1
|
Fang X, Ma M, Rong W, Lian YY, Wu X, Gao Y, Li HP, Sheng X. Exome sequencing confirms the clinical diagnosis of both joubert syndrome and klinefelter syndrome with keratoconus in a han Chinese family. Front Genet 2024; 15:1417584. [PMID: 39076169 PMCID: PMC11284097 DOI: 10.3389/fgene.2024.1417584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/26/2024] [Indexed: 07/31/2024] Open
Abstract
Introduction Joubert syndrome a rare genetic disorder, is characterized by abnormalities in the development of the central nervous system with "molar signs" on magnetic resonance imaging of the brain and accompanied by cerebellar vermis hypoplasia, ataxia, hypotonia, and developmental delay. Keratoconus (KC) is a kind of genetically predisposed eye disease that causes blindness characterized by a dilated thinning of the central or paracentral cornea conically projected forward, highly irregular astigmatism, and severe visual impairment. Klinefelter syndrome is caused by an extra X chromosome in the cells of male patients, and the main phenotype is tall stature and dysplasia with secondary sex characteristics. This study was intended to identify the genetic etiology and determine the clinical diagnosis of one Han Chinese family with specific clinical manifestations of keratoconus and multiorgan involvement. Methods A comprehensive ocular and related general examination was performed on one patient and his asymptomatic parents and brother. Pathogenic genes were tested by exome sequencing. CNV-seq was used to verify the copy number variation, and peripheral blood was cultured for karyotype analysis. The pathogenicity of the identified variant was determined subject to ACMG guidelines. The Gene Expression Omnibus (GEO) dataset of keratoconus-related genes in the NCBI database was obtained to analyze the differentially expressed genes in corneal tissues of the keratoconus group and the normal control group, and analysis of protein-protein interaction networks (PPI) was performed. Results Proband, a 25-year-old male, had sudden loss of vision in the left eye for 1 week. Best corrected visual acuity (BCVA): 0.5 (-1.00DS/-5.00DC*29°) in the right eye, counting fingers/40 cm in the left eye. Slit-lamp microscopy of the right eye showed mild anterior protrusion of the cornea and thinning of the cone-topped cornea. The left eye showed marked thinning of the central region of the cornea, rounded edema in the form of a cone-like bulge, epithelial bullae, edema and turbidity of the stroma, and bulging of the Descemet's membrane. Cranial magnetic resonance imaging (MRI) revealed changes in the midbrain and cerebellum, with a "molar sign" and a "bat-winged" ventriculus quartus cerebri. General check-up: 168 cm in height, decreased muscle tone in all four limbs, knee jerk elicited, negative Babinski sign, abdominal reflexes elicited, finger-to-nose test positive, intentional tremor evident in both hands, positive Romberg's sign, instability of gait, level I intellectual disability, poor adaptive behavior, communication disorders, teeth all dentures, a peculiar face with blepharophimosis, wide inner canthus distance, mild ptosis, severe positive epicanthus, high palatal arches, exotropia, hypotrichosis of beard and face, inconspicuous prominentia laryngea, and short upper and lower limbs. Exome sequencing detected compound heterozygous frameshift variants M1:c.9279dup:p.His3094Thrfs*18 and M2:c.6515_6522del:p.Lys2172Thrfs*37 in the patient's CPLANE1 gene and the presence of duplication-type CNV on the X chromosome. Sanger sequencing showed that the mother and father carried the M1 and M2 variants, respectively, and the younger brother carried the M2 variant, which was a novel variant. CNV-seq analysis showed the presence of a duplication-type CNV Xp22.33-Xq28 (2757837-156030895) of approximately 155 Mb on the X chromosome of the proband, which was a de novo variant and carried by neither of the parents. The two heterozygous frameshift variants and duplication-type CNV were pathogenic according to the ACMG guidelines. Differential expression analysis of keratoconus-related genes showed that CPLANE1 was upregulated in the corneal tissues of keratoconus patients compared with normal controls, and such a difference was statistically significant (p = 0.000515, <0.05). PPI analysis showed that the CPLANE1-NPHP3 complex protein acted as a bridge between cilia and extracellular matrix tissue. According to the genetic test results and clinical phenotype analysis, the family was finally diagnosed with Joubert syndrome combined with Keratoconus and Klinefelter syndrome. Discussion In this study, we report a proband in a Han Chinese family with both Joubert syndrome and X-linked Klinefelter syndrome as well as keratoconus, and the phenotype spectrum of CPLANE1-Joubert syndrome may be expanded accordingly. Meanwhile, the significance of exome sequencing was emphasized in aiding the clinical diagnosis of complex cases, which is difficult to make.
Collapse
Affiliation(s)
- Xinhe Fang
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Meijiao Ma
- Gansu Aier Ophthalmology and Optometry Hospital, Lanzhou, China
| | - Weining Rong
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Yuan-Yuan Lian
- Gansu Aier Ophthalmology and Optometry Hospital, Lanzhou, China
| | - Xueli Wu
- Gansu Aier Ophthalmology and Optometry Hospital, Lanzhou, China
| | - Yongying Gao
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Hui-Ping Li
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Xunlun Sheng
- Gansu Aier Ophthalmology and Optometry Hospital, Lanzhou, China
| |
Collapse
|
2
|
Wang C, Dai W. Lung nodule segmentation via semi-residual multi-resolution neural networks. Open Life Sci 2023; 18:20220727. [PMID: 37941779 PMCID: PMC10628569 DOI: 10.1515/biol-2022-0727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 11/10/2023] Open
Abstract
The integration of deep neural networks and cloud computing has become increasingly prevalent within the domain of medical image processing, facilitated by the recent strides in neural network theory and the advent of the internet of things (IoTs). This juncture has led to the emergence of numerous image segmentation networks and innovative solutions that facilitate medical practitioners in diagnosing lung cancer. Within the contours of this study, we present an end-to-end neural network model, christened as the "semi-residual Multi-resolution Convolutional Neural Network" (semi-residual MCNN), devised to engender precise lung nodule segmentation maps within the milieu of cloud computing. Central to the architecture are three pivotal features, each coalescing to effectuate a notable enhancement in predictive accuracy: the incorporation of semi-residual building blocks, the deployment of group normalization techniques, and the orchestration of multi-resolution output heads. This innovative model is systematically subjected to rigorous training and testing regimes, using the LIDC-IDRI dataset - a widely embraced and accessible repository - comprising a diverse ensemble of 1,018 distinct lung CT images tailored to the realm of lung nodule segmentation.
Collapse
Affiliation(s)
- Chenyang Wang
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| | - Wei Dai
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| |
Collapse
|
3
|
Fang L, Wang L, Yang L, Xu X, Pei S, Wu D. Novel variants identified in five Chinese families with Joubert Syndrome: a case report. BMC Med Genomics 2023; 16:221. [PMID: 37735380 PMCID: PMC10512497 DOI: 10.1186/s12920-023-01669-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/20/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Joubert syndrome (JS) is a group of rare ciliopathies, mainly characterized by cerebellar dysplasia representing the "molar tooth sign (MTS)" on neuroimaging, hypotonia, and developmental delay. Having a complicated genotype-phenotype correlation due to its rich genetic heterogeneity, JS is usually combined with other organic defects affecting the retina, kidney, and liver. This report aimed to present new cases and novel variants of JS. CASE PRESENTATION Five unrelated patients who were diagnosed with JS, with or without typical clinical characteristics, received integrated examinations, including whole-exome sequencing (WES) and Sanger sequencing. We identified nine pathogenic variants in the TCTN2, CPLANE1, INPP5E, NPHP1, and CC2D2A genes. CONCLUSION Four novel pathogenic mutations in the TCTN2, CPLANE1, and INPP5E genes were reported. The findings broadened the genotypic spectrum of JS and contributed to a better understanding of genotype-phenotype correlation.
Collapse
Affiliation(s)
- Liwei Fang
- Pediatric Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
| | - Lulu Wang
- Pediatric Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
| | - Li Yang
- Pediatric Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
| | - Xiaoyan Xu
- Pediatric Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
| | - Shanai Pei
- Pediatric Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
| | - De Wu
- Pediatric Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China.
| |
Collapse
|
4
|
Wang H, Nie W, Wang C, Wang Z, Zheng Y. Novel CPLANE1 c.8948dupT (p.P2984Tfs*7) variant in a child patient with Joubert syndrome. Open Life Sci 2023; 18:20220542. [PMID: 36789003 PMCID: PMC9896164 DOI: 10.1515/biol-2022-0542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/20/2022] [Accepted: 11/23/2022] [Indexed: 02/04/2023] Open
Abstract
Joubert syndrome (JBTS) is a class of heterogeneous ciliopathy genetically associated with CPLANE1 mutations. The characteristics of clinical phenotypes and CPLANE1 variants were analyzed in a 2-month-old patient. A 2-month-old patient with JBTS was diagnosed after clinical evaluation including family history, physical examination, cerebral MRI, ultrasonography imaging, VEGG, ocular fundus examination, and comprehensive blood and urine testing. Whole exome sequencing (WES) was performed to detect CPLANE1 variants, and Sanger sequencing was used to confirm the variants. This JBTS patient presented with oculomotor apraxia, dysregulation of breathing pattern, and ataxia. MRI revealed poor continuity of cerebelli, batwing appearance, and molar tooth sign. This patient was noted with abnormal hematology, dysregulation of hepatic function, thyroid function, immunity, and renal function, and encephalopathy. CPLANE1 (c.8948dupT (p.P2984Tfs*7) and c.247G > T (p.G83X)) variants were noticed in the patient as a pathogenic variant and caused autosomal recessive inheritance. The JBTS patient with mutations in CPLANE1 (c.8948dupT (p.P2984Tfs*7) and c.247G > T (p.G83X)) developed JBTS phenotypes. The novel CPLANE1 c.8948dupT (p.P2984Tfs*7) variant will assist clinicians and geneticists in reaching a precise diagnosis for JBTS.
Collapse
Affiliation(s)
- Huiping Wang
- Department of Neurology, Kunming Children’s Hospital, Kunming Children’s Hospital Affiliated with Kunming Medical University, No. 288, Qianxing Road, Xishan District, Kunming 650228, China
| | - Wensha Nie
- Department of Neurology, Kunming Children’s Hospital, Kunming Children’s Hospital Affiliated with Kunming Medical University, No. 288, Qianxing Road, Xishan District, Kunming 650228, China
| | - Chunxia Wang
- Department of Neurology, Kunming Children’s Hospital, Kunming Children’s Hospital Affiliated with Kunming Medical University, No. 288, Qianxing Road, Xishan District, Kunming 650228, China
| | - Zuohua Wang
- Department of Neurology, Kunming Children’s Hospital, Kunming Children’s Hospital Affiliated with Kunming Medical University, No. 288, Qianxing Road, Xishan District, Kunming 650228, China
| | - Yuxia Zheng
- Department of Neurology, Kunming Children’s Hospital, Kunming Children’s Hospital Affiliated with Kunming Medical University, No. 288, Qianxing Road, Xishan District, Kunming 650228, China
| |
Collapse
|
5
|
Matoba K, Chihara N, Satake W, Tokuoka H, Otsuka Y, Ueda T, Sekiguchi K, Itoh M, Matsumoto R. Long-Surviving Adult Siblings With Joubert Syndrome Harboring a Novel Compound Heterozygous CPLANE1 Variant. Neurol Genet 2022; 8:e200031. [PMID: 36176335 PMCID: PMC9513979 DOI: 10.1212/nxg.0000000000200031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/26/2022] [Indexed: 12/03/2022]
Abstract
Background and Objectives We describe 2 long-surviving siblings with a mild phenotype of Joubert syndrome (JBTS) harboring a novel compound heterozygous missense variant in the CPLANE1 gene. Methods Targeted sequencing data of 2 middle-aged siblings (sister and brother) with JBTS were analyzed. Results The patients were older than 60 years and presented with an inborn facial anomaly and ataxia, accompanied by a molar tooth sign on brain MRI. The male patient showed mild intellectual disability, abnormal eye movements, and progressive gait disturbance. Targeted sequencing revealed a compound heterozygous missense variant of CPLANE1 p.Arg1193Cys_Gln1223Pro; c.3577C>T_3668A>C. Multiple in silico assays predicted that the missense sites were pathogenic. Discussion The phenotype-genotype correlation of CPLANE1 remains controversial, although many cases have been previously reported in children and young adults. Our study revealed a novel pathogenic variant of CPLANE1 in patients, confirming the role of this gene in JBTS, thus providing an opportunity for neurologists to recognize JBTS as a differential diagnosis for chronic progressive ataxia in an aging society.
Collapse
|
6
|
Qiu YL, Wang L, Huang M, Lian M, Wang F, Gong Y, Ma X, Hao CZ, Zhang J, Li ZD, Xing QH, Cao M, Wang JS. Association of novel TMEM67 variants with mild phenotypes of high gamma-glutamyl transpeptidase cholestasis and congenital hepatic fibrosis. J Cell Physiol 2022; 237:2713-2723. [PMID: 35621037 DOI: 10.1002/jcp.30788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/11/2022]
Abstract
TMEM67 (mecklin or MKS3) locates in the transition zone of cilia. Dysfunction of TMEM67 disrupts cilia-related signaling and leads to developmental defects of multiple organs in humans. Typical autosomal recessive TMEM67 defects cause partial overlapping phenotypes, including abnormalities in the brain, eyes, liver, kidneys, bones, and so forth. However, emerging reports of isolated nephronophthisis suggest the possibility of a broader phenotype spectrum. In this study, we analyzed the genetic data of cholestasis patients with no obvious extrahepatic involvement but with an unexplained high level of gamma-glutamyl transpeptidase (GGT). We identified five Han Chinese patients from three unrelated families with biallelic nonnull low-frequency TMEM67 variants. All variants were predicted pathogenic in silico, of which p. Arg820Ile and p. Leu144del were previously unreported. In vitro studies revealed that the protein levels of the TMEM67 variants were significantly decreased; however, their interaction with MKS1 remained unaffected. All the patients, aged 7-39 years old, had silently progressive cholestasis with elevated GGT but had normal bilirubin levels. Histological studies of liver biopsy of patients 1, 3, and 5 showed the presence of congenital hepatic fibrosis. We conclude that variants in TMEM67 are associated with a mild phenotype of unexplained, persistent, anicteric, and high GGT cholestasis without typical symptoms of TMEM67 defects; this possibility should be considered by physicians in gastroenterology and hepatology.
Collapse
Affiliation(s)
- Yi-Ling Qiu
- The Center for Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Li Wang
- The Center for Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Min Huang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Lian
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Ying Gong
- Department of Radiology, Children's Hospital of Fudan University, Shanghai, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Chen-Zhi Hao
- The Center for Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Jing Zhang
- The Center for Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Zhong-Die Li
- The Center for Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Qing-He Xing
- Institutes of Biomedical Sciences of Fudan University, Shanghai, China
| | - Muqing Cao
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-She Wang
- The Center for Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
7
|
Vázquez-López ME, Silveira-Cancela M, Loidi-Fernández L, Pérez-Gay L, Pena-Gil P, Juberias-Alzueta C, Pérez-Pacín R. [Joubert syndrome and neurofibromatosis type 1]. Rev Neurol 2022; 74:312-313. [PMID: 35484703 PMCID: PMC11502171 DOI: 10.33588/rn.7409.2021446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Indexed: 06/14/2023]
Affiliation(s)
| | | | - L Loidi-Fernández
- Hospital Clínico Universitario de Santiago, Santiago de Compostela, España
| | - L Pérez-Gay
- Complejo Hospitalario Universitario de Lugo, Lugo, España
| | - P Pena-Gil
- Complejo Hospitalario Universitario de Lugo, Lugo, España
| | | | | |
Collapse
|
8
|
Badv RS, Mahdiannasser M, Rasoulinezhad M, Habibi L, Rashidi-Nezhad A. CEP104 gene may involve in the pathogenesis of a new developmental disorder other than joubert syndrome. Mol Biol Rep 2022; 49:7231-7237. [PMID: 35359234 DOI: 10.1007/s11033-022-07353-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND The CEP104 gene (OMIM: 616,690) encodes the centrosome protein 104 (CEP104) that is involved in cilia function. Pathogenic variants in this gene have been described in four patients diagnosed with Joubert syndrome (JBTS) 25. Here, we challenged the concept that pathogenic variants in CEP104 gene are only involved in the development of JBTS 25. METHODS AND RESULTS In a clinical setting, whole-exome sequencing (WES) was applied to investigate pathogenic variants in patients with unexplained developmental delay or intellectual disability (DD/ID).WES revealed a novel homozygous nonsense variant (c.643C > T) in CEP104 (NM _014704.3) in a girl with mild intellectual disability, hypotonia, and imbalanced gait. Her brain MRI data did not show molar tooth sign (MTS) or any other brain anomalies. CONCLUSION Our study introduced a novel variant in the CEP104 gene that results in an ID phenotype other than JBTS25. Comparison of her phenotype with that of eight previously published DD/ID patients harboring pathogenic variants in CEP104 gene revealed that more than half of them did not show JBTS related symptoms. Therefore, we suggest that the CEP104 gene might also be involved in a disorder other than JBTS 25, a point that deserves to be emerged in the OMIM database.
Collapse
Affiliation(s)
- Reza Shervin Badv
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojdeh Mahdiannasser
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Rasoulinezhad
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ali Rashidi-Nezhad
- Maternal, Fetal and Neonatal Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Genetic Ward, Yas Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran. .,Maternal, Fetal and Neonatal Research Center, Family Health Research Institute, Valiasr Hospital, 2nd floor, Baqerkhan st., P.O.Box:1419733141, Tehran, Iran.
| |
Collapse
|