1
|
Ma C, Mei C, Liu J, Li H, Jiao M, Hu H, Zhang Y, Xiong J, He Y, Wei W, Yang H, Chen H. Effect of baicalin on eradicating biofilms of bovine milk derived Acinetobacter lwoffii. BMC Vet Res 2024; 20:212. [PMID: 38764041 PMCID: PMC11103975 DOI: 10.1186/s12917-024-04015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/12/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Acinetobacter lwoffii (A.lwoffii) is a serious zoonotic pathogen that has been identified as a cause of infections such as meningitis, bacteremia and pneumonia. In recent years, the infection rate and detection rate of A.lwoffii is increasing, especially in the breeding industry. Due to the presence of biofilms, it is difficult to eradicate and has become a potential super drug-resistant bacteria. Therefore, eradication of preformed biofilm is an alternative therapeutic action to control A.lwoffii infection. The present study aimed to clarify that baicalin could eradicate A.lwoffii biofilm in dairy cows, and to explore the mechanism of baicalin eradicating A.lwoffii. RESULTS The results showed that compared to the control group, the 4 MIC of baicalin significantly eradicated the preformed biofilm, and the effect was stable at this concentration, the number of viable bacteria in the biofilm was decreased by 0.67 Log10CFU/mL. The total fluorescence intensity of biofilm bacteria decreased significantly, with a reduction rate of 67.0%. There were 833 differentially expressed genes (367 up-regulated and 466 down-regulated), whose functions mainly focused on oxidative phosphorylation, biofilm regulation system and trehalose synthesis. Molecular docking analysis predicted 11 groups of target proteins that were well combined with baicalin, and the content of trehalose decreased significantly after the biofilm of A.lwoffii was treated with baicalin. CONCLUSIONS The present study evaluated the antibiofilm potential of baicalin against A.lwoffii. Baicalin revealed strong antibiofilm potential against A.lwoffii. Baicalin induced biofilm eradication may be related to oxidative phosphorylation and TCSs. Moreover, the decrease of trehalose content may be related to biofilm eradication.
Collapse
Affiliation(s)
- Chengjun Ma
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Cui Mei
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - JingJing Liu
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Hui Li
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Min Jiao
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Huiming Hu
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Yang Zhang
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Jing Xiong
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Yuzhang He
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Wei Wei
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Hongzao Yang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China.
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China.
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China.
| | - Hongwei Chen
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China.
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China.
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China.
| |
Collapse
|
2
|
Yue Y, Fang Y, Jia R, Cao K, Chen X, Xia H, Cheng Z. Study on the Antioxidant Effect of Shikonin-Loaded β-Cyclodextrin Forming Host-Guest Complexes That Prevent Skin from Photoaging. Int J Mol Sci 2023; 24:15177. [PMID: 37894857 PMCID: PMC10607292 DOI: 10.3390/ijms242015177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
When the skin is overexposed to ultraviolet rays, free radicals will accumulate in the skin, causing lipid damage and even inducing photoaging of the skin. Combination therapy with antioxidant drugs is a good choice for topical treatment of skin photoaging due to its special physiological structure. In this paper, shikonin was encapsulated in β-cyclodextrin (SH-β-CD) by the precipitation crystallization method, which delayed the release of the drug and increased drug solubility. The average diameter of SH-β-CD was 203.0 ± 21.27 nm with a zeta potential of -14.4 ± 0.5 mV. The encapsulation efficiency (EE%) was 65.9 ± 7.13%. The results of the in vitro permeation across the dialysis membrane and ex vivo transdermal release rates were 52.98 ± 1.21% and 88.25 ± 3.26%, respectively. In vitro antioxidant and antilipid peroxidation model assay revealed the antioxidant potential of SH and SH-β-CD. In the mice model of skin photoaging, SH and SH-β-CD had a recovery effect on the skin damage of mice, which could significantly increase the superoxide dismutase (SOD) activity in the skin. Briefly, SH-β-CD had an obvious therapeutic effect on the skin photoaging of mice caused by UV, and it is promising in skin disease treatment and skin care.
Collapse
Affiliation(s)
| | | | | | | | | | - Hongmei Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (Y.Y.); (Y.F.); (R.J.); (K.C.); (X.C.); (Z.C.)
| | | |
Collapse
|
3
|
Arjmand B, Hamidpour SK, Alavi-Moghadam S, Yavari H, Shahbazbadr A, Tavirani MR, Gilany K, Larijani B. Molecular Docking as a Therapeutic Approach for Targeting Cancer Stem Cell Metabolic Processes. Front Pharmacol 2022; 13:768556. [PMID: 35264950 PMCID: PMC8899123 DOI: 10.3389/fphar.2022.768556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) are subpopulation of cells which have been demonstrated in a variety of cancer models and involved in cancer initiation, progression, and development. Indeed, CSCs which seem to form a small percentage of tumor cells, display resembling characteristics to natural stem cells such as self-renewal, survival, differentiation, proliferation, and quiescence. Moreover, they have some characteristics that eventually can demonstrate the heterogeneity of cancer cells and tumor progression. On the other hand, another aspect of CSCs that has been recognized as a central concern facing cancer patients is resistance to mainstays of cancer treatment such as chemotherapy and radiation. Owing to these details and the stated stemness capabilities, these immature progenitors of cancerous cells can constantly persist after different therapies and cause tumor regrowth or metastasis. Further, in both normal development and malignancy, cellular metabolism and stemness are intricately linked and CSCs dominant metabolic phenotype changes across tumor entities, patients, and tumor subclones. Hence, CSCs can be determined as one of the factors that correlate to the failure of common therapeutic approaches in cancer treatment. In this context, researchers are searching out new alternative or complementary therapies such as targeted methods to fight against cancer. Molecular docking is one of the computational modeling methods that has a new promise in cancer cell targeting through drug designing and discovering programs. In a simple definition, molecular docking methods are used to determine the metabolic interaction between two molecules and find the best orientation of a ligand to its molecular target with minimal free energy in the formation of a stable complex. As a comprehensive approach, this computational drug design method can be thought more cost-effective and time-saving compare to other conventional methods in cancer treatment. In addition, increasing productivity and quality in pharmaceutical research can be another advantage of this molecular modeling method. Therefore, in recent years, it can be concluded that molecular docking can be considered as one of the novel strategies at the forefront of the cancer battle via targeting cancer stem cell metabolic processes.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Babak Arjmand, ; Bagher Larijani,
| | - Shayesteh Kokabi Hamidpour
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Yavari
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ainaz Shahbazbadr
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kambiz Gilany
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Babak Arjmand, ; Bagher Larijani,
| |
Collapse
|
4
|
Chen W, Yu H, Shi R, Chenglong Ma, Gantumur MA, Qayum A, Bilawal A, Liang G, Oh KC, Jiang Z, Hou J. Comparison of carrying mechanism between three fat-soluble vitamins and alpha-lactalbumin: Effects on structure and physicochemical properties of alpha-lactalbumin. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106662] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
5
|
Abstract
INTRODUCTION Molecular docking has been consolidated as one of the most important methods in the molecular modeling field. It has been recognized as a prominent tool in the study of protein-ligand complexes, to describe intermolecular interactions, to accurately predict poses of multiple ligands, to discover novel promising bioactive compounds. Molecular docking methods have evolved in terms of their accuracy and reliability; but there are pending issues to solve for improving the connection between the docking results and the experimental evidence. AREAS COVERED In this article, the author reviews very recent innovative molecular docking applications with special emphasis on reverse docking, treatment of protein flexibility, the use of experimental data to guide the selection of docking poses, the application of Quantum mechanics(QM) in docking, and covalent docking. EXPERT OPINION There are several issues being worked on in recent years that will lead to important breakthroughs in molecular docking methods in the near future These developments are related to more efficient exploration of large datasets and receptor conformations, advances in electronic description, and the use of structural information for guiding the selection of results.
Collapse
Affiliation(s)
- Julio Caballero
- Departamento De Bioinformática, Centro De Bioinformática, Simulación Y Modelado (CBSM), Facultad De Ingeniería, Universidad De Talca, Talca, Chile
| |
Collapse
|
6
|
Wang Y, Kim J, Hilty C. Determination of protein-ligand binding modes using fast multi-dimensional NMR with hyperpolarization. Chem Sci 2020; 11:5935-5943. [PMID: 32874513 PMCID: PMC7441707 DOI: 10.1039/d0sc00266f] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/05/2020] [Indexed: 11/21/2022] Open
Abstract
Elucidation of small molecule-protein interactions provides essential information for understanding biological processes such as cellular signaling, as well as for rational drug development. Here, multi-dimensional NMR with sensitivity enhancement by dissolution dynamic nuclear polarization (D-DNP) is shown to allow the determination of the binding epitope of folic acid when complexed with the target dihydrofolate reductase. Protein signals are selectively enhanced by polarization transfer from the hyperpolarized ligand. A pseudo three-dimensional data acquisition with ligand-side Hadamard encoding results in protein-side [13C, 1H] chemical shift correlations that contain intermolecular nuclear Overhauser effect (NOE) information. A scoring function based on this data is used to select pre-docked ligand poses. The top five poses are within 0.76 Å root-mean-square deviation from a reference structure for the encoded five protons, showing improvements compared with the poses selected by an energy-based scoring function without experimental inputs. The sensitivity enhancement provided by the D-DNP combined with multi-dimensional NMR increases the speed and potentially the selectivity of structure elucidation of ligand binding epitopes.
Collapse
Affiliation(s)
- Yunyi Wang
- Department of Chemistry , Texas A&M University , 3255 TAMU , College Station , TX 77843 , USA .
| | - Jihyun Kim
- Department of Chemistry , Texas A&M University , 3255 TAMU , College Station , TX 77843 , USA .
| | - Christian Hilty
- Department of Chemistry , Texas A&M University , 3255 TAMU , College Station , TX 77843 , USA .
| |
Collapse
|
7
|
Jiang Z, Li T, Ma L, Chen W, Yu H, Abdul Q, Hou J, Tian B. Comparison of interaction between three similar chalconoids and α-lactalbumin: Impact on structure and functionality of α-lactalbumin. Food Res Int 2020; 131:109006. [DOI: 10.1016/j.foodres.2020.109006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 01/08/2020] [Accepted: 01/12/2020] [Indexed: 12/31/2022]
|
8
|
Kellici TF, Ntountaniotis D, Liapakis G, Tzakos AG, Mavromoustakos T. The dynamic properties of angiotensin II type 1 receptor inverse agonists in solution and in the receptor site. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2016.11.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
9
|
Mizdal CR, Stefanello ST, Nogara PA, Antunes Soares FA, de Lourenço Marques L, de Campos MMA. Molecular docking, and anti-biofilm activity of gold-complexed sulfonamides on Pseudomonas aeruginosa. Microb Pathog 2018; 125:393-400. [DOI: 10.1016/j.micpath.2018.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 01/07/2023]
|
10
|
Ali MS, Al-Lohedan HA. Spectroscopic and computational evaluation on the binding of safranal with human serum albumin: Role of inner filter effect in fluorescence spectral correction. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 203:434-442. [PMID: 29894957 DOI: 10.1016/j.saa.2018.05.102] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/21/2018] [Accepted: 05/27/2018] [Indexed: 05/21/2023]
Abstract
For determining the pharmacological properties of medicinal compounds, their binding with serum albumins is very crucial. Herein, we have selected safranal, a major constituent of saffron which is known to retain a number of medicinal properties including antioxidant, anti-inflammatory, tumoricidal, anti-genotoxic, and anti-aging activities; and studied its mechanism of binding with human serum albumin at physiological pH using various spectroscopic methods along with computational approach using molecular docking. A change in the difference UV-visible spectrum of HSA in presence of safranal was found which is due to the complex formation. Owing to the strong absorption of safranal at the fluorescence excitation wavelength of HSA (295 nm) and in the whole range of emission, the fluorescence spectra of HSA in presence of safranal were corrected for the inner filter effect. After the correction the spectra were free from the safranal absorption effect and it was found that addition of safranal causes the quenching of HSA fluorescence and a blue shift of the emission maximum which are attributed to the binding of safranal to the protein and dominance of hydrophobic forces in the interaction, respectively. It was evident from the comparison of observed and corrected fluorescence spectra that before correction there was a large red shift while after correction appearance of blue shift was occurred. The involvement of hydrophobic interaction was also found from the extrinsic fluorescence measurements using ANS dye as well as from the analyzed thermodynamic parameters. Safranal was found to partially induce the secondary structure of HSA as construed from the CD measurements. The size of the HSA was also decreased as evident from the DLS and RLS measurements. Both site marker studies and molecular docking simulations suggested that the primary binding site of the safranal in the HSA is Sudlow's site 1 located in the subdomain IIA. Hydrophobic interaction provides the major contribution to the binding forces along with a little amount of hydrogen bonding.
Collapse
Affiliation(s)
- Mohd Sajid Ali
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia.
| | - Hamad A Al-Lohedan
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
11
|
de Ruyck J, Roos G, Krammer EM, Prévost M, Lensink MF, Bouckaert J. Molecular Mechanisms of Drug Action: X-ray Crystallography at the Basis of Structure-based and Ligand-based Drug Design. BIOPHYSICAL TECHNIQUES IN DRUG DISCOVERY 2017. [DOI: 10.1039/9781788010016-00067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Biological systems are recognized for their complexity and diversity and yet we sometimes manage to cure disease via the administration of small chemical drug molecules. At first, active ingredients were found accidentally and at that time there did not seem a need to understand the molecular mechanism of drug functioning. However, the urge to develop new drugs, the discovery of multipurpose characteristics of some drugs, and the necessity to remove unwanted secondary drug effects, incited the pharmaceutical sector to rationalize drug design. This did not deliver success in the years directly following its conception, but it drove the evolution of biochemical and biophysical techniques to enable the characterization of molecular mechanisms of drug action. Functional and structural data generated by biochemists and structural biologists became a valuable input for computational biologists, chemists and bioinformaticians who could extrapolate in silico, based on variations in the structural aspects of the drug molecules and their target. This opened up new avenues with much improved predictive power because of a clearer perception of the role and impact of structural elements in the intrinsic affinity and specificity of the drug for its target. In this chapter, we review how crystal structures can initiate structure-based drug design in general.
Collapse
Affiliation(s)
- J. de Ruyck
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille 50 Avenue de Halley 59658 Villeneuve d'Ascq France
| | - G. Roos
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille 50 Avenue de Halley 59658 Villeneuve d'Ascq France
- Université Libre de Bruxelles (ULB), Structure and Function of Biological Membranes CP 206/2, Boulevard du Triomphe, 1050 Brussels Belgium
| | - E.-M. Krammer
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille 50 Avenue de Halley 59658 Villeneuve d'Ascq France
- Université Libre de Bruxelles (ULB), Structure and Function of Biological Membranes CP 206/2, Boulevard du Triomphe, 1050 Brussels Belgium
| | - M. Prévost
- Université Libre de Bruxelles (ULB), Structure and Function of Biological Membranes CP 206/2, Boulevard du Triomphe, 1050 Brussels Belgium
| | - M. F. Lensink
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille 50 Avenue de Halley 59658 Villeneuve d'Ascq France
| | - J. Bouckaert
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille 50 Avenue de Halley 59658 Villeneuve d'Ascq France
| |
Collapse
|
12
|
Bartuzi D, Kaczor AA, Targowska-Duda KM, Matosiuk D. Recent Advances and Applications of Molecular Docking to G Protein-Coupled Receptors. Molecules 2017; 22:molecules22020340. [PMID: 28241450 PMCID: PMC6155844 DOI: 10.3390/molecules22020340] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/27/2017] [Accepted: 02/15/2017] [Indexed: 12/16/2022] Open
Abstract
The growing number of studies on G protein-coupled receptors (GPCRs) family are a source of noticeable improvement in our understanding of the functioning of these proteins. GPCRs are responsible for a vast part of signaling in vertebrates and, as such, invariably remain in the spotlight of medicinal chemistry. A deeper insight into the underlying mechanisms of interesting phenomena observed in GPCRs, such as biased signaling or allosteric modulation, can be gained with experimental and computational studies. The latter play an important role in this process, since they allow for observations on scales inaccessible for most other methods. One of the key steps in such studies is proper computational reconstruction of actual ligand-receptor or protein-protein interactions, a process called molecular docking. A number of improvements and innovative applications of this method were documented recently. In this review, we focus particularly on innovations in docking to GPCRs.
Collapse
Affiliation(s)
- Damian Bartuzi
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Medical University of Lublin, 4A Chodźki Str., PL20093 Lublin, Poland.
| | - Agnieszka A Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Medical University of Lublin, 4A Chodźki Str., PL20093 Lublin, Poland.
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | | | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Medical University of Lublin, 4A Chodźki Str., PL20093 Lublin, Poland.
| |
Collapse
|
13
|
Frank AT. Can Holo NMR Chemical Shifts be Directly Used to Resolve RNA–Ligand Poses? J Chem Inf Model 2016; 56:368-76. [DOI: 10.1021/acs.jcim.5b00593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Aaron T. Frank
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|