1
|
Yan J, Wu L, Zheng M, Lv Y, Jiang F, Gao W, Pan F. Mendelian Randomization Study Reveals a Predicted Relationship between Sensorineural Hearing Loss and Mitochondrial Proteins. Otol Neurotol 2024; 45:e655-e663. [PMID: 39052887 DOI: 10.1097/mao.0000000000004266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
BACKGROUND Mitochondrial proteins assume a pivotal role in the onset and progression of diverse diseases. Nonetheless, the causal interconnections with sensorineural hearing loss (SNHL) demand meticulous exploration. Mendelian randomization analysis is a method used in observational epidemiological studies to predict the relationship between exposure factors and outcomes using genetic variants as instrumental variables. In this study, we applied this analytical approach to two distinct samples to predict the causal impact of mitochondrial proteins on SNHL. METHODS Two-sample Mendelian randomization analyses were executed to scrutinize the predicted associations between 63 mitochondrial proteins (nuclear-encoded) and SNHL, utilizing summary statistics derived from genome-wide association studies. Assessments of pleiotropy and heterogeneity were carried out to gauge the robustness of the obtained findings. RESULTS Four mitochondrial proteins exhibited a suggestive causal relationship with the susceptibility to SNHL. Dihydrolipoamide dehydrogenase (DLD; OR = 0.9706, 95% CI = 0.9382-0.9953, p = 0.0230) was linked to a diminished risk of SNHL. Conversely, elevated levels of mitochondrial ribosomal protein L34 (MRPL34; OR = 1.0458, 95% CI = 1.0029-1.0906, p = 0.0362), single-pass membrane protein with aspartate-rich tail 1 (SMDT1; OR = 1.0619, 95% CI = 1.0142-1.1119, p = 0.0104), and superoxide dismutase 2 (SOD2; OR = 1.0323, 95% CI = 1.0020-1.0634, p = 0.0364) were associated with an elevated risk of SNHL. CONCLUSION This research utilized Mendelian randomization analysis to predict the relationship between mitochondrial proteins and SNHL. It provides a potential viewpoint on the etiology and diagnosis.
Collapse
Affiliation(s)
- Jiangyu Yan
- Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Linrong Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Mengmeng Zheng
- Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Yuan Lv
- Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Feng Jiang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Weibo Gao
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Tokyo, Japan
| | - Fangfang Pan
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Kömhoff M, Gracchi V, Dijkman H, Beck BB, Monnens L. Hyporeninemic hypoaldosteronism in RMND1-related mitochondrial disease. Pediatr Nephrol 2024; 39:125-129. [PMID: 37450011 PMCID: PMC10673983 DOI: 10.1007/s00467-023-06079-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/08/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND RMND1 is a nuclear gene needed for proper function of mitochondria. A pathogenic gene will cause multiple oxidative phosphorylation defects. A renal phenotype consisting of hyponatremia, hyperkalemia, and acidosis is frequently reported, previously considered to be due to aldosterone insensitivity. METHODS Clinical features and pathophysiology of three patients will be reported. DNA of these patients was subjected to exome screening. RESULTS In the first family, one pathogenic heterozygous and one highly probable heterozygous mutation were detected. In the second family, a homozygous pathogenic mutation was present. The electrolyte disbalance was not due to aldosterone insensitivity but to low plasma aldosterone concentration, a consequence of low plasma renin activity. This disbalance can be treated. In all three patients, the kidney function declined. In the first family, both children suffered from an unexplained arterial thrombosis with dire consequences. CONCLUSIONS Hyporeninemic hypoaldosteronism is the mechanism causing the electrolyte disbalance reported in patients with RMND1 mutations, and can be treated.
Collapse
Affiliation(s)
- Martin Kömhoff
- University Children's Hospital, Philipps University, Marburg, Germany
| | - Valentina Gracchi
- Department of Pediatrics, UMCG, University Groningen, Groningen, the Netherlands
| | - Henry Dijkman
- Department of Pathology, Radboud University Centre, Nijmegen, the Netherlands
| | - Bodo B Beck
- Department of Human Genetics, Cologne, Germany
| | - Leo Monnens
- Department of Physiology, Radboud University Centre, Nijmegen, the Netherlands.
| |
Collapse
|
3
|
Conti F, Di Martino S, Drago F, Bucolo C, Micale V, Montano V, Siciliano G, Mancuso M, Lopriore P. Red Flags in Primary Mitochondrial Diseases: What Should We Recognize? Int J Mol Sci 2023; 24:16746. [PMID: 38069070 PMCID: PMC10706469 DOI: 10.3390/ijms242316746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Primary mitochondrial diseases (PMDs) are complex group of metabolic disorders caused by genetically determined impairment of the mitochondrial oxidative phosphorylation (OXPHOS). The unique features of mitochondrial genetics and the pivotal role of mitochondria in cell biology explain the phenotypical heterogeneity of primary mitochondrial diseases and the resulting diagnostic challenges that follow. Some peculiar features ("red flags") may indicate a primary mitochondrial disease, helping the physician to orient in this diagnostic maze. In this narrative review, we aimed to outline the features of the most common mitochondrial red flags offering a general overview on the topic that could help physicians to untangle mitochondrial medicine complexity.
Collapse
Affiliation(s)
- Federica Conti
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
| | - Filippo Drago
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95213 Catania, Italy
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
| | - Vincenzo Montano
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy (P.L.)
| | - Gabriele Siciliano
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy (P.L.)
| | - Michelangelo Mancuso
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy (P.L.)
| | - Piervito Lopriore
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy (P.L.)
| |
Collapse
|
4
|
Faridi R, Rea A, Fenollar-Ferrer C, O'Keefe RT, Gu S, Munir Z, Khan AA, Riazuddin S, Hoa M, Naz S, Newman WG, Friedman TB. New insights into Perrault syndrome, a clinically and genetically heterogeneous disorder. Hum Genet 2022; 141:805-819. [PMID: 34338890 PMCID: PMC11330641 DOI: 10.1007/s00439-021-02319-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/14/2021] [Indexed: 01/07/2023]
Abstract
Hearing loss and impaired fertility are common human disorders each with multiple genetic causes. Sometimes deafness and impaired fertility, which are the hallmarks of Perrault syndrome, co-occur in a person. Perrault syndrome is inherited as an autosomal recessive disorder characterized by bilateral mild to severe childhood sensorineural hearing loss with variable age of onset in both sexes and ovarian dysfunction in females who have a 46, XX karyotype. Since the initial clinical description of Perrault syndrome 70 years ago, the phenotype of some subjects may additionally involve developmental delay, intellectual deficit and other neurological disabilities, which can vary in severity in part dependent upon the genetic variants and the gene involved. Here, we review the molecular genetics and clinical phenotype of Perrault syndrome and focus on supporting evidence for the eight genes (CLPP, ERAL1, GGPS1, HARS2, HSD17B4, LARS2, RMND1, TWNK) associated with Perrault syndrome. Variants of these eight genes only account for approximately half of the individuals with clinical features of Perrault syndrome where the molecular genetic base remains under investigation. Additional environmental etiologies and novel Perrault disease-associated genes remain to be identified to account for unresolved cases. We also report a new genetic variant of CLPP, computational structural insight about CLPP and single cell RNAseq data for eight reported Perrault syndrome genes suggesting a common cellular pathophysiology for this disorder. Some unanswered questions are raised to kindle future research about Perrault syndrome.
Collapse
Affiliation(s)
- Rabia Faridi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alessandro Rea
- Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Cristina Fenollar-Ferrer
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Raymond T O'Keefe
- Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Shoujun Gu
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zunaira Munir
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54590, Pakistan
- present address: Department of Neurosciences, University of Turin, 10124, Turin, Italy
| | - Asma Ali Khan
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 54000, Pakistan
| | - Sheikh Riazuddin
- Allama Iqbal Medical Research Center, Jinnah Burn and Reconstructive Surgery Center, University of Health Sciences, Lahore, 54550, Pakistan
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54590, Pakistan
| | - William G Newman
- Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK.
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK.
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Galvan DL, Mise K, Danesh FR. Mitochondrial Regulation of Diabetic Kidney Disease. Front Med (Lausanne) 2021; 8:745279. [PMID: 34646847 PMCID: PMC8502854 DOI: 10.3389/fmed.2021.745279] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
The role and nature of mitochondrial dysfunction in diabetic kidney disease (DKD) has been extensively studied. Yet, the molecular drivers of mitochondrial remodeling in DKD are poorly understood. Diabetic kidney cells exhibit a cascade of mitochondrial dysfunction ranging from changes in mitochondrial morphology to significant alterations in mitochondrial biogenesis, biosynthetic, bioenergetics and production of reactive oxygen species (ROS). How these changes individually or in aggregate contribute to progression of DKD remain to be fully elucidated. Nevertheless, because of the remarkable progress in our basic understanding of the role of mitochondrial biology and its dysfunction in DKD, there is great excitement on future targeted therapies based on improving mitochondrial function in DKD. This review will highlight the latest advances in understanding the nature of mitochondria dysfunction and its role in progression of DKD, and the development of mitochondrial targets that could be potentially used to prevent its progression.
Collapse
Affiliation(s)
- Daniel L Galvan
- Section of Nephrology, The University of Texas at MD Anderson Cancer Center, Houston, TX, United States
| | - Koki Mise
- Section of Nephrology, The University of Texas at MD Anderson Cancer Center, Houston, TX, United States.,Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Farhad R Danesh
- Section of Nephrology, The University of Texas at MD Anderson Cancer Center, Houston, TX, United States.,Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
6
|
Wang Z, Xu H, Xiang T, Liu D, Xu F, Zhao L, Feng Y, Xu L, Liu J, Fang Y, Liu H, Li R, Hu X, Guan J, Liu L, Feng G, Shen Q, Xu H, Frishman D, Tang W, Guo J, Rao J, Shang W. An accessible insight into genetic findings for transplantation recipients with suspected genetic kidney disease. NPJ Genom Med 2021; 6:57. [PMID: 34215756 PMCID: PMC8253729 DOI: 10.1038/s41525-021-00219-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
Determining the etiology of end-stage renal disease (ESRD) constitutes a great challenge in the context of renal transplantation. Evidence is lacking on the genetic findings for adult renal transplant recipients through exome sequencing (ES). Adult patients on kidney transplant waitlist were recruited from 2017 to 2019. Trio-ES was conducted for the families who had multiple affected individuals with nephropathy or clinical suspicion of a genetic kidney disease owing to early onset or extrarenal features. Pathogenic variants were confirmed in 62 from 115 families post sequencing for 421 individuals including 195 health family members as potential living donors. Seventeen distinct genetic disorders were identified confirming the priori diagnosis in 33 (28.7%) families, modified or reclassified the clinical diagnosis in 27 (23.5%) families, and established a diagnosis in two families with ESRD of unknown etiology. In 14.8% of the families, we detected promising variants of uncertain significance in candidate genes associated with renal development or renal disease. Furthermore, we reported the secondary findings of oncogenes in 4.4% of the patients and known single-nucleotide polymorphisms associated with pharmacokinetics in our cohort to predict the drug levels of tacrolimus and mycophenolate. The diagnostic utility of the genetic findings has provided new clinical insight in most families that help with preplanned renal transplantation.
Collapse
Affiliation(s)
- Zhigang Wang
- Department of Kidney Transplantation, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongen Xu
- Precision Medicine Center of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Tianchao Xiang
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| | - Danhua Liu
- Precision Medicine Center of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fei Xu
- Department of Kidney Transplantation, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lixiang Zhao
- Department of Kidney Transplantation, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yonghua Feng
- Department of Kidney Transplantation, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Linan Xu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| | - Jialu Liu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| | - Ye Fang
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| | - Huanfei Liu
- Precision Medicine Center of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ruijun Li
- Precision Medicine Center of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xinxin Hu
- Precision Medicine Center of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jingyuan Guan
- Precision Medicine Center of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Longshan Liu
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guiwen Feng
- Department of Kidney Transplantation, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qian Shen
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| | - Hong Xu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| | - Dmitrij Frishman
- Department of Bioinformatics, Technische Universität München, Freising, Germany
| | - Wenxue Tang
- Precision Medicine Center of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiancheng Guo
- Precision Medicine Center of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China. .,The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China. .,Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Jia Rao
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China. .,Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China. .,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and School of Basic Medical Science, Fudan University, Shanghai, China.
| | - Wenjun Shang
- Department of Kidney Transplantation, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
7
|
Oziębło D, Pazik J, Stępniak I, Skarżyński H, Ołdak M. Two Novel Pathogenic Variants Confirm RMND1 Causative Role in Perrault Syndrome with Renal Involvement. Genes (Basel) 2020; 11:E1060. [PMID: 32911714 PMCID: PMC7564844 DOI: 10.3390/genes11091060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022] Open
Abstract
RMND1 (required for meiotic nuclear division 1 homolog) pathogenic variants are known to cause combined oxidative phosphorylation deficiency (COXPD11), a severe multisystem disorder. In one patient, a homozygous RMND1 pathogenic variant, with an established role in COXPD11, was associated with a Perrault-like syndrome. We performed a thorough clinical investigation and applied a targeted multigene hearing loss panel to reveal the cause of hearing loss, ovarian dysfunction (two cardinal features of Perrault syndrome) and chronic kidney disease in two adult female siblings. Two compound heterozygous missense variants, c.583G>A (p.Gly195Arg) and c.818A>C (p.Tyr273Ser), not previously associated with disease, were identified in RMND1 in both patients, and their segregation with disease was confirmed in family members. The patients have no neurological or intellectual impairment, and nephrological evaluation predicts a benign course of kidney disease. Our study presents the mildest, so far reported, RMND1-related phenotype and delivers the first independent confirmation that RMND1 is causally involved in the development of Perrault syndrome with renal involvement. This highlights the importance of including RMND1 to the list of Perrault syndrome causative factors and provides new insight into the clinical manifestation of RMND1 deficiency.
Collapse
Affiliation(s)
- Dominika Oziębło
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland; (D.O.); (I.S.)
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Joanna Pazik
- Department of Transplantation Medicine, Nephrology and Internal Diseases, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Iwona Stępniak
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland; (D.O.); (I.S.)
| | - Henryk Skarżyński
- Oto-Rhino-Laryngology Surgery Clinic, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland;
| | - Monika Ołdak
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland; (D.O.); (I.S.)
| |
Collapse
|
8
|
Abstract
Mitochondrial disease presenting in childhood is characterized by clinical, biochemical and genetic complexity. Some children are affected by canonical syndromes, but the majority have nonclassical multisystemic disease presentations involving virtually any organ in the body. Each child has a unique constellation of clinical features and disease trajectory, leading to enormous challenges in diagnosis and management of these heterogeneous disorders. This review discusses the classical mitochondrial syndromes presenting most frequently in childhood and then presents an organ-based perspective including systems less frequently linked to mitochondrial disease, such as skin and hair abnormalities and immune dysfunction. An approach to diagnosis is then presented, encompassing clinical evaluation and biochemical, neuroimaging and genetic investigations, and emphasizing the problem of phenocopies. The impact of next-generation sequencing is discussed, together with the importance of functional validation of novel genetic variants never previously linked to mitochondrial disease. The review concludes with a brief discussion of currently available and emerging therapies. The field of mitochondrial medicine has made enormous strides in the last 30 years, with approaching 400 different genes across two genomes now linked to primary mitochondrial disease. However, many important questions remain unanswered, including the reasons for tissue specificity and variability of clinical presentation of individuals sharing identical gene defects, and a lack of disease-modifying therapies and biomarkers to monitor disease progression and/or response to treatment.
Collapse
Affiliation(s)
- S Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
9
|
Shayota BJ, Le NT, Bekheirnia N, Rosenfeld JA, Goldstein AC, Moritz M, Bartholomew DW, Pastore MT, Xia F, Eng C, Yang Y, Lamb DJ, Scaglia F, Braun MC, Bekheirnia MR. Characterization of the renal phenotype in RMND1-related mitochondrial disease. Mol Genet Genomic Med 2019; 7:e973. [PMID: 31568715 PMCID: PMC6900359 DOI: 10.1002/mgg3.973] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/07/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The nuclear encoded gene RMND1 (Required for Meiotic Nuclear Division 1 homolog) has recently been linked to RMND1-related mitochondrial disease (RRMD). This autosomal recessive condition characteristically presents with an infantile-onset multisystem disease characterized by severe hypotonia, global developmental delay, failure to thrive, sensorineural hearing loss, and lactic acidosis. Renal disease, however, appears to be one of the more prominent features of RRMD, affecting patients at significantly higher numbers compared to other mitochondrial diseases. We report the clinical, histological, and molecular findings of four RRMD patients across three academic institutions with a focus on the renal manifestations. METHODS Four patients were identified for the purpose of this study, all of whom had molecular confirmation at the time of inclusion, which included the common pathogenic variant c.713A>G (p.N238S) as well as the three rare variants: c.485delC (p.P162fs), c.533C>T (p.T178M), and c.1317 + 1G>C splice donor variant. Medical history and laboratory findings were collected from the medical records and medical providers. RESULTS In this study, all four patients developed renal disease characterized as tubulopathy (3/4), renal tubular acidosis (2/4), interstitial nephritis (1/4), and/or end-stage renal disease (4/4) necessitating renal transplantation (2/4). Histological evaluation of renal biopsy specimens revealed generalized tubular atrophy and on electron microscopy, abundant mitochondria with pleomorphism and abnormal cristae. CONCLUSION Our experience with RRMD demonstrates a specific pattern of renal disease manifestations and clinical course. Patients are unlikely to respond to traditional chronic kidney disease (CKD) treatments, making early diagnosis and consideration of renal transplantation paramount to the management of RRMD.
Collapse
Affiliation(s)
- Brian J. Shayota
- Texas Children's HospitalHoustonTXUSA
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | | | - Nasim Bekheirnia
- Texas Children's HospitalHoustonTXUSA
- Baylor College of MedicineHoustonTXUSA
- Renal SectionDepartment of PediatricsBaylor College of MedicineHoustonTXUSA
| | - Jill A. Rosenfeld
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Amy C. Goldstein
- Department of Pediatrics and Division of Child NeurologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Michael Moritz
- Department of PediatricsDivision of NephrologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | | | - Matthew T. Pastore
- Division of Molecular and Human GeneticsNationwide Children's HospitalColumbusOHUSA
| | - Fan Xia
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
- Baylor GeneticsBaylor College of MedicineHoustonTXUSA
| | - Christine Eng
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
- Baylor GeneticsBaylor College of MedicineHoustonTXUSA
| | - Yaping Yang
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
- Baylor GeneticsBaylor College of MedicineHoustonTXUSA
| | - Dolores J. Lamb
- Baylor College of MedicineHoustonTXUSA
- Department of UrologyWeill Cornell MedicineNew YorkNYUSA
| | - Fernando Scaglia
- Texas Children's HospitalHoustonTXUSA
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
- BCM‐CUHK Center of Medical GeneticsPrince of Wales HospitalShaTinHong Kong SAR
| | - Michael C. Braun
- Texas Children's HospitalHoustonTXUSA
- Baylor College of MedicineHoustonTXUSA
- Renal SectionDepartment of PediatricsBaylor College of MedicineHoustonTXUSA
| | - Mir Reza Bekheirnia
- Texas Children's HospitalHoustonTXUSA
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
- Baylor College of MedicineHoustonTXUSA
- Renal SectionDepartment of PediatricsBaylor College of MedicineHoustonTXUSA
| |
Collapse
|