1
|
Zhang R, Cui D, Song C, Ma X, Cai N, Zhang Y, Feng M, Cao Y, Chen L, Qiang R. Evaluating the efficacy of a long-read sequencing-based approach in the clinical diagnosis of neonatal congenital adrenocortical hyperplasia. Clin Chim Acta 2024; 555:117820. [PMID: 38307397 DOI: 10.1016/j.cca.2024.117820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders predominantly characterized by impaired corticosteroid synthesis. Clinical phenotypes include hypoadrenocorticism, electrolyte disturbances, abnormal gonadal development, and short stature, of which severe hyponadrenocorticism and salt wasting can be life-threatening. Genetic analysis can help in the clinical diagnosis of CAH. However, the 21-OHD-causing gene CYP21A2 is arranged in tandem with the highly homologous CYP21A1P pseudogene, making it difficult to determine the exact genotypes using the traditional method of multiplex ligation-dependent probe amplification (MLPA) plus Sanger sequencing or next-generation sequencing (NGS). We applied a long-read sequencing-based approach termed comprehensive analysis of CAH (CACAH) to 48 newborns with CAH that were diagnosed by clinical features and the traditional MLPA plus Sanger sequencing method for retrospective analysis, to evaluate its efficacy in the clinical diagnosis of neonatal CAH. Compared with the MLPA plus Sanger sequencing method, CACAH showed 100 % consistency in detecting SNV/indel variants located in exons and exon-intron boundary regions of CAH-related genes. It can directly determine the cis-trans relationship without the need to analyze parental genotypes, which reduces the time to diagnosis. Moreover, CACAH was able to distinguish different CYP21A1P/CYP21A2 and TNXA/TNXB chimeras, and detect additional variants (CYP21A2 variants c.-121C > T, c.*13G > A, c.*52C > T, c.*440C > T, c.*443 T > C, and TNXB variants c.12463 + 2 T > C, c.12204 + 5G > A). We also identified the TNXB variant c.11435_11524 + 30del alone instead of as a part of the TNXA/TNXB-CH-1 chimera in two newborns, which might be introduced by gene conversion. All of these characteristics enabled clinicians to better explain the phenotype of subjects and manage them more effectively. CACAH has a great advantage over the traditional MLPA and Sanger sequencing methods, showing substantial potential in the genetic diagnosis and screening of neonatal CAH.
Collapse
Affiliation(s)
- Ruixue Zhang
- Center of Neonatal Disease Screening, Department of Clinical Genetics, Northwest Women's and Children's Hospital, China
| | - Di Cui
- Berry Genomics Corporation, Beijing 102200, China
| | - Chengrong Song
- Center of Neonatal Disease Screening, Department of Clinical Genetics, Northwest Women's and Children's Hospital, China
| | - Xiaoping Ma
- Center of Neonatal Disease Screening, Department of Clinical Genetics, Northwest Women's and Children's Hospital, China
| | - Na Cai
- Center of Neonatal Disease Screening, Department of Clinical Genetics, Northwest Women's and Children's Hospital, China
| | - Yan Zhang
- Center of Neonatal Disease Screening, Department of Clinical Genetics, Northwest Women's and Children's Hospital, China
| | - Mei Feng
- Center of Neonatal Disease Screening, Department of Clinical Genetics, Northwest Women's and Children's Hospital, China
| | - Yanlin Cao
- Berry Genomics Corporation, Beijing 102200, China
| | - Libao Chen
- Berry Genomics Corporation, Beijing 102200, China
| | - Rong Qiang
- Center of Neonatal Disease Screening, Department of Clinical Genetics, Northwest Women's and Children's Hospital, China.
| |
Collapse
|
2
|
Kim JH, Kim GH, Yoo HW, Choi JH. Molecular basis and genetic testing strategies for diagnosing 21-hydroxylase deficiency, including CAH-X syndrome. Ann Pediatr Endocrinol Metab 2023; 28:77-86. [PMID: 37401054 DOI: 10.6065/apem.2346108.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/22/2022] [Indexed: 07/05/2023] Open
Abstract
Congenital adrenal hyperplasia (CAH) is a group of autosomally recessive disorders that result from impaired synthesis of glucocorticoid and mineralocorticoid. Most cases (~95%) are caused by mutations in the CYP21A2 gene, which encodes steroid 21-hydroxylase. CAH patients manifest a wide phenotypic spectrum according to their degree of residual enzyme activity. CYP21A2 and its pseudogene (CYP21A1P) are located 30 kb apart in the 6q21.3 region and share approximately 98% of their sequences in the coding region. Both genes are aligned in tandem with the C4, SKT19, and TNX genes, forming 2 segments of the RCCX modules that are arranged as STK19-C4A-CYP21A1P-TNXA-STK19B-C4B-CYP21A2-TNXB. The high sequence homology between the active gene and pseudogene leads to frequent microconversions and large rearrangements through intergenic recombination. The TNXB gene encodes an extracellular matrix glycoprotein, tenascin-X (TNX), and defects in TNXB cause Ehlers-Danlos syndrome. Deletions affecting both CYP21A2 and TNXB result in a contiguous gene deletion syndrome known as CAH-X syndrome. Because of the high homology between CYP21A2 and CYP21A1P, genetic testing for CAH should include an evaluation of copy number variations, as well as Sanger sequencing. Although it poses challenges for genetic testing, a large number of mutations and their associated phenotypes have been identified, which has helped to establish genotype-phenotype correlations. The genotype is helpful for guiding early treatment, predicting the clinical phenotype and prognosis, and providing genetic counseling. In particular, it can help ensure proper management of the potential complications of CAH-X syndrome, such as musculoskeletal and cardiac defects. This review focuses on the molecular pathophysiology and genetic diagnosis of 21-hydroxylase deficiency and highlights genetic testing strategies for CAH-X syndrome.
Collapse
Affiliation(s)
- Ja Hye Kim
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Gu-Hwan Kim
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Han-Wook Yoo
- Department of Pediatrics, Bundang CHA Medical Center, CHA University, Seongnam, Korea
| | - Jin-Ho Choi
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Ivo CR, Fitas AL, Madureira I, Diamantino C, Gomes S, Gonçalves J, Lopes L. Congenital adrenal hyperplasia with a CYP21A2 deletion overlapping the tenascin-X gene: an atypical presentation. J Pediatr Endocrinol Metab 2023; 36:81-85. [PMID: 36259452 DOI: 10.1515/jpem-2022-0396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/02/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Congenital Adrenal Hyperplasia (CAH) is a group of genetic diseases characterized by impaired cortisol biosynthesis. 95% of CAH cases result from mutation in the CYP21A2 gene encoding 21-hydroxilase. TNX-B gene partially overlaps CYP21A2 and encodes a matrix protein called Tenascin-X (TNX). Complete tenascin deficiency causes Enlers-Danlos syndrome (EDS). A mono allelic variant called CAH-X CH-1 was recently described, resulting from a CYP21A2 complete deletion that extends into the TNXB. This haploinsufficiency of TNX may be associated with a mild hypermobility form of EDS, as well as other connective tissue comorbidities such as hernia, cardiac defects and chronic arthralgia. CASE PRESENTATION We report four patients heterozygous for a CAH-X CH-1 allele that do not present clinical manifestations of the EDS. CONCLUSIONS All CAH patients, carriers of these TNXA/TNXB chimeras, should be evaluated for clinical manifestations related to connective tissue hypermobility, cardiac abnormalities and other EDS features, allowing for better clinical surveillance management.
Collapse
Affiliation(s)
| | - Ana Laura Fitas
- Unidade de Endocrinologia Pediátrica, Hospital de Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central (CHULC), Lisboa, Portugal
| | - Inês Madureira
- Unidade de Reumatologia Pediátrica, Hospital de Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central (CHULC), Lisboa, Portugal
| | - Catarina Diamantino
- Unidade de Endocrinologia Pediátrica, Hospital de Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central (CHULC), Lisboa, Portugal
| | - Susana Gomes
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - João Gonçalves
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - Lurdes Lopes
- Unidade de Endocrinologia Pediátrica, Hospital de Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central (CHULC), Lisboa, Portugal
| |
Collapse
|
4
|
Marino R, Moresco A, Perez Garrido N, Ramirez P, Belgorosky A. Congenital Adrenal Hyperplasia and Ehlers-Danlos Syndrome. Front Endocrinol (Lausanne) 2022; 13:803226. [PMID: 35282436 PMCID: PMC8913572 DOI: 10.3389/fendo.2022.803226] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Congenital adrenal hyperplasia (CAH) secondary to 21-hydroxylase deficiency is an autosomal recessive disorder. The 21-hydroxylase enzyme P450c21 is encoded by the CYP21A2 gene located on chromosome 6p21.33 within the HLA major histocompatibility complex. This locus also contains the CYP21A1P, a non-functional pseudogene, that is highly homologous to the CYP21A2 gene. Other duplicated genes are C4A and C4B, that encode two isoforms of complement factor C4, the RP1 gene that encodes a serine/threonine protein kinase, and the TNXB gene that, encodes the extracellular matrix glycoprotein tenascin-X (TNX). TNX plays a role in collagen deposition by dermal fibroblasts and is expressed in the dermis of the skin and the connective tissue of the heart and skeletal muscle. During meiosis, misalignment may occur producing large gene deletions or gene conversion events resulting in chimeric genes. Chimeric recombination may occur between TNXB and TNXA. Three TNXA/TNXB chimeras have been described that differ in the junction site (CH1 to CH3) and result in a contiguous CYP21A2 and TNXB gene deletion, causing CAH-X syndrome. TNXB deficiency is associated with Ehlers Danlos syndrome (EDS). EDS comprises a clinically and genetically heterogeneous group of connective tissue disorders. As molecular analysis of the TNXB gene is challenging, the TNX-deficient type EDS is probably underdiagnosed. In this minireview, we will address the different strategies of molecular analysis of the TNXB-gene, as well as copy number variations and genetic status of TNXB in different cohorts. Furthermore, clinical features of EDS and clinical recommendations for long-term follow-up are discussed.
Collapse
Affiliation(s)
- Roxana Marino
- Molecular Biology Laboratory, Endocrinology Service, Hospital de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Angélica Moresco
- Genetics Service, Hospital de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Natalia Perez Garrido
- Molecular Biology Laboratory, Endocrinology Service, Hospital de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Pablo Ramirez
- Molecular Biology Laboratory, Endocrinology Service, Hospital de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Alicia Belgorosky
- Endocrinology Service, Hospital de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- *Correspondence: Alicia Belgorosky,
| |
Collapse
|
5
|
Whole Exome Sequencing of 23 Multigeneration Idiopathic Scoliosis Families Reveals Enrichments in Cytoskeletal Variants, Suggests Highly Polygenic Disease. Genes (Basel) 2021; 12:genes12060922. [PMID: 34208743 PMCID: PMC8235452 DOI: 10.3390/genes12060922] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 12/26/2022] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is a lateral spinal curvature >10° with rotation that affects 2–3% of healthy children across populations. AIS is known to have a significant genetic component, and despite a handful of risk loci identified in unrelated individuals by GWAS and next-generation sequencing methods, the underlying etiology of the condition remains largely unknown. In this study, we performed exome sequencing of affected individuals within 23 multigenerational families, with the hypothesis that the occurrence of rare, low frequency, disease-causing variants will co-occur in distantly related, affected individuals. Bioinformatic filtering of uncommon, potentially damaging variants shared by all sequenced family members revealed 1448 variants in 1160 genes across the 23 families, with 132 genes shared by two or more families. Ten genes were shared by >4 families, and no genes were shared by all. Gene enrichment analysis showed an enrichment of variants in cytoskeletal and extracellular matrix related processes. These data support a model that AIS is a highly polygenic disease, with few variant-containing genes shared between affected individuals across different family lineages. This work presents a novel resource for further exploration in familial AIS genetic research.
Collapse
|
6
|
Fuemmeler BF, Dozmorov MG, Do EK, Zhang J(J, Grenier C, Huang Z, Maguire RL, Kollins SH, Hoyo C, Murphy SK. DNA Methylation in Babies Born to Nonsmoking Mothers Exposed to Secondhand Smoke during Pregnancy: An Epigenome-Wide Association Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:57010. [PMID: 34009014 PMCID: PMC8132610 DOI: 10.1289/ehp8099] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/09/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Maternal smoking during pregnancy is related to altered DNA methylation in infant umbilical cord blood. The extent to which low levels of smoke exposure among nonsmoking pregnant women relates to offspring DNA methylation is unknown. OBJECTIVE This study sought to evaluate relationships between maternal prenatal plasma cotinine levels and DNA methylation in umbilical cord blood in newborns using the Infinium HumanMethylation 450K BeadChip. METHODS Participants from the Newborn Epigenetics Study cohort who reported not smoking during pregnancy had verified low levels of cotinine from maternal prenatal plasma (0 ng / mL to < 4 ng / mL ), and offspring epigenetic data from umbilical cord blood were included in this study (n = 79 ). Multivariable linear regression models were fit to the data, controlling for cell proportions, age, race, education, and parity. Estimates represent changes in response to any 1 -ng / mL unit increase in exposure. RESULTS Multivariable linear regression models yielded 29,049 CpGs that were differentially methylated in relation to increases in cotinine at a 5% false discovery rate. Top CpGs were within or near genes involved in neuronal functioning (PRKG1, DLGAP2, BSG), carcinogenesis (FHIT, HSPC157) and inflammation (AGER). Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses suggest cotinine was related to methylation of gene pathways controlling neuronal signaling, metabolic regulation, cell signaling and regulation, and cancer. Further, enhancers associated with transcription start sites were enriched in altered CpGs. Using an independent sample from the same study population (n = 115 ), bisulfite pyrosequencing was performed with infant cord blood DNA for two genes within our top 20 hits (AGER and PRKG1). Results from pyrosequencing replicated epigenome results for PRKG1 (cg17079497, estimate = - 1.09 , standard error ( SE ) = 0.45 , p = 0.018 ) but not for AGER (cg09199225; estimate = - 0.16 , SE = 0.21 , p = 0.44 ). DISCUSSION Secondhand smoke exposure among nonsmoking women may alter DNA methylation in regions involved in development, carcinogenesis, and neuronal functioning. These novel findings suggest that even low levels of smoke exposure during pregnancy may be sufficient to alter DNA methylation in distinct sites of mixed umbilical cord blood leukocytes in pathways that are known to be altered in cord blood from pregnant active smokers. https://doi.org/10.1289/EHP8099.
Collapse
Affiliation(s)
- Bernard F. Fuemmeler
- Department of Health Behavior and Policy, Virginia Commonwealth University, Richmond, Virginia, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mikhail G. Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Elizabeth K. Do
- Department of Health Behavior and Policy, Virginia Commonwealth University, Richmond, Virginia, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Junfeng (Jim) Zhang
- Nicholas School of the Environment and Duke Global Health Institute, Duke University, Durham, North Carolina, USA
| | - Carole Grenier
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina, USA
| | - Zhiqing Huang
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina, USA
| | - Rachel L. Maguire
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Biological Sciences, Center for Human Health and the Environment North Carolina State University, Raleigh, North Carolina, USA
| | - Scott H. Kollins
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, USA
| | - Cathrine Hoyo
- Department of Biological Sciences, Center for Human Health and the Environment North Carolina State University, Raleigh, North Carolina, USA
| | - Susan K. Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
7
|
Carrozza C, Foca L, De Paolis E, Concolino P. Genes and Pseudogenes: Complexity of the RCCX Locus and Disease. Front Endocrinol (Lausanne) 2021; 12:709758. [PMID: 34394006 PMCID: PMC8362596 DOI: 10.3389/fendo.2021.709758] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Copy Number Variations (CNVs) account for a large proportion of human genome and are a primary contributor to human phenotypic variation, in addition to being the molecular basis of a wide spectrum of disease. Multiallelic CNVs represent a considerable fraction of large CNVs and are strictly related to segmental duplications according to their prevalent duplicate alleles. RCCX CNV is a complex, multiallelic and tandem CNV located in the major histocompatibility complex (MHC) class III region. RCCX structure is typically defined by the copy number of a DNA segment containing a series of genes - the serine/threonine kinase 19 (STK19), the complement 4 (C4), the steroid 21-hydroxylase (CYP21), and the tenascin-X (TNX) - lie close to each other. In the Caucasian population, the most common RCCX haplotype (69%) consists of two segments containing the genes STK19-C4A-CYP21A1P-TNXA-STK19B-C4B-CYP21A2-TNXB, with a telomere-to-centromere orientation. Nonallelic homologous recombination (NAHR) plays a key role into the RCCX genetic diversity: unequal crossover facilitates large structural rearrangements and copy number changes, whereas gene conversion mediates relatively short sequence transfers. The results of these events increased the RCCX genetic diversity and are responsible of specific human diseases. This review provides an overview on RCCX complexity pointing out the molecular bases of Congenital Adrenal Hyperplasia (CAH) due to CYP21A2 deficiency, CAH-X Syndrome and disorders related to CNV of complement component C4.
Collapse
Affiliation(s)
- Cinzia Carrozza
- Dipartimento di Scienze di Laboratorio e Infettivologiche, UOC Chimica, Biochimica e Biologia Molecolare Clinica, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Roma, Italy
- Dipartimento di Scienze Biotecnologiche di base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Laura Foca
- Dipartimento di Scienze di Laboratorio e Infettivologiche, UOC Chimica, Biochimica e Biologia Molecolare Clinica, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Roma, Italy
| | - Elisa De Paolis
- Dipartimento di Scienze di Laboratorio e Infettivologiche, UOC Chimica, Biochimica e Biologia Molecolare Clinica, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Roma, Italy
| | - Paola Concolino
- Dipartimento di Scienze di Laboratorio e Infettivologiche, UOC Chimica, Biochimica e Biologia Molecolare Clinica, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Roma, Italy
- *Correspondence: Paola Concolino,
| |
Collapse
|