | - Roshan Liyanage
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | | | - Yetrib Hathout
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY, 13902, USA
| | - Harry W M Steinbusch
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6200, Maastricht, The Netherlands
| | - Ashwin Dalal
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, 500039, India
| | - Eric P Hoffman
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY, 13902, USA
| | - K Ranil D de Silva
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6200, Maastricht, The Netherlands.
- Institute for Combinatorial Advanced Research and Education (KDU-CARE), General Sir John Kotelawala Defence University, Ratmalana, 10390, Sri Lanka.
| |
Collapse
|
2
|
Gan S, Liu S, Yang H, Wu L. Clinical and genetic characteristics of Chinese Duchenne/Becker muscular dystrophy patients with small mutations. Front Neurosci 2022; 16:992546. [DOI: 10.3389/fnins.2022.992546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
BackgroundDuchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are amongst the inherited neuromuscular diseases with the highest incidence. Small mutations are less common and therefore have been poorly studied in China.Materials and methodsThe clinical data of 150 patients diagnosed with DMD/BMD by genetic analysis in Hunan Children’s Hospital from 2009 to 2021 were analyzed. The patients were followed up for an average of 3.42 years and their clinical characteristics were collected. Loss of ambulation (LOA) was used to evaluate the severity of disease progression. The correlation among clinical features, different variants, and glucocorticoid (GC) treatment was analyzed by Cox regression analysis.Results150 different variants were detected in this study, including 21 (14%) novel mutations, 88 (58.7%) non-sense mutations, 33 (22.0%) frameshift mutations, 22 (14.7%) splicing mutations, and 7 (4.7%) missense mutations. Single-exon skipping and single- or double-exon (double/single-exon) skipping strategies covered more than 90% of patients with small mutations. A case with frameshift mutation combined with Klinefelter’s syndrome (47, XXY) and another one with missense mutation combined with epilepsy was found in our study. De novo mutations accounted for 30.0% of all patients. The mean onset age was 4.19 ± 1.63 years old, and the mean diagnosed age was 5.60 ± 3.13 years old. The mean age of LOA was 10.4 years old (40 cases). 60.7% of them received GC treatment at 7.0 ± 2.7 years old. The main causes of complaints were muscle weakness, high creatine kinase (CK), motor retardation, and family history. The risk factors of LOA were positive family history (HR 5.52, CI 1.26–24.18), short GC treatment duration (HR 0.54, CI 0.36–0.82) and frameshift mutation (HR 14.58, CI 1.74–121.76). DMD patients who treated with GC after 7 years old had a higher risk of earlier LOA compared to those receiving treatment before the age of 7 (HR 0.083, CI 0.009–0.804). Moreover, an earlier onset age, a higher CK value, and a larger LOA population were found in the DMD patients compared to the BMD ones. Finally, the locations of the most frequent mutation were in exon 70 and exon 22.ConclusionIn conclusion, 150 small mutations were identified in this study, and 21 of them were discovered for the first time. We found the hotspots of small mutations were in exon 70 and exon 20. Also, the analysis showed that positive family history, frameshift mutation, short duration of GC treatment, and delayed GC treatment resulted in earlier LOA for the DMD patients. Taken together, our findings complement the mutation spectrum of DMD/BMD, benefit us understanding to the DMD disease, and lay foundations for the clinical trials.
Collapse
|
3
|
Raga SV, Wilmshurst JM, Smuts I, Meldau S, Bardien S, Schoonen M, van der Westhuizen FH. A case for genomic medicine in South African paediatric patients with neuromuscular disease. Front Pediatr 2022; 10:1033299. [PMID: 36467485 PMCID: PMC9713312 DOI: 10.3389/fped.2022.1033299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
Paediatric neuromuscular diseases are under-recognised and under-diagnosed in Africa, especially those of genetic origin. This may be attributable to various factors, inclusive of socioeconomic barriers, high burden of communicable and non-communicable diseases, resource constraints, lack of expertise in specialised fields and paucity of genetic testing facilities and biobanks in the African population, making access to and interpretation of results more challenging. As new treatments become available that are effective for specific sub-phenotypes, it is even more important to confirm a genetic diagnosis for affected children to be eligible for drug trials and potential treatments. This perspective article aims to create awareness of the major neuromuscular diseases clinically diagnosed in the South African paediatric populations, as well as the current challenges and possible solutions. With this in mind, we introduce a multi-centred research platform (ICGNMD), which aims to address the limited knowledge on NMD aetiology and to improve genetic diagnostic capacities in South African and other African populations.
Collapse
Affiliation(s)
- Sharika V Raga
- Department of Neurophysiology, Department of Paediatric Neurology, Red Cross War Memorial Children's Hospital, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Jo Madeleine Wilmshurst
- Department of Neurophysiology, Department of Paediatric Neurology, Red Cross War Memorial Children's Hospital, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Izelle Smuts
- Department of Paediatrics, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Surita Meldau
- Division of Chemical Pathology, Department of Pathology, National Health Laboratory Service and University of Cape Town, Cape Town, South Africa
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Cape Town, South Africa
| | - Maryke Schoonen
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | | |
Collapse
|
4
|
Wonkam‐Tingang E, Nguefack S, Esterhuizen AI, Chelo D, Wonkam A. DMD-related muscular dystrophy in Cameroon: Clinical and genetic profiles. Mol Genet Genomic Med 2020; 8:e1362. [PMID: 32543101 PMCID: PMC7434738 DOI: 10.1002/mgg3.1362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Most of the previous studies on Duchenne Muscular Dystrophy (DMD) were conducted in Caucasian, Asian, and Arab populations. Therefore, little is known about the features of this disease in Africans. In this study, we aimed to determine the clinical characteristics of DMD, and the common mutations associated with this condition in a group of Cameroonian patients. METHODS We recruited DMD patients and performed a general physical examination on each of them. Multiplex ligand-dependant probe amplification was carried out to investigate exon deletions and duplications in the DMD gene (OMIM: 300377) of patients and their mothers. RESULTS A total of 17 male patients from 14 families were recruited, aged 14 ± 5.1 (8-23) years. The mean age at onset of symptoms was 4.6 ± 1.5 years, and the mean age at diagnosis was 12.1 ± 5.2 years. Proximal muscle weakness was noted in all patients and calf hypertrophy in the large majority of them (88.2%; 15/17). Flexion contractures were particularly frequent on the ankle (85.7%; 12/14). Wasting of shoulder girdle and thigh muscles was present in 50% (6/12) and 46.2% (6/13) of patients, respectively. No patient presented with hearing impairment. Deletions in DMD gene (OMIM: 300377) occurred in 45.5% of patients (5/11), while duplications were observed in 27.3% (3/11). Both mutation types were clustered between exons 45 and 50, and the proportion of de novo mutation was estimated at 18.2% (2/11). CONCLUSION Despite the first symptoms of DMD occurring in infancy, the diagnosis is frequently made later in adolescence, indicating an underestimation of the number of cases of DMD in Cameroon. Future screening of deletions and duplications in patients from Cameroon should focus on the distal part of the gene.
Collapse
Affiliation(s)
- Edmond Wonkam‐Tingang
- Division of Human GeneticsDepartment of PathologyUniversity of Cape TownCape TownSouth Africa
| | - Séraphin Nguefack
- Department of PaediatricsFaculty of Medicine and Biomedical SciencesUniversity of Yaoundé IYaoundéCameroon
- Paediatrics UnitDivision of Paediatric NeurologyGynaeco‐Obstetric and Paediatric HospitalYaoundéCameroon
| | - Alina I. Esterhuizen
- Division of Human GeneticsDepartment of PathologyUniversity of Cape TownCape TownSouth Africa
- National Health Laboratory ServiceGroote Schuur HospitalCape TownSouth Africa
| | - David Chelo
- Department of PaediatricsFaculty of Medicine and Biomedical SciencesUniversity of Yaoundé IYaoundéCameroon
- Division of Paediatric Cardiology, Mother and Child HospitalYaoundéCameroon
| | - Ambroise Wonkam
- Division of Human GeneticsDepartment of PathologyUniversity of Cape TownCape TownSouth Africa
- Department of MedicineUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|