1
|
Wang L, Liu Z, Zhao S, Xu K, Aceves V, Qiu C, Troutwine B, Liu L, Ma S, Niu Y, Wang S, Yuan S, Li X, Zhao L, Liu X, Wu Z, Zhang TJ, Gray RS, Wu N. Variants in the SOX9 transactivation middle domain induce axial skeleton dysplasia and scoliosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.29.23290174. [PMID: 37398377 PMCID: PMC10312849 DOI: 10.1101/2023.05.29.23290174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
SOX9 is an essential transcriptional regulator of cartilage development and homeostasis. In humans, dysregulation of SOX9 is associated with a wide spectrum of skeletal disorders, including campomelic and acampomelic dysplasia, and scoliosis. The mechanism of how SOX9 variants contribute to the spectrum of axial skeletal disorders is not well understood. Here, we report four novel pathogenic variants of SOX9 identified in a large cohort of patients with congenital vertebral malformations. Three of these heterozygous variants are in the HMG and DIM domains, and for the first time, we report a pathogenic variant within the transactivation middle (TAM) domain of SOX9 . Probands with these variants exhibit variable skeletal dysplasia, ranging from isolated vertebral malformation to acampomelic dysplasia. We also generated a Sox9 hypomorphic mutant mouse model bearing a microdeletion within the TAM domain ( Sox9 Asp272del ). We demonstrated that disturbance of the TAM domain with missense mutation or microdeletion results in reduced protein stability but does not affect the transcriptional activity of SOX9. Homozygous Sox9 Asp272del mice exhibited axial skeletal dysplasia including kinked tails, ribcage anomalies, and scoliosis, recapitulating phenotypes observed in human, while heterozygous mutants display a milder phenotype. Analysis of primary chondrocytes and the intervertebral discs in Sox9 Asp272del mutant mice revealed dysregulation of a panel of genes with major contributions of the extracellular matrix, angiogenesis, and ossification-related processes. In summary, our work identified the first pathologic variant of SOX9 within the TAM domain and demonstrated that this variant is associated with reduced SOX9 protein stability. Our finding suggests that reduced SOX9 stability caused by variants in the TAM domain may be responsible for the milder forms of axial skeleton dysplasia in humans.
Collapse
|
2
|
Zhang H, Xie Y. Novel start codons introduce novel coding sequences in the human genomes. Sci Rep 2023; 13:8141. [PMID: 37208378 DOI: 10.1038/s41598-023-34770-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/07/2023] [Indexed: 05/21/2023] Open
Abstract
Start-gain mutations can introduce novel start codons and generate novel coding sequences that may affect the function of genes. In this study, we systematically investigated the novel start codons that were either polymorphic or fixed in the human genomes. 829 polymorphic start-gain SNVs were identified in the human populations, and the novel start codons introduced by these SNVs have significantly higher activity in translation initiation. Some of these start-gain SNVs were reported to be associated with phenotypes and diseases in previous studies. By comparative genomic analysis, we found 26 human-specific start codons that were fixed after the divergence between the human and chimpanzee, and high-level translation initiation activity was observed on them. The negative selection signal was detected in the novel coding sequences introduced by these human-specific start codons, indicating the important function of these novel coding sequences.
Collapse
Affiliation(s)
- He Zhang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Yang Xie
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
3
|
Filatova A, Reveguk I, Piatkova M, Bessonova D, Kuziakova O, Demakova V, Romanishin A, Fishman V, Imanmalik Y, Chekanov N, Skitchenko R, Barbitoff Y, Kardymon O, Skoblov M. Annotation of uORFs in the OMIM genes allows to reveal pathogenic variants in 5'UTRs. Nucleic Acids Res 2023; 51:1229-1244. [PMID: 36651276 PMCID: PMC9943669 DOI: 10.1093/nar/gkac1247] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 11/29/2022] [Accepted: 12/15/2022] [Indexed: 01/19/2023] Open
Abstract
An increasing number of studies emphasize the role of non-coding variants in the development of hereditary diseases. However, the interpretation of such variants in clinical genetic testing still remains a critical challenge due to poor knowledge of their pathogenicity mechanisms. It was previously shown that variants in 5'-untranslated regions (5'UTRs) can lead to hereditary diseases due to disruption of upstream open reading frames (uORFs). Here, we performed a manual annotation of upstream translation initiation sites (TISs) in human disease-associated genes from the OMIM database and revealed ∼4.7 thousand of TISs related to uORFs. We compared our TISs with the previous studies and provided a list of 'high confidence' uORFs. Using a luciferase assay, we experimentally validated the translation of uORFs in the ETFDH, PAX9, MAST1, HTT, TTN,GLI2 and COL2A1 genes, as well as existence of N-terminal CDS extension in the ZIC2 gene. Besides, we created a tool to annotate the effects of genetic variants located in uORFs. We revealed the variants from the HGMD and ClinVar databases that disrupt uORFs and thereby could lead to Mendelian disorders. We also showed that the distribution of uORFs-affecting variants differs between pathogenic and population variants. Finally, drawing on manually curated data, we developed a machine-learning algorithm that allows us to predict the TISs in other human genes.
Collapse
Affiliation(s)
- Alexandra Filatova
- To whom correspondence should be addressed. Tel: +7 916 335 33 29; Fax: +7 499 324 07 02;
| | - Ivan Reveguk
- Laboratoire de Biologie Structurale de la Cellule, École Polytechnique, Paris, France
| | - Maria Piatkova
- Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia,Institute of high technologies and advanced materials, Far Eastern Federal University, Vladivostok, Russia
| | - Daria Bessonova
- Medical Center, Far Eastern Federal University, Vladivostok, Russia
| | - Olga Kuziakova
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | | | - Alexander Romanishin
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia,Institute of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Veniamin Fishman
- Artificial Intelligence Research Institute, Moscow, Russia,Molecular Mechanisms of Ontogenesis, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | | | | | | | - Yury Barbitoff
- Bioinformatics Institute, St. Petersburg, Russia,Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, St. Petersburg, Russia,Dpt. of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia
| | - Olga Kardymon
- Artificial Intelligence Research Institute, Moscow, Russia
| | | |
Collapse
|
4
|
Au TYK, Yip RKH, Wynn SL, Tan TY, Fu A, Geng YH, Szeto IYY, Niu B, Yip KY, Cheung MCH, Lovell-Badge R, Cheah KSE. Hypomorphic and dominant-negative impact of truncated SOX9 dysregulates Hedgehog-Wnt signaling, causing campomelia. Proc Natl Acad Sci U S A 2023; 120:e2208623119. [PMID: 36584300 PMCID: PMC9910594 DOI: 10.1073/pnas.2208623119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/02/2022] [Indexed: 01/01/2023] Open
Abstract
Haploinsufficiency for SOX9, the master chondrogenesis transcription factor, can underlie campomelic dysplasia (CD), an autosomal dominant skeletal malformation syndrome, because heterozygous Sox9 null mice recapitulate the bent limb (campomelia) and some other phenotypes associated with CD. However, in vitro cell assays suggest haploinsufficiency may not apply for certain mutations, notably those that truncate the protein, but in these cases in vivo evidence is lacking and underlying mechanisms are unknown. Here, using conditional mouse mutants, we compared the impact of a heterozygous Sox9 null mutation (Sox9+/-) with the Sox9+/Y440X CD mutation that truncates the C-terminal transactivation domain but spares the DNA-binding domain. While some Sox9+/Y440X mice survived, all Sox9+/- mice died perinatally. However, the skeletal defects were more severe and IHH signaling in developing limb cartilage was significantly enhanced in Sox9+/Y440X compared with Sox9+/-. Activating Sox9Y440X specifically in the chondrocyte-osteoblast lineage caused milder campomelia, and revealed cell- and noncell autonomous mechanisms acting on chondrocyte differentiation and osteogenesis in the perichondrium. Transcriptome analyses of developing Sox9+/Y440X limbs revealed dysregulated expression of genes for the extracellular matrix, as well as changes consistent with aberrant WNT and HH signaling. SOX9Y440X failed to interact with β-catenin and was unable to suppress transactivation of Ihh in cell-based assays. We propose enhanced HH signaling in the adjacent perichondrium induces asymmetrically localized excessive perichondrial osteogenesis resulting in campomelia. Our study implicates combined haploinsufficiency/hypomorphic and dominant-negative actions of SOX9Y440X, cell-autonomous and noncell autonomous mechanisms, and dysregulated WNT and HH signaling, as the cause of human campomelia.
Collapse
Affiliation(s)
- Tiffany Y. K. Au
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Raymond K. H. Yip
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Sarah L. Wynn
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Tiong Y. Tan
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Alex Fu
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, New Territories, Shatin, Hong Kong SAR, China
| | - Yu Hong Geng
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Irene Y. Y. Szeto
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Ben Niu
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Kevin Y. Yip
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, New Territories, Shatin, Hong Kong SAR, China
| | - Martin C. H. Cheung
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | | | - Kathryn S. E. Cheah
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| |
Collapse
|
5
|
Mori M, Clause AR, Truxal K, Hagelstrom RT, Manickam K, Kaler SG, Prasad V, Windster J, Alves MM, Di Lorenzo C. Autosomal Recessive ACTG2-Related Visceral Myopathy in Brothers. JPGN REPORTS 2022; 3:e258. [PMID: 37168481 PMCID: PMC10158422 DOI: 10.1097/pg9.0000000000000258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/25/2022] [Indexed: 05/13/2023]
Abstract
Pediatric intestinal pseudo-obstruction (PIPO) is a heterogeneous condition characterized by impaired gastrointestinal propulsion, a broad clinical spectrum, and variable severity. Several molecular bases underlying primary PIPO have been identified, of which autosomal dominant ACTG2-related visceral myopathy is the most common in both familial or sporadic primary PIPO cases. We present a family with autosomal recessive ACTG2-related disease in which both parents have mild gastrointestinal symptoms and sons have severe PIPO and bladder dysfunction. Methods Clinical genome sequencing was performed on the patients and the mother. Immunohistochemistry was performed on intestinal tissue from the patients to show expression levels of the ACTG2. Results Genome sequencing identified a 6.8 kb 2p13.1 loss that includes the ACTG2 gene and a maternally inherited missense variant p.Val10Met in the ACTG2 gene. Discussion This case demonstrates that monoallelic hypomorphic ACTG2 variants may underly mild primary gastrointestinal symptoms, while biallelic mild variants can cause severe diseases. The Deletions of the noncoding ACTG2 exon can be an under-recognized cause of mild gastrointestinal symptoms unidentifiable by exome sequencing, explaining some instances of interfamilial variability with an apparent autosomal dominant inheritance. Genome sequencing is recommended as a genetic work-up for primary or idiopathic PIPO because of genetic heterogeneity.
Collapse
Affiliation(s)
- Mari Mori
- From the Division of Genetic and Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH
- Department of Pediatrics, The Ohio State University, Columbus, OH
| | | | - Kristen Truxal
- From the Division of Genetic and Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH
- Department of Pediatrics, The Ohio State University, Columbus, OH
| | | | - Kandamurugu Manickam
- From the Division of Genetic and Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH
- Department of Pediatrics, The Ohio State University, Columbus, OH
| | - Stephen G. Kaler
- From the Division of Genetic and Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH
| | - Vinay Prasad
- Department of Pediatrics, The Ohio State University, Columbus, OH
- Pathology & Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH
| | - Jonathan Windster
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Pediatric Surgery, Erasmus University Medical Center-Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Maria M. Alves
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Carlo Di Lorenzo
- Department of Pediatrics, The Ohio State University, Columbus, OH
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Nationwide Children’s Hospital, Columbus, OH
| |
Collapse
|
6
|
Papadopoulos C, Chevrollier N, Lopes A. Exploring the Peptide Potential of Genomes. Methods Mol Biol 2022; 2405:63-82. [PMID: 35298808 DOI: 10.1007/978-1-0716-1855-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recent studies attribute a central role to the noncoding genome in the emergence of novel genes. The widespread transcription of noncoding regions and the pervasive translation of the resulting RNAs offer to the organisms a vast reservoir of novel peptides. Although the majority of these peptides are anticipated as deleterious or neutral, and thereby expected to be degraded right away or short-lived in evolutionary history, some of them can confer an advantage to the organism. The latter can be further subjected to natural selection and be established as novel genes. In any case, characterizing the structural properties of these pervasively translated peptides is crucial to understand (1) their impact on the cell and (2) how some of these peptides, derived from presumed noncoding regions, can give rise to structured and functional de novo proteins. Therefore, we present a protocol that aims to explore the potential of a genome to produce novel peptides. It consists in annotating all the open reading frames (ORFs) of a genome (i.e., coding and noncoding ones) and characterizing the fold potential and other structural properties of their corresponding potential peptides. Here, we apply our protocol to a small genome and show how to apply it to very large genomes. Finally, we present a case study which aims to probe the fold potential of a set of 721 translated ORFs in mouse lncRNAs, identified with ribosome profiling experiments. Interestingly, we show that the distribution of their fold potential is different from that of the nontranslated lncRNAs and more generally from the other noncoding ORFs of the mouse.
Collapse
Affiliation(s)
- Chris Papadopoulos
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, cedex, France
| | - Nicolas Chevrollier
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, cedex, France
| | - Anne Lopes
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, cedex, France.
| |
Collapse
|
7
|
Mahfuz AMUB, Khan MA, Deb P, Ansary SJ, Jahan R. Identification of deleterious single nucleotide polymorphism (SNP)s in the human TBX5 gene & prediction of their structural & functional consequences: An in silico approach. Biochem Biophys Rep 2021; 28:101179. [PMID: 34917776 PMCID: PMC8646135 DOI: 10.1016/j.bbrep.2021.101179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/29/2022] Open
Abstract
T-box transcription factor 5 gene (TBX5) encodes the transcription factor TBX5, which plays a crucial role in the development of heart and upper limbs. Damaging single nucleotide variants in this gene alter the protein structure, disturb the functions of TBX5, and ultimately cause Holt-Oram Syndrome (HOS). By analyzing the available single nucleotide polymorphism information in the dbSNP database, this study was designed to identify the most deleterious TBX5 SNPs through insilico approaches and predict their structural and functional consequences. Fifty-eight missense substitutions were found damaging by sequence homology-based tools: SIFT and PROVEAN, and structure homology-based tool PolyPhen-2. Various disease association meta-predictors further scrutinized these SNPs. Additionally, conservation profile of the amino acid residues, their surface accessibility, stability, and structural integrity of the native protein upon mutations were assessed. From these analyses, finally 5 SNPs were detected as the most damaging ones: [rs1565941579 (P85S), rs1269970792 (W121R), rs772248871 (V153D), rs769113870 (E208D), and rs1318021626 (I222N)]. Analyses of stop-lost, nonsense, UTR, and splice site SNPs were also conducted. Through integrative bioinformatics analyses, this study has identified the SNPs that are deleterious to the TBX5 protein structure and have the potential to cause HOS. Further wet-lab experiments can validate these findings. Deleterious SNPs in the human TBX5 gene responsible for Holt-Oram Syndrome have been identified. 58 missense and 2 nonsense SNPs were identified as deleterious. 86 3′ UTR SNPs were predicted to be located on miRNA target sites. Possible effects of missense SNPs on the TBX5 protein structure have been studied.
Collapse
Affiliation(s)
- A M U B Mahfuz
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, University of Development Alternative, Dhaka, 1209, Bangladesh
| | - Md Arif Khan
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, University of Development Alternative, Dhaka, 1209, Bangladesh
| | - Promita Deb
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, University of Development Alternative, Dhaka, 1209, Bangladesh
| | - Sharmin Jahan Ansary
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, University of Development Alternative, Dhaka, 1209, Bangladesh
| | - Rownak Jahan
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, University of Development Alternative, Dhaka, 1209, Bangladesh
| |
Collapse
|
8
|
Filatova AY, Vasilyeva TA, Marakhonov AV, Sukhanova NV, Voskresenskaya AA, Zinchenko RA, Skoblov MY. Upstream ORF frameshift variants in the PAX6 5'UTR cause congenital aniridia. Hum Mutat 2021; 42:1053-1065. [PMID: 34174135 DOI: 10.1002/humu.24248] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 11/12/2022]
Abstract
Congenital aniridia (AN) is a severe autosomal dominant panocular disorder associated with pathogenic variants in the PAX6 gene. Previously, we performed a molecular genetic study of a large cohort of Russian patients with AN and revealed four noncoding nucleotide variants in the PAX6 5'UTR. 14 additional PAX6-5'UTR variants were also reported in the literature, but the mechanism of their pathogenicity remained unclear. In the present study, we experimentally analyze five patient-derived PAX6 5'UTR-variants: four variants that we identified in Russian patients (c.-128-2delA, c.-125dupG, c.-122dupG, c.-118_-117del) and one previously reported (c.-52+5G>C). We show that the variants lead to a decrease in the protein translation efficiency, while mRNA expression level is not significantly reduced. Two of these variants also affect splicing. Furthermore, we predict and experimentally validate the presence of an evolutionarily conserved small uORF in the PAX6 5'UTR. All studied variants lead to the frameshift of the uORF, resulting in its extension. This extended out-of-frame uORF overlaps with the downstream CDS and thereby reduces its translation efficiency. We conclude that the uORF frameshift may be the main mechanism of pathogenicity for at least 15 out of 18 known PAX6 5'UTR variants. Moreover, we predict additional uORFs in the PAX6 5'UTR.
Collapse
Affiliation(s)
| | | | | | - Natella V Sukhanova
- Central Clinical Hospital of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Anna A Voskresenskaya
- Cheboksary Branch of the S. Fyodorov Eye Microsurgery Federal State Institution, Cheboksary, Russian Federation
| | - Rena A Zinchenko
- Research Centre for Medical Genetics, Moscow, Russian Federation.,N.A. Semashko National Research Institute of Public Health, Moscow, Russian Federation
| | | |
Collapse
|
9
|
Roos D, de Boer M. Mutations in cis that affect mRNA synthesis, processing and translation. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166166. [PMID: 33971252 DOI: 10.1016/j.bbadis.2021.166166] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022]
Abstract
Genetic mutations that cause hereditary diseases usually affect the composition of the transcribed mRNA and its encoded protein, leading to instability of the mRNA and/or the protein. Sometimes, however, such mutations affect the synthesis, the processing or the translation of the mRNA, with similar disastrous effects. We here present an overview of mRNA synthesis, its posttranscriptional modification and its translation into protein. We then indicate which elements in these processes are known to be affected by pathogenic mutations, but we restrict our review to mutations in cis, in the DNA of the gene that encodes the affected protein. These mutations can be in enhancer or promoter regions of the gene, which act as binding sites for transcription factors involved in pre-mRNA synthesis. We also describe mutations in polyadenylation sequences and in splice site regions, exonic and intronic, involved in intron removal. Finally, we include mutations in the Kozak sequence in mRNA, which is involved in protein synthesis. We provide examples of genetic diseases caused by mutations in these DNA regions and refer to databases to help identify these regions. The over-all knowledge of mRNA synthesis, processing and translation is essential for improvement of the diagnosis of patients with genetic diseases.
Collapse
Affiliation(s)
- Dirk Roos
- Sanquin Blood Supply Organization, Dept. of Blood Cell Research, Landsteiner Laboratory, Amsterdam University Medical Centre, location AMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Martin de Boer
- Sanquin Blood Supply Organization, Dept. of Blood Cell Research, Landsteiner Laboratory, Amsterdam University Medical Centre, location AMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
10
|
Zhang H, Wang Y, Wu X, Tang X, Wu C, Lu J. Determinants of genome-wide distribution and evolution of uORFs in eukaryotes. Nat Commun 2021; 12:1076. [PMID: 33597535 PMCID: PMC7889888 DOI: 10.1038/s41467-021-21394-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/20/2021] [Indexed: 01/02/2023] Open
Abstract
Upstream open reading frames (uORFs) play widespread regulatory functions in modulating mRNA translation in eukaryotes, but the principles underlying the genomic distribution and evolution of uORFs remain poorly understood. Here, we analyze ~17 million putative canonical uORFs in 478 eukaryotic species that span most of the extant taxa of eukaryotes. We demonstrate how positive and purifying selection, coupled with differences in effective population size (Ne), has shaped the contents of uORFs in eukaryotes. Besides, gene expression level is important in influencing uORF occurrences across genes in a species. Our analyses suggest that most uORFs might play regulatory roles rather than encode functional peptides. We also show that the Kozak sequence context of uORFs has evolved across eukaryotic clades, and that noncanonical uORFs tend to have weaker suppressive effects than canonical uORFs in translation regulation. This study provides insights into the driving forces underlying uORF evolution in eukaryotes.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Yirong Wang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
- College of Biology, Hunan University, Changsha, China
| | - Xinkai Wu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Xiaolu Tang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Changcheng Wu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
11
|
A novel rare c.-39C>T mutation in the PROS1 5'UTR causing PS deficiency by creating a new upstream translation initiation codon. Clin Sci (Lond) 2020; 134:1181-1190. [PMID: 32426810 DOI: 10.1042/cs20200403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 01/18/2023]
Abstract
Autosomal dominant inherited Protein S deficiency (PSD) (MIM 612336) is a rare disorder caused by rare mutations, mainly located in the coding sequence of the structural PROS1 gene, and associated with an increased risk of venous thromboembolism. To identify the molecular defect underlying PSD observed in an extended French pedigree with seven PSD affected members in whom no candidate deleterious PROS1 mutation was detected by Sanger sequencing of PROS1 exons and their flanking intronic regions or via an multiplex ligation-dependent probe amplification (MLPA) approach, a whole genome sequencing strategy was adopted. This led to the identification of a never reported C to T substitution at c.-39 from the natural ATG codon of the PROS1 gene that completely segregates with PSD in the whole family. This substitution ACG→ATG creates a new start codon upstream of the main ATG. We experimentally demonstrated in HeLa cells that the variant generates a novel overlapping upstream open reading frame (uORF) and inhibits the translation of the wild-type PS. This work describes the first example of 5'UTR PROS1 mutation causing PSD through the creation of an uORF, a mutation that is not predicted to be deleterious by standard annotation softwares, and emphasizes the need for better exploration of such type of non-coding variations in clinical genomics.
Collapse
|
12
|
Wu N, Wang L, Hu J, Zhao S, Liu B, Li Y, Du H, Zhang Y, Li X, Yan Z, Wang S, Wang Y, Zhang J, Wu Z, Disco Deciphering Disorders Involving Scoliosis Comorbidities Study Group, Qiu G. A Recurrent Rare SOX9 Variant (M469V) is Associated with Congenital Vertebral Malformations. Curr Gene Ther 2020; 19:242-247. [PMID: 31549955 DOI: 10.2174/1566523219666190924120307] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The genetic variations contributed to a substantial proportion of congenital vertebral malformations (CVM). SOX9 gene, a member of the SOX gene family, has been implicated in CVM. To study the SOX9 mutation in CVM patients is of great significance to explain the pathogenesis of scoliosis (the clinical manifestation of CVM) and to explore the pathogenesis of SOX9-related skeletal deformities. METHODS A total of 50 singleton patients with CVM were included in this study. Exome Sequencing (ES) was performed on all the patients. The recurrent candidate variant of SOX9 gene was validated by Sanger sequencing. Luciferase assay was performed to investigate the functional changes of this variant. RESULTS A recurrent rare heterozygous missense variant in SOX9 gene (NM_000346.3: c.1405A>G, p.M469V) which had not been reported previously was identified in three CVM patients who had the clinical findings of congenital scoliosis without deformities in other systems. This variant was absent from our in-house database and it was predicted to be deleterious (CADD = 24.5). The luciferase assay demonstrated that transactivation capacity of the mutated SOX9 protein was significantly lower than that of the wild-type for the two luciferase reporters (p = 0.0202, p = 0.0082, respectively). CONCLUSION This SOX9 mutation (p.M469V) may contribute to CVM without other systematic deformity, which provides important implications and better understanding of phenotypic variability in SOX9-related skeletal deformities.
Collapse
Affiliation(s)
- Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Lianlei Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Jianhua Hu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Sen Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Bowen Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Yaqi Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Huakang Du
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Yuanqiang Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoxin Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zihui Yan
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Shengru Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Yipeng Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianguo Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihong Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | | | - Guixing Qiu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Renz PF, Valdivia-Francia F, Sendoel A. Some like it translated: small ORFs in the 5'UTR. Exp Cell Res 2020; 396:112229. [PMID: 32818479 DOI: 10.1016/j.yexcr.2020.112229] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/28/2020] [Accepted: 08/07/2020] [Indexed: 01/06/2023]
Abstract
The 5' untranslated region (5'UTR) is critical in determining post-transcriptional control, which is partly mediated by short upstream open reading frames (uORFs) present in half of mammalian transcripts. uORFs are generally considered to provide functionally important repression of the main-ORF by engaging initiating ribosomes, but under specific environmental conditions such as cellular stress, uORFs can become essential to activate the translation of the main coding sequence. In addition, a growing number of uORF-encoded bioactive microproteins have been described, which have the potential to significantly increase cellular protein diversity. Here we review the diverse cellular contexts in which uORFs play a critical role and discuss the molecular mechanisms underlying their function and regulation. The progress over the last decades in dissecting uORF function suggests that the 5'UTR remains an exciting frontier towards understanding how the cellular proteome is shaped in health and disease.
Collapse
Affiliation(s)
- Peter F Renz
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland
| | - Fabiola Valdivia-Francia
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland; Life Science Zurich Graduate School, Molecular Life Science Program, University of Zurich/ ETH Zurich, Switzerland
| | - Ataman Sendoel
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland.
| |
Collapse
|
14
|
Whiffin N, Karczewski KJ, Zhang X, Chothani S, Smith MJ, Evans DG, Roberts AM, Quaife NM, Schafer S, Rackham O, Alföldi J, O'Donnell-Luria AH, Francioli LC, Cook SA, Barton PJR, MacArthur DG, Ware JS. Characterising the loss-of-function impact of 5' untranslated region variants in 15,708 individuals. Nat Commun 2020; 11:2523. [PMID: 32461616 PMCID: PMC7253449 DOI: 10.1038/s41467-019-10717-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/23/2019] [Indexed: 01/17/2023] Open
Abstract
Upstream open reading frames (uORFs) are tissue-specific cis-regulators of protein translation. Isolated reports have shown that variants that create or disrupt uORFs can cause disease. Here, in a systematic genome-wide study using 15,708 whole genome sequences, we show that variants that create new upstream start codons, and variants disrupting stop sites of existing uORFs, are under strong negative selection. This selection signal is significantly stronger for variants arising upstream of genes intolerant to loss-of-function variants. Furthermore, variants creating uORFs that overlap the coding sequence show signals of selection equivalent to coding missense variants. Finally, we identify specific genes where modification of uORFs likely represents an important disease mechanism, and report a novel uORF frameshift variant upstream of NF2 in neurofibromatosis. Our results highlight uORF-perturbing variants as an under-recognised functional class that contribute to penetrant human disease, and demonstrate the power of large-scale population sequencing data in studying non-coding variant classes.
Collapse
Affiliation(s)
- Nicola Whiffin
- National Heart and Lung Institute and MRC London Institute of Medical Sciences, Imperial College London, Du Cane Road, London, W12 0NN, UK.
- NIHR Royal Brompton Cardiovascular Research Centre, Royal Brompton and Harefield National Health Service Foundation Trust, Sydney Street, London, SW3 6NP, UK.
- Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA.
| | - Konrad J Karczewski
- Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Xiaolei Zhang
- National Heart and Lung Institute and MRC London Institute of Medical Sciences, Imperial College London, Du Cane Road, London, W12 0NN, UK
- NIHR Royal Brompton Cardiovascular Research Centre, Royal Brompton and Harefield National Health Service Foundation Trust, Sydney Street, London, SW3 6NP, UK
| | - Sonia Chothani
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Miriam J Smith
- NW Genomic Laboratory Hub, Centre for Genomic Medicine, Division of Evolution and Genomic Science, St Mary's Hospital, University of Manchester, Oxford Road, Manchester, M13 9WL, UK
| | - D Gareth Evans
- NW Genomic Laboratory Hub, Centre for Genomic Medicine, Division of Evolution and Genomic Science, St Mary's Hospital, University of Manchester, Oxford Road, Manchester, M13 9WL, UK
| | - Angharad M Roberts
- National Heart and Lung Institute and MRC London Institute of Medical Sciences, Imperial College London, Du Cane Road, London, W12 0NN, UK
- NIHR Royal Brompton Cardiovascular Research Centre, Royal Brompton and Harefield National Health Service Foundation Trust, Sydney Street, London, SW3 6NP, UK
| | - Nicholas M Quaife
- National Heart and Lung Institute and MRC London Institute of Medical Sciences, Imperial College London, Du Cane Road, London, W12 0NN, UK
- NIHR Royal Brompton Cardiovascular Research Centre, Royal Brompton and Harefield National Health Service Foundation Trust, Sydney Street, London, SW3 6NP, UK
| | - Sebastian Schafer
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
- National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore
| | - Owen Rackham
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Jessica Alföldi
- Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Anne H O'Donnell-Luria
- Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Laurent C Francioli
- Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Stuart A Cook
- National Heart and Lung Institute and MRC London Institute of Medical Sciences, Imperial College London, Du Cane Road, London, W12 0NN, UK
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
- National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore
| | - Paul J R Barton
- National Heart and Lung Institute and MRC London Institute of Medical Sciences, Imperial College London, Du Cane Road, London, W12 0NN, UK
- NIHR Royal Brompton Cardiovascular Research Centre, Royal Brompton and Harefield National Health Service Foundation Trust, Sydney Street, London, SW3 6NP, UK
| | - Daniel G MacArthur
- Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Australia
| | - James S Ware
- National Heart and Lung Institute and MRC London Institute of Medical Sciences, Imperial College London, Du Cane Road, London, W12 0NN, UK
- NIHR Royal Brompton Cardiovascular Research Centre, Royal Brompton and Harefield National Health Service Foundation Trust, Sydney Street, London, SW3 6NP, UK
- Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| |
Collapse
|
15
|
He L, Bi Y, Wang R, Pan C, Chen H, Lan X, Qu L. Detection of a 4 bp Mutation in the 3'UTR Region of Goat Sox9 Gene and Its Effect on the Growth Traits. Animals (Basel) 2020; 10:ani10040672. [PMID: 32294879 PMCID: PMC7222716 DOI: 10.3390/ani10040672] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The sex determining region Y (SRY)-type high mobility group (HMG) box 9 (Sox9) gene is critically important in the formation and development of cartilage and is considered the “main regulator” of chondrogenesis. Additionally, a large number of studies have shown that mutations in a single allele of human Sox9 can lead to campomelic dysplasia syndrome. Therefore, the mutations of Sox9 have been the subject of increasing interest among researchers. However, no studies to date have examined the association between Sox9 gene variants and growth traits in goats. Here, we detected a 4 bp indel in the 3′Untranslated Regions (3′UTR) region of Sox9 in Shaanbei white cashmere (SBWC) goats (n = 1109) and studied the association between this indel and growth traits. The 4 bp indel of Sox9 was significantly associated with body length, heart girth, hip width, and all body measurement indexes (p < 0.05) in SBWC goats. Thus, this deletion could be used as an effective molecular marker for maximizing the growth traits of goats in breeding programs. Abstract The SRY-type HMG box 9 (Sox9) gene plays an important role in chondrocyte development as well as changes in hypertrophic chondrocytes, indicating that Sox9 can regulate growth in animals. However, no studies to date have examined the correlation between variations in Sox9 and growth traits in goats. Here, we found a 4 bp indel in the 3′UTR of Sox9 and verified its association with growth traits in Shaanbei white cashmere goats (n = 1109). The frequencies of two genotypes (ID and II) were 0.397 and 0.603, respectively, and polymorphic information content (PIC) values showed that the indel had a medium PIC (PIC > 0.25). The 4 bp indel was significantly correlated with body length (p = 0.006), heart girth (p = 0.001), and hip width (p = 4.37 × 10 −4). Notably, individuals with the ID genotype had significantly superior phenotypic traits compared with individuals bearing the II genotype. Hence, we speculated that the 4 bp indel is an important mutation affecting growth traits in goat, and may serve as an effective DNA molecular marker for marker-assisted selection in goat breeding programs.
Collapse
Affiliation(s)
- Libang He
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (L.H.)
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling 712100, Shaanxi, China
| | - Yi Bi
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (L.H.)
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling 712100, Shaanxi, China
| | - Ruolan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (L.H.)
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling 712100, Shaanxi, China
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (L.H.)
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling 712100, Shaanxi, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (L.H.)
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling 712100, Shaanxi, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (L.H.)
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling 712100, Shaanxi, China
- Correspondence: (X.L.); (L.Q.); Tel.: +86-137-7207-1502 (X.L.); +86-189-9226-2688 (L.Q.)
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, Shaanxi, China
- Life Science Research Center, Yulin University, Yulin 719000, Shaanxi, China
- Correspondence: (X.L.); (L.Q.); Tel.: +86-137-7207-1502 (X.L.); +86-189-9226-2688 (L.Q.)
| |
Collapse
|
16
|
Bogaert A, Fernandez E, Gevaert K. N-Terminal Proteoforms in Human Disease. Trends Biochem Sci 2020; 45:308-320. [PMID: 32001092 DOI: 10.1016/j.tibs.2019.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/06/2019] [Accepted: 12/31/2019] [Indexed: 12/20/2022]
Abstract
The collection of chemically different protein variants, or proteoforms, by far exceeds the number of protein-coding genes in the human genome. Major contributors are alternative splicing and protein modifications. In this review, we focus on those proteoforms that differ at their N termini with a molecular link to disease. We describe the main underlying mechanisms that give rise to such N-terminal proteoforms, these being splicing, initiation of protein translation, and protein modifications. Given their role in several human diseases, it is becoming increasingly clear that several of these N-terminal proteoforms may have potential as therapeutic interventions and/or for diagnosing and prognosing their associated disease.
Collapse
Affiliation(s)
- Annelies Bogaert
- VIB Center for Medical Biotechnology, VIB, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium
| | - Esperanza Fernandez
- VIB Center for Medical Biotechnology, VIB, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, VIB, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium.
| |
Collapse
|
17
|
Ferdinandusse S, Te Brinke H, Ruiter JPN, Haasjes J, Oostheim W, van Lenthe H, IJlst L, Ebberink MS, Wanders RJA, Vaz FM, Waterham HR. A mutation creating an upstream translation initiation codon in SLC22A5 5'UTR is a frequent cause of primary carnitine deficiency. Hum Mutat 2019; 40:1899-1904. [PMID: 31187905 PMCID: PMC6790604 DOI: 10.1002/humu.23839] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/28/2019] [Accepted: 06/05/2019] [Indexed: 12/31/2022]
Abstract
Primary carnitine deficiency is caused by a defect in the active cellular uptake of carnitine by Na+ -dependent organic cation transporter novel 2 (OCTN2). Genetic diagnostic yield for this metabolic disorder has been relatively low, suggesting that disease-causing variants are missed. We Sanger sequenced the 5' untranslated region (UTR) of SLC22A5 in individuals with possible primary carnitine deficiency in whom no or only one mutant allele had been found. We identified a novel 5'-UTR c.-149G>A variant which we characterized by expression studies with reporter constructs in HeLa cells and by carnitine-transport measurements in fibroblasts using a newly developed sensitive assay based on tandem mass spectrometry. This variant, which we identified in 57 of 236 individuals of our cohort, introduces a functional upstream out-of-frame translation initiation codon. We show that the codon suppresses translation from the wild-type ATG of SLC22A5, resulting in reduced OCTN2 protein levels and concomitantly lower transport activity. With an allele frequency of 24.2% the c.-149G>A variant is the most frequent cause of primary carnitine deficiency in our cohort and may explain other reported cases with an incomplete genetic diagnosis. Individuals carrying this variant should be clinically re-evaluated and monitored to determine if this variant has clinical consequences.
Collapse
Affiliation(s)
- Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism Research Institute, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, The Netherlands
| | - Heleen Te Brinke
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism Research Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - Jos P N Ruiter
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism Research Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - Janet Haasjes
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism Research Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - Wendy Oostheim
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism Research Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - Henk van Lenthe
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism Research Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - Lodewijk IJlst
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism Research Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - Merel S Ebberink
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism Research Institute, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, The Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism Research Institute, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, The Netherlands
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism Research Institute, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, The Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism Research Institute, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, The Netherlands
| |
Collapse
|
18
|
Function and Evolution of Upstream ORFs in Eukaryotes. Trends Biochem Sci 2019; 44:782-794. [PMID: 31003826 DOI: 10.1016/j.tibs.2019.03.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/08/2019] [Accepted: 03/19/2019] [Indexed: 12/18/2022]
Abstract
There is growing interest in the role of translational regulation in cellular homeostasis during organismal development. Translation initiation is the rate-limiting step in mRNA translation and is central to translational regulation. Upstream open reading frames (uORFs) are regulatory elements that are prevalent in eukaryotic mRNAs. uORFs modulate the translation initiation rate of downstream coding sequences (CDSs) by sequestering ribosomes. Over the past several years, genome-wide studies have revealed the widespread regulatory functions of uORFs in different species in different biological contexts. Here, we review the current understanding of uORF-mediated translational regulation from the perspective of functional and evolutionary genomics and address remaining gaps that deserve further study.
Collapse
|
19
|
Abstract
INTRODUCTION Small open reading frames (sORFs) with potential protein-coding capacity have been disclosed in various transcripts, including long noncoding RNAs (LncRNAs), mRNAs (5'-upstream, coding domain, and 3'-downstream), circular RNAs, pri-miRNAs, and ribosomal RNAs (rRNAs). Recent characterization of several sORF-encoded peptides (SEPs or micropeptides) revealed their important roles in many fundamental biological processes in a broad range of species from yeast to human. The success in the mining of micropeptides attributes to the advanced bioinformatics and high-throughput sequencing techniques. Areas covered: sORFs and SEPs were overlooked for their tiny size and the difficulty of identification by bioinformatics analyses. With more and more sORFs and SEPs have been identified, this field has attracted more attention. This review covers recent advances in the strategies for the detection and identification of sORFs and SEPs. Expert commentary: The advantages and drawbacks of the strategies for detection and identification of sORFs and SEPs are discussed, as well as the techniques that are used to decipher the roles of micropeptides in organisms are described.
Collapse
Affiliation(s)
- Xinqiang Yin
- a The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province , China Pharmaceutical University , Nanjing , China.,b The Basic Medical School , North Sichuan Medical College , Nanchong , China
| | - Yuanyuan Jing
- c Department of Preventive Medicine , North Sichuan Medical College , Nanchong , China
| | - Hanmei Xu
- a The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province , China Pharmaceutical University , Nanjing , China.,d State Key Laboratory of Natural Medicines, Ministry of Education , China Pharmaceutical University , Nanjing , China
| |
Collapse
|
20
|
Ruiz-Llorente L, McDonald J, Wooderchak-Donahue W, Briggs E, Chesnutt M, Bayrak-Toydemir P, Bernabeu C. Characterization of a family mutation in the 5' untranslated region of the endoglin gene causative of hereditary hemorrhagic telangiectasia. J Hum Genet 2019; 64:333-339. [PMID: 30728427 PMCID: PMC8075931 DOI: 10.1038/s10038-019-0564-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/20/2018] [Accepted: 12/14/2018] [Indexed: 12/31/2022]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a vascular disease characterized by nose and gastrointestinal bleeding, telangiectases in skin and mucosa, and arteriovenous malformations in major internal organs. Most patients carry a mutation in the coding region of the endoglin (ENG) or activin A receptor type II-1 (ACVRL1) gene. Nonetheless, in around 15% of patients, sequencing analysis and duplication/deletion tests fail to pinpoint mutations in the coding regions of these genes. In these cases, it has been shown that sequencing of the 5’-untranslated region (5’UTR) of ENG may be useful to identify novel mutations in the ENG non-coding region. Here we report the genetic characterization and functional analysis of the heterozygous mutation c.-142A>T in the 5’UTR region of ENG found in a family with several members affected by HHT. This variant gives rise to a new initiation codon of the protein that involves the change in its open reading frame. Transfection studies in monkey cells using endoglin expression vectors demonstrated that c-142A>T mutation results in a clear reduction in the levels of the endoglin protein. These results support the inclusion of the 5’UTR of ENG in the standard genetic testing for HHT to increase its sensitivity.
Collapse
Affiliation(s)
- Lidia Ruiz-Llorente
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
| | - Jamie McDonald
- ARUP Institute for Clinical and Experimental Pathology, and Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Whitney Wooderchak-Donahue
- ARUP Institute for Clinical and Experimental Pathology, and Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Eric Briggs
- ARUP Institute for Clinical and Experimental Pathology, and Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Mark Chesnutt
- Departments of Medicine and Interventional Radiology, Oregon Health & Science University and Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - Pinar Bayrak-Toydemir
- ARUP Institute for Clinical and Experimental Pathology, and Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain. .,ARUP Institute for Clinical and Experimental Pathology, and Department of Pathology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
21
|
Zhang H, Dou S, He F, Luo J, Wei L, Lu J. Genome-wide maps of ribosomal occupancy provide insights into adaptive evolution and regulatory roles of uORFs during Drosophila development. PLoS Biol 2018; 16:e2003903. [PMID: 30028832 PMCID: PMC6070289 DOI: 10.1371/journal.pbio.2003903] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 08/01/2018] [Accepted: 07/03/2018] [Indexed: 11/19/2022] Open
Abstract
Upstream open reading frames (uORFs) play important roles in regulating the main coding DNA sequences (CDSs) via translational repression. Despite their prevalence in the genomes, uORFs are overall discriminated against by natural selection. However, it remains unclear why in the genomes there are so many uORFs more conserved than expected under the assumption of neutral evolution. Here, we generated genome-wide maps of translational efficiency (TE) at the codon level throughout the life cycle of Drosophila melanogaster. We identified 35,735 uORFs that were expressed, and 32,224 (90.2%) of them showed evidence of ribosome occupancy during Drosophila development. The ribosome occupancy of uORFs is determined by genomic features, such as optimized sequence contexts around their start codons, a shorter distance to CDSs, and higher coding potentials. Our population genomic analysis suggests the segregating mutations that create or disrupt uORFs are overall deleterious in D. melanogaster. However, we found for the first time that many (68.3% of) newly fixed uORFs that are associated with ribosomes in D. melanogaster are driven by positive Darwinian selection. Our findings also suggest that uORFs play a vital role in controlling the translational program in Drosophila. Moreover, we found that many uORFs are transcribed or translated in a developmental stage-, sex-, or tissue-specific manner, suggesting that selective transcription or translation of uORFs could potentially modulate the TE of the downstream CDSs during Drosophila development. Upstream open reading frames (uORFs) in the 5′ untranslated regions (UTRs) of messenger RNAs can potentially inhibit translation of the downstream regions that encode proteins by sequestering protein-making machinery the ribosome. Moreover, mutations that destroy existing uORFs or create new ones are known to cause human disease. Although mutations that create new uORFs are generally deleterious and are selected against, many uORFs are evolutionarily conserved across eukaryotic species. To resolve this dilemma, we used extensive mRNA-Seq and ribosome profiling to generate high-resolution genome-wide maps of ribosome occupancy and translational efficiency (TE) during the life cycle of the fruit fly D. melanogaster. This allowed us to identify the sequence features of uORFs that influence their ability to associate with ribosomes. We demonstrate for the first time that the majority of the newly fixed uORFs in D. melanogaster, especially the translated ones, are under positive Darwinian selection. We also show that uORFs exert widespread repressive effects on the translation of the downstream protein-coding region. We find that many uORFs are transcribed or translated in a developmental stage-, sex-, or tissue-specific manner. Our results suggest that during Drosophila development, changes in the TE of uORFs, as well as the inclusion/exclusion of uORFs, are frequently exploited to inversely influence the translation of the downstream protein-coding regions. Our study provides novel insights into the molecular mechanisms and functional consequences of uORF-mediated regulation.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Shengqian Dou
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Feng He
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Junjie Luo
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Liping Wei
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- * E-mail:
| |
Collapse
|
22
|
Budamgunta H, Olexiouk V, Luyten W, Schildermans K, Maes E, Boonen K, Menschaert G, Baggerman G. Comprehensive Peptide Analysis of Mouse Brain Striatum Identifies Novel sORF-Encoded Polypeptides. Proteomics 2018; 18:e1700218. [DOI: 10.1002/pmic.201700218] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/30/2018] [Indexed: 11/10/2022]
Affiliation(s)
| | - Volodimir Olexiouk
- BioBix; Lab for Bioinformatics and Computational Genomics; Department of Mathematical Modelling; Statistics and Bio-informatics; Ghent University; Ghent Belgium
| | - Walter Luyten
- Animal Physiology and Neurobiology; KULeuven; Leuven Belgium
| | | | - Evelyne Maes
- Centre for Proteomics; UAntwerp; Antwerp Belgium
- Proteins and Biomaterials; AgResearch; Christchurch New Zealand
| | - Kurt Boonen
- Centre for Proteomics; UAntwerp; Antwerp Belgium
- Unit Environmental Risk and Health; VITO; Mol Belgium
| | - Gerben Menschaert
- BioBix; Lab for Bioinformatics and Computational Genomics; Department of Mathematical Modelling; Statistics and Bio-informatics; Ghent University; Ghent Belgium
| | - Geert Baggerman
- Centre for Proteomics; UAntwerp; Antwerp Belgium
- Unit Environmental Risk and Health; VITO; Mol Belgium
| |
Collapse
|
23
|
Abstract
A large body of evidence indicates that genome annotation pipelines have biased our view of coding sequences because they generally undersample small proteins and peptides. The recent development of genome-wide translation profiling reveals the prevalence of small/short open reading frames (smORFs or sORFs), which are scattered over all classes of transcripts, including both mRNAs and presumptive long noncoding RNAs. Proteomic approaches further confirm an unexpected variety of smORF-encoded peptides (SEPs), representing an overlooked reservoir of bioactive molecules. Indeed, functional studies in a broad range of species from yeast to humans demonstrate that SEPs can harbor key activities for the control of development, differentiation, and physiology. Here we summarize recent advances in the discovery and functional characterization of smORF/SEPs and discuss why these small players can no longer be ignored with regard to genome function.
Collapse
Affiliation(s)
- Serge Plaza
- Laboratoire de Recherches en Sciences Végétales, Université de Toulouse, Université Paul Sabatier, 31326 Castanet Tolosan, France; .,CNRS, UMR5546, Laboratoire de Recherches en Sciences Végétales, 31326 Castanet Tolosan, France
| | - Gerben Menschaert
- Department of Mathematical Modeling, Statistics and Bioinformatics, University of Ghent, 9000 Gent, Belgium
| | - François Payre
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, Université Paul Sabatier, 31062 Toulouse, France;
| |
Collapse
|