1
|
Mi L, Yao R, Guo W, Wang J, Zhang G, Ye X. Concurrent de novo MACF1 mutation and inherited 16p13.11 microduplication in a preterm newborn with hypotonia, joint hyperlaxity and multiple congenital malformations: a case report. BMC Pediatr 2024; 24:528. [PMID: 39152427 PMCID: PMC11328432 DOI: 10.1186/s12887-024-04628-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 02/07/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND The MACF1 gene, found on chromosome 1p34.3, is vital for controlling cytoskeleton dynamics, cell movement, growth, and differentiation. It consists of 101 exons, spanning over 270 kb. The 16p13.11 microduplication syndrome results from the duplication of 16p13.11 chromosome copies and is associated with various neurodevelopmental and physiological abnormalities. Both MACF1 and 16p13.11 microduplication have significant impacts on neural development, potentially leading to nerve damage or neurological diseases. This study presents a unique case of a patient simultaneously experiencing a de novo MACF1 mutation and a hereditary 16p13.11 microduplication, which has not been reported previously. CASE PRESENTATION In this report, we describe a Chinese preterm newborn girl exhibiting the typical characteristics of 16.13.11 microduplication syndrome. These features include developmental delay, respiratory issues, feeding problems, muscle weakness, excessive joint movement, and multiple congenital abnormalities. Through whole-exome sequencing, we identified a disease-causing mutation in the MACF1 gene (c.15266T > C / p. Met5089Thr). Additionally, after microarray analysis, we confirmed the presence of a 16p13.11 microduplication (chr16:14,916,289 - 16,315,688), which was inherited from the mother. CONCLUSIONS The patient's clinical presentation, marked by muscle weakness and multiple birth defects, may be attributed to both the de novo MACF1 mutation and the 16p13.11 duplication, which could have further amplified her severe symptoms. Genetic testing for individuals with complex clinical manifestations can offer valuable insights for diagnosis and serve as a reference for genetic counseling for both patients and their families.
Collapse
Affiliation(s)
- Lanlan Mi
- Department of Neonatology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruen Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Guo
- Department of Neonatology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Guoqing Zhang
- Department of Neonatology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuxia Ye
- Department of Neonatology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Grzymkowski JK, Chiu YC, Jima DD, Wyatt BH, Jayachandran S, Stutts WL, Nascone-Yoder NM. Developmental regulation of cellular metabolism is required for intestinal elongation and rotation. Development 2024; 151:dev202020. [PMID: 38369735 PMCID: PMC10911142 DOI: 10.1242/dev.202020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024]
Abstract
Malrotation of the intestine is a prevalent birth anomaly, the etiology of which remains poorly understood. Here, we show that late-stage exposure of Xenopus embryos to atrazine, a widely used herbicide that targets electron transport chain (ETC) reactions, elicits intestinal malrotation at high frequency. Interestingly, atrazine specifically inhibits the cellular morphogenetic events required for gut tube elongation, including cell rearrangement, differentiation and proliferation; insufficient gut lengthening consequently reorients the direction of intestine rotation. Transcriptome analyses of atrazine-exposed intestines reveal misexpression of genes associated with glycolysis and oxidative stress, and metabolomics shows that atrazine depletes key glycolytic and tricarboxylic acid cycle metabolites. Moreover, cellular bioenergetics assays indicate that atrazine blocks a crucial developmental transition from glycolytic ATP production toward oxidative phosphorylation. Atrazine-induced defects are phenocopied by rotenone, a known ETC Complex I inhibitor, accompanied by elevated reactive oxygen species, and rescued by antioxidant supplementation, suggesting that malrotation may be at least partly attributable to redox imbalance. These studies reveal roles for metabolism in gut morphogenesis and implicate defective gut tube elongation and/or metabolic perturbations in the etiology of intestinal malrotation.
Collapse
Affiliation(s)
- Julia K. Grzymkowski
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Yu-Chun Chiu
- Molecular Education, Technology and Research Innovation Center (METRIC), Raleigh, NC 27695, USA
| | - Dereje D. Jima
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27607, USA
| | - Brent H. Wyatt
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Sudhish Jayachandran
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Whitney L. Stutts
- Molecular Education, Technology and Research Innovation Center (METRIC), Raleigh, NC 27695, USA
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Nanette M. Nascone-Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
3
|
Marvel ML, Vereen RJ, Drumm CM, Gallagher ME. The "Origin" of the Lower Lobe Opacity. Pediatr Rev 2023; 44:589-591. [PMID: 37777654 DOI: 10.1542/pir.2021-005317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Affiliation(s)
- Madison L Marvel
- San Antonio Uniformed Services Health Education Consortium, San Antonio, TX
| | - Rasheda J Vereen
- San Antonio Uniformed Services Health Education Consortium, San Antonio, TX
| | - Caitlin M Drumm
- San Antonio Uniformed Services Health Education Consortium, San Antonio, TX
| | | |
Collapse
|
4
|
Kato K, Hansen L, Clausen H. Polypeptide N-acetylgalactosaminyltransferase-Associated Phenotypes in Mammals. Molecules 2021; 26:5504. [PMID: 34576978 PMCID: PMC8472655 DOI: 10.3390/molecules26185504] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 01/31/2023] Open
Abstract
Mucin-type O-glycosylation involves the attachment of glycans to an initial O-linked N-acetylgalactosamine (GalNAc) on serine and threonine residues on proteins. This process in mammals is initiated and regulated by a large family of 20 UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferases (GalNAc-Ts) (EC 2.4.1.41). The enzymes are encoded by a large gene family (GALNTs). Two of these genes, GALNT2 and GALNT3, are known as monogenic autosomal recessive inherited disease genes with well characterized phenotypes, whereas a broad spectrum of phenotypes is associated with the remaining 18 genes. Until recently, the overlapping functionality of the 20 members of the enzyme family has hindered characterizing the specific biological roles of individual enzymes. However, recent evidence suggests that these enzymes do not have full functional redundancy and may serve specific purposes that are found in the different phenotypes described. Here, we summarize the current knowledge of GALNT and associated phenotypes.
Collapse
Affiliation(s)
- Kentaro Kato
- Department of Eco-Epidemiology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Lars Hansen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Mærsk Building, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark;
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Mærsk Building, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark;
| |
Collapse
|
5
|
Antenatal finding of 16q24.1 duplication including FOXF1, revealing an autosomal dominant familial pathology with congenital short bowel, malrotation and renal abnormalities. Clin Res Hepatol Gastroenterol 2021; 45:101562. [PMID: 33208297 DOI: 10.1016/j.clinre.2020.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/02/2020] [Accepted: 10/14/2020] [Indexed: 02/04/2023]
|
6
|
Jacinto JGP, Häfliger IM, Gentile A, Drögemüller C. A Heterozygous Missense Variant in MAP2K2 in a Stillborn Romagnola Calf with Skeletal-Cardio-Enteric Dysplasia. Animals (Basel) 2021; 11:ani11071931. [PMID: 34209498 PMCID: PMC8300254 DOI: 10.3390/ani11071931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Skeletal dysplasias encompass a clinical-, pathological- and genetically heterogeneous group of disorders characterized by abnormal cartilage and/or bone formation, growth, and remodeling. They may belong to the so-called RASopathies, congenital conditions caused by heterozygous variants in genes that encode components of the Ras/mitogen-activated protein kinase (MAPK) cell signaling pathway. Herein, an affected calf of the Italian Romagnola breed was reported showing a skeletal-cardio-enteric dysplasia. We identified a most likely disease-causing mutation in the MAP2K2 gene by whole-genome sequencing (WGS). The MAP2K2 gene is known to be related with dominant inherited cardio-facio-cutaneous syndrome in humans, but it was so far unknown to cause a similar disease in domestic animals. We assume that the identified missense variant that was predicted to impair the function of the protein, occurred either within the germline of the dam or post-zygotically in the embryo. Rare lethal diseases such as the skeletal-cardio-enteric dysplasia in livestock are usually not characterized to the molecular level, mainly because of the lack of funds and diagnostic opportunities. Precise WGS-based diagnostics enables the understanding of rare diseases and supports the value of monitoring cattle breeding populations for fatal genetic defects. Abstract RASopathies are a group of developmental disorders caused by dominant mutations in genes that encode components of the Ras/mitogen-activated protein kinase (MAPK) cell signaling pathway. The goal of this study was to characterize the pathological phenotype of a Romagnola stillborn calf with skeletal-cardio-enteric dysplasia and to identify a genetic cause by whole-genome sequencing (WGS). The calf showed reduced fetal growth, a short-spine, a long and narrow face, cardiac defects and heterotopy of the spiral colon. Genetic analysis revealed a private heterozygous missense variant in MAP2K2:p.Arg179Trp, located in the protein kinase domain in the calf, and not found in more than 4500 control genomes including its sire. The identified variant affecting a conserved residue was predicted to be deleterious and most likely occurred de novo. This represents the first example of a dominant acting, and most likely pathogenic, variant in MAP2K2 in domestic animals, thereby providing the first MAP2K2-related large animal model, especially in respect to the enteric malformation. In addition, this study demonstrates the utility of WGS-based precise diagnostics for understanding sporadic congenital syndromic anomalies in cattle and the general utility of continuous surveillance for rare hereditary defects in cattle.
Collapse
Affiliation(s)
- Joana G. P. Jacinto
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064 Bologna, Italy; (J.G.P.J.); (A.G.)
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland;
| | - Irene M. Häfliger
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland;
| | - Arcangelo Gentile
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064 Bologna, Italy; (J.G.P.J.); (A.G.)
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland;
- Correspondence:
| |
Collapse
|
7
|
Mouron-Hryciuk J, Stoppa-Vaucher S, Busiah K, Bouthors T, Antoniou MC, Jacot E, Brusgaard K, Christesen HT, Hussain K, Dwyer A, Roth-Kleiner M, Hauschild M. Congenital hyperinsulinism: 2 case reports with different rare variants in ABCC8. Ann Pediatr Endocrinol Metab 2021; 26:60-65. [PMID: 32871644 PMCID: PMC8026340 DOI: 10.6065/apem.2040042.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/19/2020] [Indexed: 11/20/2022] Open
Abstract
Congenital hyperinsulinism (CHI) is a rare glucose metabolism disorder characterized by unregulated secretion of insulin that leads to hyperinsulinemic hypoglycemia (HH). Most cases are caused by mutations in the KATP-channel genes ABCC8 and KCNJ11. We report 2 patients that experienced severe HH from the first day of life. Patient 1 developed midgut volvulus after initiating diazoxide and required intestinal resection. He was subsequently managed with a high-dose octreotide and glucose-enriched diet. Consistent with diffuse type CHI by 18F-dihydroxyphenylalanine positron emission tomography-computed tomography, genetic testing revealed a homozygous ABCC8 variant, c.1801G>A, p.(Val601Ile). The rare variant was previously reported to be diazoxide-responsive, and the patient responded well to diazoxide monotherapy, with clinical remission at 2 years of age. Patient 2 responded to diazoxide with spontaneous clinical remission at 15 months of age. However, an oral glucose tolerance test at 7 years of age revealed hyperinsulinism. Genetic testing revealed that the proband and several seemingly healthy family members harbored a novel, heterozygous ABCC8 variant, c.1780T>C, p.(Ser594Pro). Genetic findings identified previously unrecognized HH in the proband's mother. The proband's uncle had been diagnosed with monogenic ABCC8-diabetes and was successfully transitioned from insulin to glibenclamide therapy. We report findings of intestinal malrotation and volvulus occurring 2 days after initiation of diazoxide treatment. We also report a novel, heterozygous ABCC8 variant in a family that exhibited cases of CHI in infancy and HH and monogenic diabetes in adult members. The cases demonstrate the importance and clinical utility of genetic analyses for informing and guiding treatment and care.
Collapse
Affiliation(s)
- Julie Mouron-Hryciuk
- Pediatric Endocrinology and Diabetology Unit, Ser vice of Pediatrics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sophie Stoppa-Vaucher
- Pediatric Endocrinology and Diabetology Unit, Ser vice of Pediatrics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland,Department of Pediatrics, Hôpitaux Neuchâtelois, Neuchâtel, Switzerland
| | - Kanetee Busiah
- Pediatric Endocrinology and Diabetology Unit, Ser vice of Pediatrics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Thérèse Bouthors
- Pediatric Endocrinology and Diabetology Unit, Ser vice of Pediatrics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Maria Christina Antoniou
- Pediatric Endocrinology and Diabetology Unit, Ser vice of Pediatrics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Klaus Brusgaard
- Departement of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | | - Khalid Hussain
- D e velopmental Endocr inology Research Group, Clinical and Molecular Genetics Unit, Institute of Child Health, University College London, London, UK
| | - Andrew Dwyer
- Boston College, William F. Connell School of Nursing, Chestnut Hill, MA, USA
| | - Matthias Roth-Kleiner
- Service of Neonatology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Michael Hauschild
- Pediatric Endocrinology and Diabetology Unit, Ser vice of Pediatrics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland,Address for correspondence: Michael Hauschild Pediatric Endocrinology and Diabetology Unit, Service of Pediatrics, Lausanne University Hospital and University of Lausanne, Chemin de Montétan 16 1004 Lausanne, Switzerland
| |
Collapse
|
8
|
A Case Report of Left Atrial Isomerism in a Syndromic Context. Genes (Basel) 2020; 11:genes11101211. [PMID: 33081203 PMCID: PMC7602837 DOI: 10.3390/genes11101211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 11/17/2022] Open
Abstract
The objective of our paper is to underline the importance of assessing microarray genetic analysis for the detection of chromosomal abnormalities in rare cases such as left atrial isomerism, mostly in the context of antenatally detected syndromes. We present the case of a 26-year-old primipara, at 26 weeks of gestation, with prior first trimester normal anomaly scan, who presented in our department accusing lower abdominal pain. An anomaly ultrasound examination of the fetus revealed cardiomegaly with increased size of the right atrium, non-visualization of the atrial septum or the foramen ovale, malalignment of the three-vessel view, location of the superior vena cava above the two-vessel view, slight pericardial effusion, and no interruption of the inferior vena cava nor presence of azygos vein being noted. Associated extracardiac abnormalities, such as small kidneys at the level of the iliac fossa, micrognathia, dolichocephaly with hypoplasia of the cerebellum, increased nuchal fold, and reduced fetal movements were also reported. A diagnostic amniocentesis was performed, and, while the conventional rapid prenatal diagnostic test of the multiplex quantitative fluorescent polymerase chain reaction (PCR) came as normal, the microarray analysis (ChAS, NCBI Built 37 hg 19, detection of microdeletions or microduplications larger than 100 kb) revealed two chromosomal abnormalities: a 22.84 Mb loss of genetic material in the 18q21.31-18q23 chromosomal region and a gain of 22.31 Mb of genetic material in the 20p13-20p11.21 chromosomal region. After the termination of pregnancy, a necropsy of the fetus was performed, confirming heterotaxy syndrome with a common atrium, no atrial septum, superior vena cava draining medianly, and pulmonary veins that drained into the lower segment of the left atrium due to an anatomically enlarged single common atrium. The extracardiac findings consisted of two bilobar lungs, dysmorphic facies, low-set ears, nuchal fold edema, and small kidneys located in the iliac fossa. These findings are conclusive evidence that left atrial isomerism is a more complex syndrome. The genetic tests of the parents did not reveal any translocations of chromosomes 18 and 20 when the Fluorescent in situ Hybridization (FISH) analysis was assessed. The antenatal detection of corroboration between different structural abnormalities using serial ultrasound examinations and cardiac abnormalities, together with the detection of the affected chromosomes, improves the genetic counseling regarding the prognosis of the fetus and the recurrence rate of the condition for siblings.
Collapse
|
9
|
Winberg J, Gustavsson P, Sahlin E, Larsson M, Ehrén H, Fossum M, Wester T, Nordgren A, Nordenskjöld A. Pathogenic copy number variants are detected in a subset of patients with gastrointestinal malformations. Mol Genet Genomic Med 2019; 8:e1084. [PMID: 31837127 PMCID: PMC7005659 DOI: 10.1002/mgg3.1084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/30/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022] Open
Abstract
Background Gastrointestinal atresias and urological defects are main causes of pediatric surgery in infants. As copy number variants (CNVs) have been shown to be involved in the development of congenital malformations, the aim of our study was to investigate the presence of CNVs in patients with gastrointestinal and urological malformations as well as the possibility of tissue‐specific mosaicism for CNVs in the cohort. Methods We have collected tissue and/or blood samples from 25 patients with anorectal malformations, esophageal atresia, or hydronephrosis, and screened for pathogenic CNVs using array comparative genomic hybridization (array‐CGH). Results We detected pathogenic aberrations in 2/25 patients (8%) and report a novel possible susceptibility region for esophageal atresia on 15q26.3. CNV analysis in different tissues from the same patients did not reveal evidence of tissue‐specific mosaicism. Conclusion Our study shows that it is important to perform clinical genetic investigations, including CNV analysis, in patients with congenital gastrointestinal malformations since this leads to improved information to families as well as an increased understanding of the pathogenesis.
Collapse
Affiliation(s)
- Johanna Winberg
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Gustavsson
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ellika Sahlin
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Magnus Larsson
- Pediatric Surgery, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.,Department of Woman and Child Health and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Ehrén
- Pediatric Surgery, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.,Department of Woman and Child Health and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magdalena Fossum
- Pediatric Surgery, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.,Department of Woman and Child Health and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Wester
- Pediatric Surgery, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.,Department of Woman and Child Health and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Agneta Nordenskjöld
- Pediatric Surgery, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.,Department of Woman and Child Health and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Salehi Karlslätt K, Pettersson M, Jäntti N, Szafranski P, Wester T, Husberg B, Ullberg U, Stankiewicz P, Nordgren A, Lundin J, Lindstrand A, Nordenskjöld A. Rare copy number variants contribute pathogenic alleles in patients with intestinal malrotation. Mol Genet Genomic Med 2019; 7:e549. [PMID: 30632303 PMCID: PMC6418355 DOI: 10.1002/mgg3.549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Intestinal malrotation is a potentially life-threatening congenital anomaly due to the risk of developing midgut volvulus. The reported incidence is 0.2%-1% and both apparently hereditary and sporadic cases have been reported. Intestinal malrotation is associated with a few syndromes with known genotype but the genetic contribution in isolated intestinal malrotation has not yet been reported. Rare copy number variants (CNVs) have been implicated in many congenital anomalies, and hence we sought to investigate the potential contribution of rare CNVs in intestinal malrotation. METHODS Analysis of array comparative genomic hybridization (aCGH) data from 47 patients with symptomatic intestinal malrotation was performed. RESULTS We identified six rare CNVs in five patients. Five CNVs involved syndrome loci: 7q11.23 microduplication, 16p13.11 microduplication, 18q terminal deletion, HDAC8 (Cornelia de Lange syndrome type 5 and FOXF1) as well as one intragenic deletion in GALNT14, not previously implicated in human disease. CONCLUSION In the present study, we identified rare CNVs contributing pathogenic or potentially pathogenic alleles in five patients with syndromic intestinal malrotation, suggesting that CNV screening is indicated in intestinal malrotation with associated malformations or neurological involvements. In addition, we identified intestinal malrotation in two known syndromes (Cornelia de Lange type 5 and 18q terminal deletion syndrome) that has not previously been associated with gastrointestinal malformations.
Collapse
Affiliation(s)
- Karin Salehi Karlslätt
- Department of Women's and Children's Health and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Pediatrics, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Pettersson
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nina Jäntti
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Przemyslaw Szafranski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Tomas Wester
- Department of Pediatric Surgery, Karolinska University Hospital, Stockholm, Sweden.,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Britt Husberg
- Department of General Surgery, Ersta Hospital, Stockholm, Sweden
| | - Ulla Ullberg
- Department of Pediatric Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Johanna Lundin
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Agneta Nordenskjöld
- Department of Women's and Children's Health and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Pediatric Surgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|