1
|
Worth AP, Louisse J, Macko P, Sala Benito JV, Paini A. Virtual Cell Based Assay simulations of intra-mitochondrial concentrations in hepatocytes and cardiomyocytes. Toxicol In Vitro 2017; 45:222-232. [PMID: 28911986 PMCID: PMC5745147 DOI: 10.1016/j.tiv.2017.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 09/04/2017] [Accepted: 09/08/2017] [Indexed: 01/16/2023]
Abstract
In order to replace the use of animals in toxicity testing, there is a need to predict human in vivo toxic doses from concentrations that cause adverse effects in in vitro test systems. The virtual cell based assay (VCBA) has been developed to simulate intracellular concentrations as a function of time, and can be used to interpret in vitro concentration-response curves. In this study we refine and extend the VCBA model by including additional target-organ cell models and by simulating the fate and effects of chemicals at the organelle level. In particular, we describe the extension of the original VCBA to simulate chemical fate in liver (HepaRG) cells and cardiomyocytes (ICell cardiomyocytes), and we explore the effects of chemicals at the mitochondrial level. This includes a comparison of: a) in vitro results on cell viability and mitochondrial membrane potential (mmp) from two cell models (HepaRG cells and ICell cardiomyocytes); and b) VCBA simulations, including the cell and mitochondrial compartment, simulating the mmp for both cell types. This proof of concept study illustrates how the relationship between intra cellular, intra mitochondrial concentration, mmp and cell toxicity can be obtained by using the VCBA.
Collapse
Affiliation(s)
- Andrew P Worth
- European Commission, Joint Research Centre, Directorate F - Health, Consumers and Reference Materials, Chemical Safety and Alternative Methods Unit, EURL ECVAM, Ispra, Italy
| | - Jochem Louisse
- European Commission, Joint Research Centre, Directorate F - Health, Consumers and Reference Materials, Chemical Safety and Alternative Methods Unit, EURL ECVAM, Ispra, Italy
| | - Peter Macko
- European Commission, Joint Research Centre, Directorate F - Health, Consumers and Reference Materials, Chemical Safety and Alternative Methods Unit, EURL ECVAM, Ispra, Italy
| | - J V Sala Benito
- European Commission, Joint Research Centre, Directorate F - Health, Consumers and Reference Materials, Chemical Safety and Alternative Methods Unit, EURL ECVAM, Ispra, Italy
| | - Alicia Paini
- European Commission, Joint Research Centre, Directorate F - Health, Consumers and Reference Materials, Chemical Safety and Alternative Methods Unit, EURL ECVAM, Ispra, Italy.
| |
Collapse
|
2
|
Mangiatordi GF, Alberga D, Altomare CD, Carotti A, Catto M, Cellamare S, Gadaleta D, Lattanzi G, Leonetti F, Pisani L, Stefanachi A, Trisciuzzi D, Nicolotti O. Mind the Gap! A Journey towards Computational Toxicology. Mol Inform 2016; 35:294-308. [PMID: 27546034 DOI: 10.1002/minf.201501017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/23/2016] [Indexed: 11/11/2022]
Abstract
Computational methods have advanced toxicology towards the development of target-specific models based on a clear cause-effect rationale. However, the predictive potential of these models presents strengths and weaknesses. On the good side, in silico models are valuable cheap alternatives to in vitro and in vivo experiments. On the other, the unconscious use of in silico methods can mislead end-users with elusive results. The focus of this review is on the basic scientific and regulatory recommendations in the derivation and application of computational models. Attention is paid to examine the interplay between computational toxicology and drug discovery and development. Avoiding the easy temptation of an overoptimistic future, we report our view on what can, or cannot, realistically be done. Indeed, studies of safety/toxicity represent a key element of chemical prioritization programs carried out by chemical industries, and primarily by pharmaceutical companies.
Collapse
Affiliation(s)
- Giuseppe Felice Mangiatordi
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Domenico Alberga
- Dipartimento Interateneo di Fisica 'M.Merlin', Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Cosimo Damiano Altomare
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Angelo Carotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Marco Catto
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Saverio Cellamare
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Domenico Gadaleta
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Gianluca Lattanzi
- Dipartimento Interateneo di Fisica 'M.Merlin', Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Francesco Leonetti
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Leonardo Pisani
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Angela Stefanachi
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Daniela Trisciuzzi
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy.
| |
Collapse
|
3
|
D'Alessandro LA, Hoehme S, Henney A, Drasdo D, Klingmüller U. Unraveling liver complexity from molecular to organ level: challenges and perspectives. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 117:78-86. [PMID: 25433231 DOI: 10.1016/j.pbiomolbio.2014.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/28/2014] [Accepted: 11/19/2014] [Indexed: 12/13/2022]
Abstract
Biological responses are determined by information processing at multiple and highly interconnected scales. Within a tissue the individual cells respond to extracellular stimuli by regulating intracellular signaling pathways that in turn determine cell fate decisions and influence the behavior of neighboring cells. As a consequence the cellular responses critically impact tissue composition and architecture. Understanding the regulation of these mechanisms at different scales is key to unravel the emergent properties of biological systems. In this perspective, a multidisciplinary approach combining experimental data with mathematical modeling is introduced. We report the approach applied within the Virtual Liver Network to analyze processes that regulate liver functions from single cell responses to the organ level using a number of examples. By facilitating interdisciplinary collaborations, the Virtual Liver Network studies liver regeneration and inflammatory processes as well as liver metabolic functions at multiple scales, and thus provides a suitable example to identify challenges and point out potential future application of multi-scale systems biology.
Collapse
Affiliation(s)
- L A D'Alessandro
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany
| | - S Hoehme
- Interdisciplinary Centre for Bioinformatics (IZBI), University of Leipzig, Germany
| | - A Henney
- Obsidian Biomedical Consulting Ltd., Macclesfield, UK; The German Virtual Liver Network, University of Heidelberg, 69120 Heidelberg, Germany
| | - D Drasdo
- Interdisciplinary Centre for Bioinformatics (IZBI), University of Leipzig, Germany; Institut National de Recherche en Informatique et en Automatique (INRIA), Domaine de Voluceau, 78150 Rocquencourt, France; University Pierre and Marie Curie and CNRS UMR 7598, LJLL, F-75005 Paris, France; CNRS, 7598 Paris, France
| | - U Klingmüller
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany.
| |
Collapse
|
4
|
Diaz Ochoa JG, Bucher J, Péry ARR, Zaldivar Comenges JM, Niklas J, Mauch K. A multi-scale modeling framework for individualized, spatiotemporal prediction of drug effects and toxicological risk. Front Pharmacol 2013; 3:204. [PMID: 23346056 PMCID: PMC3551257 DOI: 10.3389/fphar.2012.00204] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/17/2012] [Indexed: 12/14/2022] Open
Abstract
In this study, we focus on a novel multi-scale modeling approach for spatiotemporal prediction of the distribution of substances and resulting hepatotoxicity by combining cellular models, a 2D liver model, and whole body model. As a case study, we focused on predicting human hepatotoxicity upon treatment with acetaminophen based on in vitro toxicity data and potential inter-individual variability in gene expression and enzyme activities. By aggregating mechanistic, genome-based in silico cells to a novel 2D liver model and eventually to a whole body model, we predicted pharmacokinetic properties, metabolism, and the onset of hepatotoxicity in an in silico patient. Depending on the concentration of acetaminophen in the liver and the accumulation of toxic metabolites, cell integrity in the liver as a function of space and time as well as changes in the elimination rate of substances were estimated. We show that the variations in elimination rates also influence the distribution of acetaminophen and its metabolites in the whole body. Our results are in agreement with experimental results. What is more, the integrated model also predicted variations in drug toxicity depending on alterations of metabolic enzyme activities. Variations in enzyme activity, in turn, reflect genetic characteristics or diseases of individuals. In conclusion, this framework presents an important basis for efficiently integrating inter-individual variability data into models, paving the way for personalized or stratified predictions of drug toxicity and efficacy.
Collapse
|