1
|
Crabtree JR, Mulenga CM, Tran K, Feinberg K, Santerre JP, Borschel GH. Biohacking Nerve Repair: Novel Biomaterials, Local Drug Delivery, Electrical Stimulation, and Allografts to Aid Surgical Repair. Bioengineering (Basel) 2024; 11:776. [PMID: 39199733 PMCID: PMC11352148 DOI: 10.3390/bioengineering11080776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
The regenerative capacity of the peripheral nervous system is limited, and peripheral nerve injuries often result in incomplete healing and poor outcomes even after repair. Transection injuries that induce a nerve gap necessitate microsurgical intervention; however, even the current gold standard of repair, autologous nerve graft, frequently results in poor functional recovery. Several interventions have been developed to augment the surgical repair of peripheral nerves, and the application of functional biomaterials, local delivery of bioactive substances, electrical stimulation, and allografts are among the most promising approaches to enhance innate healing across a nerve gap. Biocompatible polymers with optimized degradation rates, topographic features, and other functions provided by their composition have been incorporated into novel nerve conduits (NCs). Many of these allow for the delivery of drugs, neurotrophic factors, and whole cells locally to nerve repair sites, mitigating adverse effects that limit their systemic use. The electrical stimulation of repaired nerves in the perioperative period has shown benefits to healing and recovery in human trials, and novel biomaterials to enhance these effects show promise in preclinical models. The use of acellular nerve allografts (ANAs) circumvents the morbidity of donor nerve harvest necessitated by the use of autografts, and improvements in tissue-processing techniques may allow for more readily available and cost-effective options. Each of these interventions aid in neural regeneration after repair when applied independently, and their differing forms, benefits, and methods of application present ample opportunity for synergistic effects when applied in combination.
Collapse
Affiliation(s)
- Jordan R. Crabtree
- Division of Plastic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chilando M. Mulenga
- Division of Plastic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Khoa Tran
- Division of Plastic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Konstantin Feinberg
- Division of Plastic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - J. Paul Santerre
- Institute of Biomedical Engineering, University of Toronto, 164 College St Room 407, Toronto, ON M5S 3G9, Canada
| | - Gregory H. Borschel
- Division of Plastic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
2
|
Podsednik A, Cabrejo R, Rosen J. Adipose Tissue Uses in Peripheral Nerve Surgery. Int J Mol Sci 2022; 23:ijms23020644. [PMID: 35054833 PMCID: PMC8776017 DOI: 10.3390/ijms23020644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 12/15/2022] Open
Abstract
Currently, many different techniques exist for the surgical repair of peripheral nerves. The degree of injury dictates the repair and, depending on the defect or injury of the peripheral nerve, plastic surgeons can perform nerve repairs, grafts, and transfers. All the previously listed techniques are routinely performed in human patients, but a novel addition to these peripheral nerve surgeries involves concomitant fat grafting to the repair site at the time of surgery. Fat grafting provides adipose-derived stem cells to the injury site. Though fat grafting is performed as an adjunct to some peripheral nerve surgeries, there is no clear evidence as to which procedures have improved outcomes resultant from concomitant fat grafting. This review explores the evidence presented in various animal studies regarding outcomes of fat grafting at the time of various types of peripheral nerve surgery.
Collapse
Affiliation(s)
- Allison Podsednik
- The University of Texas Rio Grande Valley School of Medicine, Edinburg, TX 78541, USA;
| | - Raysa Cabrejo
- Section of Plastic Surgery, Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03766, USA;
| | - Joseph Rosen
- Section of Plastic Surgery, Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03766, USA;
- Correspondence:
| |
Collapse
|
3
|
Dehdashtian A, Bratley JV, Svientek SR, Kung TA, Awan TM, Cederna PS, Kemp SW. Autologous fat grafting for nerve regeneration and neuropathic pain: current state from bench-to-bedside. Regen Med 2020; 15:2209-2228. [PMID: 33264053 DOI: 10.2217/rme-2020-0103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite recent advances in microsurgical techniques, functional recovery following peripheral nerve injury remains slow and inadequate. Poor peripheral nerve regeneration not only leaves patients with significant impairments, but also commonly leads to the development of debilitating neuropathic pain. Recent research has demonstrated the potential therapeutic benefits of adipose-derived stem cells, to enhance nerve regeneration. However, clinical translation remains limited due to the current regulatory burdens of the US FDA. A reliable and immediately translatable alternative is autologous fat grafting, where native adipose-derived stem cells present in the transferred tissue can potentially act upon regenerating axons. This review presents the scope of adipose tissue-based therapies to enhance outcomes following peripheral nerve injury, specifically focusing on their role in regeneration and ameliorating neuropathic pain.
Collapse
Affiliation(s)
- Amir Dehdashtian
- Department of Surgery, Section of Plastic & Reconstructive Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jarred V Bratley
- Department of Surgery, Section of Plastic & Reconstructive Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shelby R Svientek
- Department of Surgery, Section of Plastic & Reconstructive Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Theodore A Kung
- Department of Surgery, Section of Plastic & Reconstructive Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tariq M Awan
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Paul S Cederna
- Department of Surgery, Section of Plastic & Reconstructive Surgery, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephen Wp Kemp
- Department of Surgery, Section of Plastic & Reconstructive Surgery, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Abstract
BACKGROUND Peripheral nerve injuries remain a major clinical concern, as they often lead to chronic disability and significant health care expenditures. Despite advancements in microsurgical techniques to enhance nerve repair, biological approaches are needed to augment nerve regeneration and improve functional outcomes after injury. METHODS Presented herein is a review of the current literature on state-of-the-art techniques to enhance functional recovery for patients with nerve injury. Four categories are considered: (1) electroceuticals, (2) nerve guidance conduits, (3) fat grafting, and (4) optogenetics. Significant study results are highlighted, focusing on histologic and functional outcome measures. RESULTS This review documents the current state of the literature. Advancements in neuronal stimulation, tissue engineering, and cell-based therapies demonstrate promise with regard to augmenting nerve regeneration and appropriate rehabilitation. CONCLUSIONS The future of treating peripheral nerve injury will include multimodality use of electroconductive conduits, fat grafting, neuronal stimulation, and optogenetics. Further clinical investigation is needed to confirm the efficacy of these technologies on peripheral nerve recovery in humans, and how best to implement this treatment for a diverse population of nerve-injured patients.
Collapse
|
5
|
Kappos EA, Baenziger‐Sieber P, Tremp M, Engels PE, Thommen S, Sprenger L, Benz RM, Schaefer DJ, Schaeren S, Kalbermatten DF. Epineural adipose-derived stem cell injection in a sciatic rodent model. Brain Behav 2018; 8:e01027. [PMID: 29920989 PMCID: PMC6043702 DOI: 10.1002/brb3.1027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/03/2018] [Accepted: 05/13/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The aim was to evaluate the regenerative effect of epineural injection of rat ASCs (rASCs) in three different settings of acute and chronic compression in a rat sciatic nerve model. METHODS Acute compression (60 s) with a vessel clamp over a distance of 1 mm (group 1) or 10 mm (group 2), as well as chronic compression with a permanent remaining, nonabsorbable polymeric clip over a distance of 1 mm (group 3) was performed. Depending on the group, either 5 × 106 rASCs or the same volume (25 μl) of culture medium (CM) was injected with a 30G needle in the epineurium at the time of compression. Outcome measures were functional gait evaluations, imaging analysis, histomorphometric analyses, and muscle weight. RESULTS The rats in group 2 had a better function than those with group 1 at one and especially at 2 weeks. After 4 weeks however, almost all rats were close to a normal function. There was a similar Muscle Weight Ratio (MWR) after 2 weeks in all groups, whereas after 4 weeks, the MWR in group 3 was lower compared with group 1 and 2. Histomorphometric analysis showed a better myelination in group 1 & 2 compared to group 3 after 4 weeks. ASCs have a beneficial effect on myelin thickness (G-Ratio). CONCLUSIONS We successfully evaluated the regenerative effect of epineural injection of rASCs in three different settings of acute and chronic compression. However, there were no significant differences in outcomes between the ASC-treated groups and control groups.
Collapse
Affiliation(s)
- Elisabeth A. Kappos
- Department of Plastic, Reconstructive, Aesthetic and Hand SurgeryUniversity Hospital BaselBaselSwitzerland
- Department of NeuropathologyInstitute of PathologyUniversity Hospital BaselBaselSwitzerland
| | - Patricia Baenziger‐Sieber
- Department of Plastic, Reconstructive, Aesthetic and Hand SurgeryUniversity Hospital BaselBaselSwitzerland
- Department of NeuropathologyInstitute of PathologyUniversity Hospital BaselBaselSwitzerland
| | - Mathias Tremp
- Department of Plastic, Reconstructive, Aesthetic and Hand SurgeryUniversity Hospital BaselBaselSwitzerland
- Department of NeuropathologyInstitute of PathologyUniversity Hospital BaselBaselSwitzerland
| | - Patricia E. Engels
- Department of Plastic, Reconstructive, Aesthetic and Hand SurgeryUniversity Hospital BaselBaselSwitzerland
- Department of NeuropathologyInstitute of PathologyUniversity Hospital BaselBaselSwitzerland
| | - Sarah Thommen
- Basel Institute for Clinical Epidemiology and BiostatisticsUniversity Hospital BaselBaselSwitzerland
| | - Lima Sprenger
- Department of Plastic, Reconstructive, Aesthetic and Hand SurgeryUniversity Hospital BaselBaselSwitzerland
| | - Robyn M. Benz
- Department of RadiologyUniversity Hospital BaselBaselSwitzerland
| | - Dirk J. Schaefer
- Department of Plastic, Reconstructive, Aesthetic and Hand SurgeryUniversity Hospital BaselBaselSwitzerland
| | - Stefan Schaeren
- Department of Spinal SurgeryUniversity Hospital of BaselBaselSwitzerland
| | - Daniel Felix Kalbermatten
- Department of Plastic, Reconstructive, Aesthetic and Hand SurgeryUniversity Hospital BaselBaselSwitzerland
- Department of NeuropathologyInstitute of PathologyUniversity Hospital BaselBaselSwitzerland
| |
Collapse
|
6
|
Molecular Mechanism of the "Babysitter" Procedure for Nerve Regeneration and Muscle Preservation in Peripheral Nerve Repair in a Rat Model. Ann Plast Surg 2018; 78:704-711. [PMID: 27984220 DOI: 10.1097/sap.0000000000000952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate the molecular mechanism of nerve "babysitter" for nerve regeneration and muscle preservation in peripheral nerve repair. METHODS Eighty rats were equalized into 4 groups: peroneal nerve transected, group A received no treatment; group B underwent end-to-end repair; group C underwent end-to-side "babysitter" with donor epineurial window; group D underwent end-to-side "babysitter" with 40% donor neurectomy. During second-stage procedure, end-to-end neurorrhaphies were executed in groups A, C, and D. Expression of Insulin-like growth factor (IGF)-1 in spinal cord and IGF-1, TNF-like weak inducer of apoptosis (TWEAK), and Fn14 in anterior tibial muscles were evaluated by histopathology at 4-, 8-, 12-, and 24-week timepoints postoperatively. RESULTS At 4 weeks, group D expressed comparable IGF-1 with group B, and greater value than groups A and C in spinal cord. By 24 weeks, groups B and D showed higher values than groups A and C. Insulin-like growth factor 1 in muscles were greater in groups C and D than in groups A and B at 4 weeks, and comparable in all groups at 24 weeks. At 4 weeks, immunoreactive scores of TWEAK were 9.00 ± 0, 3.00 ± 0, 6.75 ± 0.75, and 6.75 ± 0.75, respectively. No differences were noticed in all groups by 24 weeks. At 4 weeks, Fn14 were similar in groups A, C, and D, but lower in group B. Group D showed comparable Fn14 with groups B and C, but lower value than group A at 24 weeks. CONCLUSIONS End-to-side nerve "babysitter" in peripheral nerve could promote fiber regeneration and muscle preservation by regulating expression of IGF-1 and TWEAK-Fn14. End-to-side "babysitter" with partial donor neurectomy could achieve comparable effects with end-to-end repair.
Collapse
|
7
|
Neural stem cells promote nerve regeneration through IL12-induced Schwann cell differentiation. Mol Cell Neurosci 2017; 79:1-11. [DOI: 10.1016/j.mcn.2016.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 09/21/2016] [Accepted: 11/14/2016] [Indexed: 01/10/2023] Open
|
8
|
Tang P, Hoellwarth JS, Chauhan A. Recurrent Cubital Tunnel Syndrome. JBJS Rev 2016; 4:01874474-201603000-00003. [DOI: 10.2106/jbjs.rvw.o.00022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Reichenberger MA, Mueller W, Hartmann J, Diehm Y, Lass U, Koellensperger E, Leimer U, Germann G, Fischer S. ADSCs in a fibrin matrix enhance nerve regeneration after epineural suturing in a rat model. Microsurgery 2015; 36:491-500. [DOI: 10.1002/micr.30018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/14/2015] [Accepted: 12/08/2015] [Indexed: 01/05/2023]
Affiliation(s)
- Matthias A. Reichenberger
- ETHIANUM-Clinic for Plastic and Reconstructive Surgery; Aesthetic and Preventive Medicine at Heidelberg University Hospital; Heidelberg Germany
| | - Wolf Mueller
- University Hospital Leipzig, Department of Neuropathology; University of Leipzig; Leipzig Germany
| | - Jennifer Hartmann
- ETHIANUM-Clinic for Plastic and Reconstructive Surgery; Aesthetic and Preventive Medicine at Heidelberg University Hospital; Heidelberg Germany
| | - Yannick Diehm
- BG Trauma Centre Ludwigshafen; Clinic for Hand, Plastic and Reconstructive Surgery, Burn Centre, Hand and Plastic Surgery of the University of Heidelberg; Heidelberg Germany
| | - Ulrike Lass
- Clinical Cooperation Unit Neuropathology; German Cancer Research Center; Heidelberg Germany
| | - Eva Koellensperger
- ETHIANUM-Clinic for Plastic and Reconstructive Surgery; Aesthetic and Preventive Medicine at Heidelberg University Hospital; Heidelberg Germany
| | - Uwe Leimer
- ETHIANUM-Clinic for Plastic and Reconstructive Surgery; Aesthetic and Preventive Medicine at Heidelberg University Hospital; Heidelberg Germany
| | - Günter Germann
- ETHIANUM-Clinic for Plastic and Reconstructive Surgery; Aesthetic and Preventive Medicine at Heidelberg University Hospital; Heidelberg Germany
| | - Sebastian Fischer
- BG Trauma Centre Ludwigshafen; Clinic for Hand, Plastic and Reconstructive Surgery, Burn Centre, Hand and Plastic Surgery of the University of Heidelberg; Heidelberg Germany
| |
Collapse
|
10
|
The Effect of Autologous Fat Graft with Different Surgical Repair Methods on Nerve Regeneration in a Rat Sciatic Nerve Defect Model. Plast Reconstr Surg 2015; 136:1181-1191. [DOI: 10.1097/prs.0000000000001822] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Walocko FM, Khouri RK, Urbanchek MG, Levi B, Cederna PS. The potential roles for adipose tissue in peripheral nerve regeneration. Microsurgery 2015; 36:81-8. [PMID: 26773850 DOI: 10.1002/micr.22480] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 06/29/2015] [Accepted: 08/19/2015] [Indexed: 02/06/2023]
Abstract
INTRODUCTION This review summarizes current understanding about the role of adipose-derived tissues in peripheral nerve regeneration and discusses potential advances that would translate this approach into the clinic. METHODS We searched PubMed for in vivo, experimental studies on the regenerative effects of adipose-derived tissues on peripheral nerve injuries. We summarized the methods and results for the 42 experiments. RESULTS Adipose-derived tissues enhanced peripheral nerve regeneration in 86% of the experiments. Ninety-five percent evaluated purified, cultured, or differentiated adipose tissue. These approaches have regulatory and scaling burdens, restricting clinical usage. Only one experiment tested the ability of adipose tissue to enhance nerve regeneration in conjunction with nerve autografts, the clinical gold standard. CONCLUSION Scientific studies illustrate that adipose-derived tissues enhance regeneration of peripheral nerves. Before this approach achieves clinical acceptance, fat processing must become automated and regulatory approval achieved. Animal studies using whole fat grafts are greatly needed for clinical translation.
Collapse
Affiliation(s)
- Frances M Walocko
- Office of Medical Student Education, University of Michigan Medical School, Ann Arbor, MI.,Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Roger K Khouri
- Office of Medical Student Education, University of Michigan Medical School, Ann Arbor, MI.,Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Melanie G Urbanchek
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Benjamin Levi
- Office of Medical Student Education, University of Michigan Medical School, Ann Arbor, MI.,Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Paul S Cederna
- Office of Medical Student Education, University of Michigan Medical School, Ann Arbor, MI.,Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| |
Collapse
|
12
|
Hu L, Yang G, Hägg D, Sun G, Ahn JM, Jiang N, Ricupero CL, Wu J, Rodhe CH, Ascherman JA, Chen L, Mao JJ. IGF1 Promotes Adipogenesis by a Lineage Bias of Endogenous Adipose Stem/Progenitor Cells. Stem Cells 2015; 33:2483-95. [PMID: 26010009 DOI: 10.1002/stem.2052] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/31/2014] [Indexed: 01/08/2023]
Abstract
Adipogenesis is essential for soft tissue reconstruction following trauma or tumor resection. We demonstrate that CD31(-)/34(+)/146(-) cells, a subpopulation of the stromal vascular fraction (SVF) of human adipose tissue, were robustly adipogenic. Insulin growth factor-1 (IGF1) promoted a lineage bias towards CD31(-)/34(+)/146(-) cells at the expense of CD31(-)/34(+)/146(+) cells. IGF1 was microencapsulated in poly(lactic-co-glycolic acid) scaffolds and implanted in the inguinal fat pad of C57Bl6 mice. Control-released IGF1 induced remarkable adipogenesis in vivo by recruiting endogenous cells. In comparison with the CD31(-)/34(+)/146(+) cells, CD31(-)/34(+)/146(-) cells had a weaker Wnt/β-catenin signal. IGF1 attenuated Wnt/β-catenin signaling by activating Axin2/PPARγ pathways in SVF cells, suggesting IGF1 promotes CD31(-)/34(+)/146(-) bias through tuning Wnt signal. PPARγ response element (PPRE) in Axin2 promoter was crucial for Axin2 upregulation, suggesting that PPARγ transcriptionally activates Axin2. Together, these findings illustrate an Axin2/PPARγ axis in adipogenesis that is particularly attributable to a lineage bias towards CD31(-)/34(+)/146(-) cells, with implications in adipose regeneration.
Collapse
Affiliation(s)
- Li Hu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.,Center for Craniofacial Regeneration (CCR), New York, New York, USA
| | - Guodong Yang
- Center for Craniofacial Regeneration (CCR), New York, New York, USA
| | - Daniel Hägg
- Center for Craniofacial Regeneration (CCR), New York, New York, USA
| | - Guoming Sun
- Center for Craniofacial Regeneration (CCR), New York, New York, USA
| | - Jeffrey M Ahn
- Department of Otolaryngology, New York, New York, USA
| | - Nan Jiang
- Center for Craniofacial Regeneration (CCR), New York, New York, USA
| | | | - June Wu
- Department of Plastic Surgery, Columbia University Medical Center, New York, New York, USA
| | - Christine Hsu Rodhe
- Department of Plastic Surgery, Columbia University Medical Center, New York, New York, USA
| | - Jeffrey A Ascherman
- Department of Plastic Surgery, Columbia University Medical Center, New York, New York, USA
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jeremy J Mao
- Center for Craniofacial Regeneration (CCR), New York, New York, USA
| |
Collapse
|
13
|
Leibig N, Boyle V, Kraus D, Stark GB, Penna V. Il10 and poly-dl
-lactide-ɛ-caprolactone conduits in critical size nerve defect bridging-An experimental study. Microsurgery 2015; 36:410-416. [DOI: 10.1002/micr.22423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 04/07/2015] [Accepted: 04/10/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Nico Leibig
- Department of Hand; Plastic and Reconstructive Surgery, BG Trauma Centre; Ludwigshafen Germany
| | - Veronika Boyle
- Clinic for Neurology, Ortenau Klinikum Lahr-Ettenheim; Lahr Germany
| | - Daniel Kraus
- Clinic of Plastic and Hand Surgery, University Medical Center; Freiburg Germany
| | | | - Vincenzo Penna
- Clinic of Plastic and Hand Surgery, University Medical Center; Freiburg Germany
| |
Collapse
|
14
|
Eren F, Öksüz S, Küçükodaci Z, Kendırlı MT, Cesur C, Alarçın E, Irem Bektaş E, Karagöz H, Kerımoğlu O, Köse GT, Ülkür E, Gorantla V. Targeted mesenchymal stem cell and vascular endothelial growth factor strategies for repair of nerve defects with nerve tissue implanted autogenous vein graft conduits. Microsurgery 2015; 36:578-585. [PMID: 25867169 DOI: 10.1002/micr.22401] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 01/13/2015] [Accepted: 02/18/2015] [Indexed: 01/16/2023]
Abstract
Peripheral nerve gaps exceeding 1 cm require a bridging repair strategy. Clinical feasibility of autogenous nerve grafting is limited by donor site comorbidity. In this study we investigated neuroregenerative efficacy of autogenous vein grafts implanted with tissue fragments from distal nerve in combination with vascular endothelial growth factor (VEGF) or mesenchymal stem cells (MSCs) in repair of rat peripheral nerve defects. Six-groups of Sprague-Dawley rats (n = 8 each) were evaluated in the autogenous setting using a 1.6 cm long peroneal nerve defect: Empty vein graft (group 1), Nerve graft (group 2), Vein graft and nerve fragments (group 3), Vein graft and nerve fragments and blank microspheres (group 4), Vein graft and nerve fragments and VEGF microspheres (group 5), Vein graft and nerve fragments and MSCs (group 6). Nerve fragments were derived from distal segment. Walking track analysis, electrophysiology and nerve histomorphometry were performed for assessment. Peroneal function indices (PFI), electrophysiology (amplitude) and axon count results for group 2 were -9.12 ± 3.07, 12.81 ± 2.46 mV, and 1697.88 ± 166.18, whereas the results for group 5 were -9.35 ± 2.55, 12.68 ± 1.78, and 1566 ± 131.44, respectively. The assessment results did not reveal statistical difference between groups 2 and 5 (P > 0.05). The best outcomes were seen in group 2 and 5 followed by group 6. Compared to other groups, poorest outcomes were seen in group 1 (P ≤ 0.05). PFI, electrophysiology (amplitude) and axon count results for group 1 were -208.82 ± 110.69, 0.86 ± 0.52, and 444.50 ± 274.03, respectively. Vein conduits implanted with distal nerve-derived nerve fragments improved axonal regeneration. VEGF was superior to MSCs in facilitating nerve regeneration. © 2015 Wiley Periodicals, Inc. Microsurgery 36:578-585, 2016.
Collapse
Affiliation(s)
- Fıkret Eren
- Department of Plastic and Reconstructive Surgery, Gulhane Military Medical Academy, Haydarpasa Training Hospital, Istanbul, Turkey
| | - Sınan Öksüz
- Department of Plastic and Reconstructive Surgery, Gulhane Military Medical Academy, Haydarpasa Training Hospital, Istanbul, Turkey. .,Department of Plastic and Reconstructive Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA.
| | - Zafer Küçükodaci
- Department of Pathology, Gulhane Military Medical Academy, Haydarpasa Training Hospital, Istanbul, Turkey
| | - Mustafa Tansel Kendırlı
- Department of Neurology, Gulhane Military Medical Academy, Haydarpasa Training Hospital, Istanbul, Turkey
| | - Ceyhun Cesur
- Department of Plastic and Reconstructive Surgery, Gulhane Military Medical Academy, Haydarpasa Training Hospital, Istanbul, Turkey
| | - Emıne Alarçın
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Marmara University, ıstanbul, Turkey
| | - Ezgı Irem Bektaş
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Hüseyın Karagöz
- Department of Plastic and Reconstructive Surgery, Gulhane Military Medical Academy, Haydarpasa Training Hospital, Istanbul, Turkey
| | - Oya Kerımoğlu
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Marmara University, ıstanbul, Turkey
| | - Gamze Torun Köse
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey.,CoE in Biomaterials and Tissue Engineering, BIOMATEN, Ankara, Turkey
| | - Ersın Ülkür
- Department of Plastic and Reconstructive Surgery, Gulhane Military Medical Academy, Haydarpasa Training Hospital, Istanbul, Turkey
| | - Vijay Gorantla
- Department of Plastic and Reconstructive Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| |
Collapse
|
15
|
Geuna S. The sciatic nerve injury model in pre-clinical research. J Neurosci Methods 2015; 243:39-46. [PMID: 25629799 DOI: 10.1016/j.jneumeth.2015.01.021] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 12/15/2022]
Abstract
In the pre-clinical view, the study of peripheral nerve repair and regeneration still needs to be carried out in animal models due to the structural complexity of this organ which can be only partly simulated in vitro. The far most used experimental model is based on the injury of the sciatic nerve, the largest nerve trunk in mammals. In this paper, the potential application of the sciatic nerve injury model in pre-clinical research is critically reviewed. This paper is aimed at helping researchers in properly employing this in vivo model for the study of nerve repair and regeneration as well as interpreting the results in a clinical translation perspective.
Collapse
Affiliation(s)
- Stefano Geuna
- Neuroscience Institute of the Cavalieri Ottolenghi Foundation & Department of Clinical and Biological Sciences, University of Turin, Italy.
| |
Collapse
|
16
|
Sekiguchi H, Motomiya M, Sakurai K, Matsumoto D, Funakoshi T, Iwasaki N. Brachial artery perforator-based propeller flap coverage for prevention of readhesion after ulnar nerve neurolysis. Microsurgery 2014; 35:158-62. [DOI: 10.1002/micr.22303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/26/2014] [Accepted: 07/18/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Hirotake Sekiguchi
- Department of Orthopaedic Surgery; Kushiro Rosai Hospital Hand Center; Kushiro Japan
| | - Makoto Motomiya
- Department of Orthopaedic Surgery; Kushiro Rosai Hospital Hand Center; Kushiro Japan
- Department of Orthopedic Surgery; Graduate School of Medicine, Hokkaido University; Sapporo Japan
| | - Keisuke Sakurai
- Department of Plastic Surgery; Kushiro Rosai Hospital; Kushiro Japan
| | - Dai Matsumoto
- Department of Orthopaedic Surgery; Kushiro Rosai Hospital Hand Center; Kushiro Japan
| | - Tadanao Funakoshi
- Department of Orthopedic Surgery; Graduate School of Medicine, Hokkaido University; Sapporo Japan
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery; Graduate School of Medicine, Hokkaido University; Sapporo Japan
| |
Collapse
|
17
|
Gunay H, Kucuk L, Erbas O, Atamaz FC, Kucuk U, Coskunol E. The effectiveness of tetanus toxin on sciatic nerve regeneration: a preliminary experimental study in rats. Microsurgery 2014; 34:384-9. [PMID: 24665036 DOI: 10.1002/micr.22249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 02/22/2014] [Accepted: 02/28/2014] [Indexed: 12/17/2022]
Abstract
OBJECT The purpose was to investigate the effects of local tetanus toxin (TeTx) application on sciatic nerve regeneration following a rat model of transection injury. METHODS After both sciatic nerves were transected and repaired with three epineural sutures, 12 male Wistar albino rats were divided into two groups. 0.25 ml (2.5 flocculation units) TeTx was injected into a piece of absorbable gelatin sponge in TeTx group. In controls, 0.25 ml saline injected. Assessments were performed by using climbing degrees, compound muscle action potentials (CMAPs) and histological parameters (axon number and axonal diameter) 12th week. RESULTS CMAPs amplitudes were 11.6 ± 4.7 mV and 1.4 ± 1.3 mV in gastrocnemius and interdigital muscles in TeTx group (5.8 ± 2.4 mV and 0.2 ± 0.1 mV, P < 0.05). Climbing degrees were significantly different (61.6 ± 1.7 vs. 38.3 ± 2.6, P < 0.05). Total axon numbers were higher (1341.1 ± 57.3 vs. 877.5 ± 34.9, P < 0.05) and the mean axon diameter was smaller (4.2 ± 2.1 vs. 2.5 ± 1.9, P < 0.05) in the TeTx group. CONCLUSION This preliminary study firstly demonstrated the effectiveness of TeTx on nerve repair in experimental sciatic rat model based on functional, electromyographic and histological parameters.
Collapse
Affiliation(s)
- Huseyin Gunay
- Department of Orthopaedic Surgery, Medical Faculty of Ege University, Izmir, Turkey
| | | | | | | | | | | |
Collapse
|
18
|
Widgerow AD, Salibian AA, Kohan E, Sartiniferreira T, Afzel H, Tham T, Evans GRD. "Strategic sequences" in adipose-derived stem cell nerve regeneration. Microsurgery 2013; 34:324-30. [PMID: 24375471 DOI: 10.1002/micr.22219] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 12/08/2013] [Accepted: 12/12/2013] [Indexed: 01/02/2023]
Abstract
BACKGROUND Peripheral nerve injuries (PNI) are a major source of morbidity worldwide. The development of cellular regenerative therapies has the potential to improve outcomes of nerve injuries. However, an ideal therapy has yet to be found. The purpose of this study is to examine the current literature key points of regenerative techniques using human adipose-derived stem cells (hADSCs) for nerve regeneration and derive a comprehensive approach to hADSC therapy for PNI. METHODS A literature review was conducted using the electronic database PubMed to search for current experimental approaches to repairing PNI using hADSCs. Key search elements focused on specific components of nerve regeneration paradigms, including (1) support cells, (2) scaffolds, and (3) nerve conduits. RESULTS Strategic sequences were developed by optimizing the components of different experimental regenerative therapies. These sequences focus on priming hADSCs within a specialized growth medium, a hydrogel matrix base, and a collagen nerve conduit to achieve neuromodulatory nerve regeneration. hADSCs may exert their neuroregenerative influence through paracrine effects on surrounding Schwann cells in addition to physical interactions with injured tissue. CONCLUSIONS hADSCs may play a key role in nerve regeneration by acting primarily as support for local neurotrophic mediation and modulation of nerve growth rather than that of a primary neuronal differentiation agent.
Collapse
Affiliation(s)
- Alan D Widgerow
- Department of Aesthetic and Plastic Surgery, University of California, Irvine, CA
| | | | | | | | | | | | | |
Collapse
|
19
|
Zor F, Deveci M, Kilic A, Ozdag MF, Kurt B, Sengezer M, SÖnmez TT. Effect of vegf gene therapy and hyaluronic acid film sheath on peripheral nerve regeneration. Microsurgery 2013; 34:209-16. [DOI: 10.1002/micr.22196] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 08/03/2013] [Accepted: 09/11/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Fatih Zor
- Department of Plastic and Reconstructive Surgery; Gülhane Military Medical Academy and School of Medicine; Ankara Turkey
| | - Mustafa Deveci
- Department of Plastic and Reconstructive Surgery; Gülhane Military Medical Academy and School of Medicine; Ankara Turkey
| | - Abdullah Kilic
- Department of Microbiology and Clinical Microbiology; Gülhane Military Medical Academy and School of Medicine; Ankara Turkey
| | - Mehmet Fatih Ozdag
- Department of Neurology; Gülhane Military Medical Academy and School of Medicine; Ankara Turkey
| | - Bulent Kurt
- Department of Pathology; Gülhane Military Medical Academy and School of Medicine; Ankara Turkey
| | - Mustafa Sengezer
- Department of Plastic and Reconstructive Surgery; Gülhane Military Medical Academy and School of Medicine; Ankara Turkey
| | - Tolga Taha SÖnmez
- Department of Oral and Maxillofacial Surgery; Medical Faculty, RWTH Aachen University; Aachen Germany
| |
Collapse
|