1
|
Klostermann CE, Endika MF, Kouzounis D, Buwalda PL, de Vos P, Zoetendal EG, Bitter JH, Schols HA. Presence of digestible starch impacts in vitro fermentation of resistant starch. Food Funct 2024; 15:223-235. [PMID: 38054370 PMCID: PMC10760408 DOI: 10.1039/d3fo01763j] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023]
Abstract
Starch is an important energy source for humans. Starch escaping digestion in the small intestine will transit to the colon to be fermented by gut microbes. Many gut microbes express α-amylases that can degrade soluble starch, but only a few are able to degrade intrinsic resistant starch (RS), which is insoluble and highly resistant to digestion (≥80% RS). We studied the in vitro fermentability of eight retrograded starches (RS-3 preparations) differing in rapidly digestible starch content (≥70%, 35-50%, ≤15%) by a pooled adult faecal inoculum and found that fermentability depends on the digestible starch fraction. Digestible starch was readily fermented yielding acetate and lactate, whereas resistant starch was fermented much slower generating acetate and butyrate. Primarily Bifidobacterium increased in relative abundance upon digestible starch fermentation, whereas resistant starch fermentation also increased relative abundance of Ruminococcus and Lachnospiraceae. The presence of small fractions of total digestible starch (±25%) within RS-3 preparations influenced the fermentation rate and microbiota composition, after which the resistant starch fraction was hardly fermented. By short-chain fatty acid quantification, we observed that six individual faecal inocula obtained from infants and adults were able to ferment digestible starch, whereas only one adult faecal inoculum was fermenting intrinsic RS-3. This suggests that, in contrast to digestible starch, intrinsic RS-3 is only fermentable when specific microbes are present. Our data illustrates that awareness is required for the presence of digestible starch during in vitro fermentation of resistant starch, since such digestible fraction might influence and overrule the evalution of the prebiotic potential of resistant starches.
Collapse
Affiliation(s)
- Cynthia E Klostermann
- Biobased Chemistry and Technology, Wageningen University & Research, Wageningen, The Netherlands
| | - Martha F Endika
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Dimitrios Kouzounis
- Laboratory of Food Chemistry, Wageningen University & Research, The Netherlands.
| | - Piet L Buwalda
- Biobased Chemistry and Technology, Wageningen University & Research, Wageningen, The Netherlands
- Coöperatie Koninklijke AVEBE, Veendam, The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Centre Groningen, The Netherlands
| | - Erwin G Zoetendal
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Johannes H Bitter
- Biobased Chemistry and Technology, Wageningen University & Research, Wageningen, The Netherlands
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University & Research, The Netherlands.
| |
Collapse
|
2
|
Rastall RA, Diez-Municio M, Forssten SD, Hamaker B, Meynier A, Moreno FJ, Respondek F, Stah B, Venema K, Wiese M. Structure and function of non-digestible carbohydrates in the gut microbiome. Benef Microbes 2022; 13:95-168. [PMID: 35729770 DOI: 10.3920/bm2021.0090] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Together with proteins and fats, carbohydrates are one of the macronutrients in the human diet. Digestible carbohydrates, such as starch, starch-based products, sucrose, lactose, glucose and some sugar alcohols and unusual (and fairly rare) α-linked glucans, directly provide us with energy while other carbohydrates including high molecular weight polysaccharides, mainly from plant cell walls, provide us with dietary fibre. Carbohydrates which are efficiently digested in the small intestine are not available in appreciable quantities to act as substrates for gut bacteria. Some oligo- and polysaccharides, many of which are also dietary fibres, are resistant to digestion in the small intestines and enter the colon where they provide substrates for the complex bacterial ecosystem that resides there. This review will focus on these non-digestible carbohydrates (NDC) and examine their impact on the gut microbiota and their physiological impact. Of particular focus will be the potential of non-digestible carbohydrates to act as prebiotics, but the review will also evaluate direct effects of NDC on human cells and systems.
Collapse
Affiliation(s)
- R A Rastall
- Department of Food and Nutritional Sciences, The University of Reading, P.O. Box 226, Whiteknights, Reading, RG6 6AP, United Kingdom
| | - M Diez-Municio
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - S D Forssten
- IFF Health & Biosciences, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - B Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907-2009, USA
| | - A Meynier
- Nutrition Research, Mondelez France R&D SAS, 6 rue René Razel, 91400 Saclay, France
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - F Respondek
- Tereos, Zoning Industriel Portuaire, 67390 Marckolsheim, France
| | - B Stah
- Human Milk Research & Analytical Science, Danone Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands.,Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - K Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University - campus Venlo, St. Jansweg 20, 5928 RC Venlo, the Netherlands
| | - M Wiese
- Department of Microbiology and Systems Biology, TNO, Utrechtseweg 48, 3704 HE, Zeist, the Netherlands
| |
Collapse
|
3
|
Asare IK, Palaniappan A, Jungles TMC, Hamaker BR, Emmambux MN. In vitro faecal fermentation of indigestible residues from heat‐moisture treated maize meal and maize starch with stearic acid. STARCH-STARKE 2022. [DOI: 10.1002/star.202100238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Isaac Kwabena Asare
- Department of Consumer and Food Sciences University of Pretoria Private Bag X20 Hatfield Pretoria 0028 South Africa
| | - Ayyappan Palaniappan
- Department of Consumer and Food Sciences University of Pretoria Private Bag X20 Hatfield Pretoria 0028 South Africa
| | - Thaisa Moro Cantu Jungles
- Whistler Center for Carbohydrate Research Food Science Department Purdue University West Lafayette IN 47907 USA
| | - Bruce R. Hamaker
- Whistler Center for Carbohydrate Research Food Science Department Purdue University West Lafayette IN 47907 USA
| | - Mohammad Naushad Emmambux
- Department of Consumer and Food Sciences University of Pretoria Private Bag X20 Hatfield Pretoria 0028 South Africa
| |
Collapse
|
4
|
Qin W, Ying W, Hamaker B, Zhang G. Slow digestion-oriented dietary strategy to sustain the secretion of GLP-1 for improved glucose homeostasis. Compr Rev Food Sci Food Saf 2021; 20:5173-5196. [PMID: 34350681 DOI: 10.1111/1541-4337.12808] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022]
Abstract
Dysregulated glucose metabolism is associated with many chronic diseases such as obesity and type 2 diabetes mellitus (T2DM), and strategies to restore and maintain glucose homeostasis are essential to health. The incretin hormone of glucagon-like peptide-1 (GLP-1) is known to play a critical role in regulating glucose homeostasis and dietary nutrients are the primary stimuli to the release of intestinal GLP-1. However, the GLP-1 producing enteroendocrine L-cells are mainly distributed in the distal region of the gastrointestinal tract where there are almost no nutrients to stimulate the secretion of GLP-1 under normal situations. Thus, a dietary strategy to sustain the release of GLP-1 was proposed, and the slow digestion property and dipeptidyl peptidase IV (DPP-IV) inhibitory activity of food components, approaches to reduce the rate of food digestion, and mechanisms to sustain the release of GLP-1 were reviewed. A slow digestion-oriented dietary approach through encapsulation of nutrients, incorporation of viscous dietary fibers, and enzyme inhibitors of phytochemicals in a designed whole food matrix will be implemented to efficiently reduce the digestion rate of food nutrients, potentiate their distal deposition and a sustained secretion of GLP-1, which will be beneficial to improved glucose homeostasis and health.
Collapse
Affiliation(s)
- Wangyan Qin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wang Ying
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bruce Hamaker
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, Indiana, USA
| | - Genyi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Venema K, Verhoeven J, Surono IS, Waspodo P, Simatupang A, Kusuma PD. Differential glucose bioaccessibility from native and modified taro-starches in the absence or presence of beet juice. CYTA - JOURNAL OF FOOD 2020. [DOI: 10.1080/19476337.2020.1829073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Koen Venema
- Centre for Healthy Eating & Food Innovation, Maastricht University - Campus Venlo, Venlo, The Netherlands
| | - Jessica Verhoeven
- Centre for Healthy Eating & Food Innovation, Maastricht University - Campus Venlo, Venlo, The Netherlands
| | - Ingrid S. Surono
- Food Technology Department, Faculty of Engineering, Bina Nusantara University, Jakarta, Indonesia
| | - Priyo Waspodo
- Food Technology Department, Faculty of Engineering, Bina Nusantara University, Jakarta, Indonesia
| | | | - Pratiwi D. Kusuma
- Faculty of Medicine, Universitas Kristen Indonesia, Jakarta, Indonesia
| |
Collapse
|
6
|
Surono IS, Verhoeven J, Venema K. Low glycemic load after digestion of native starch from the indigenous tuber Belitung Taro ( Xanthosoma sagittifolium) in a dynamic in vitro model of the upper GI tract (TIM-1). Food Nutr Res 2020; 64:4623. [PMID: 32754009 PMCID: PMC7381813 DOI: 10.29219/fnr.v64.4623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 11/20/2022] Open
Abstract
Background Low glycemic foods are beneficial for people with type II diabetes. At the same time, sustained glucose release is also beneficial for people suffering from glycogen storage diseases. Taro (Xanthosoma sagittifolium) is a tuber indigenous to Indonesia, which has starch as the major storage carbohydrate. Objective The aim of the current study was to determine the speed of digestion of native and modified taro starch, compared to free glucose and wheat starch. Design This was investigated in a validated, dynamic computer-controlled in vitro model of the stomach and small intestine (TIM-1). Samples were taken from the dialysate, which reflected glucose absorbed in the blood stream. Results Native taro starch showed a ~1.5-fold reduced digestibility compared to glucose and a ~ 1.35-fold compared to wheat starch. In addition, digestion of native taro starch was moved towards the ileum, and later in time compared to glucose and wheat. With modified taro starch, these effects were not observed. Conclusion In conclusion, native taro starch showed a lower glycemic load than wheat starch and modified taro starch and could be used as a substitute for refined foods by diabetics and people suffering from other glucose metabolic diseases.
Collapse
Affiliation(s)
- Ingrid S Surono
- Food Technology Department, Faculty of Engineering, Bina Nusantara University, Jakarta, Indonesia
| | - Jessica Verhoeven
- Centre for Healthy Eating and Food Innovation, Maastricht University - Campus Venlo, Venlo, the Netherlands
| | - Koen Venema
- Centre for Healthy Eating and Food Innovation, Maastricht University - Campus Venlo, Venlo, the Netherlands
| |
Collapse
|
7
|
Bonelli A, Menna P, Minotti G, Angeletti S, Comandini A, Picollo R, Quarchioni E, Russo V, Salvatori E, Ferravante F, Emerenziani S, Cicala M, Muscaritoli M. Safety and tolerability of a novel oral nutritional supplement in healthy volunteers. Clin Nutr 2020; 40:946-955. [PMID: 32675020 DOI: 10.1016/j.clnu.2020.06.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND AND OBJECTIVE Foods for Special Medical Purposes (FSMPs) are formulated to support the nutritional needs of subjects with impaired capacity to ingest, digest or absorb ordinary food or nutrients. Polglumyt® is a proprietary highly purified, high quality glycogen obtained from mussels. Here we report the results of a single-center, single dose, open label, single arm study carried out to investigate acceptance (i.e. gastrointestinal tolerance and palatability), metabolic profile and safety of a low osmolarity, high-density energy Polglumyt®-based drink (the investigational product, IP) as a novel FSMP. METHODS Twelve healthy subjects received a single oral administration of the IP under fasting conditions. The study endpoints were: changes in gastrointestinal system tolerability at 3 h, 6 h and 24 h after IP intake; IP palatability evaluation; metabolic evaluation through the kinetic profile of circulating glucose, insulin and C-peptide from 0 h to 6 h after IP intake and changes from baseline in circulating triglycerides at 3 h and 6 h after IP intake. RESULTS The IP showed a good gastrointestinal tolerability and an acceptable palatability. The IP did not affect the physiological glycemic profile and the triglycerides levels 6 h after the intake. The IP was well tolerated by study subjects, with no or minor adverse events. CONCLUSIONS The study results encourage additional clinical investigations on the IP as a novel FSMP in patients with impaired digestion or gastrointestinal absorption, unable to assume an ordinary diet, e.g. patients undergoing invasive gastrointestinal surgery, elderly or oncological patients, even with certain metabolic disorders.
Collapse
Affiliation(s)
- Annalisa Bonelli
- Angelini RR&D (Research, Regulatory & Development) - Angelini S.p.A., S.Palomba-Pomezia, Rome, Italy
| | - Pierantonio Menna
- Clinical Pharmacology Unit, University Campus Bio-Medico Rome, Italy
| | - Giorgio Minotti
- Clinical Pharmacology Unit, University Campus Bio-Medico Rome, Italy
| | - Silvia Angeletti
- Unit of Clinical Laboratory Science, University Campus Bio-Medico, Rome, Italy
| | - Alessandro Comandini
- Angelini RR&D (Research, Regulatory & Development) - Angelini S.p.A., S.Palomba-Pomezia, Rome, Italy
| | - Rossella Picollo
- Angelini RR&D (Research, Regulatory & Development) - Angelini S.p.A., S.Palomba-Pomezia, Rome, Italy
| | - Elisa Quarchioni
- Angelini RR&D (Research, Regulatory & Development) - Angelini S.p.A., S.Palomba-Pomezia, Rome, Italy
| | - Vincenzo Russo
- Angelini RR&D (Research, Regulatory & Development) - Angelini S.p.A., S.Palomba-Pomezia, Rome, Italy
| | - Enrica Salvatori
- Angelini RR&D (Research, Regulatory & Development) - Angelini S.p.A., S.Palomba-Pomezia, Rome, Italy
| | | | - Sara Emerenziani
- Gastroenterology Unit, University Campus Bio-Medico, Rome, Italy
| | - Michele Cicala
- Gastroenterology Unit, University Campus Bio-Medico, Rome, Italy
| | - Maurizio Muscaritoli
- Department of Translational and Precision Medicine, Sapienza University of Rome, Italy.
| |
Collapse
|
8
|
Rawi MH, Zaman SA, Pa'ee KF, Leong SS, Sarbini SR. Prebiotics metabolism by gut-isolated probiotics. Journal of Food Science and Technology 2020; 57:2786-2799. [PMID: 32624588 DOI: 10.1007/s13197-020-04244-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/22/2019] [Accepted: 01/03/2020] [Indexed: 12/17/2022]
Abstract
There are numerous species of bacteria resides in the lumen of human colon. The word 'colon', resembles colony or the colonization of microbiota of which plays an important role in the fermentation of prebiotics. The standpoint of prebiotic nowadays is well reported for attenuating gut dysbiosis in many clinical studies tested on animals and human. However, because of the huge amount of gut microbiome, the attempt to connect the dots between bacterial population and the host are not plainly discernible. Thus, a need to analyse recent research on the pathways of prebiotic metabolism adopted by commonly studied probiotics i.e. Bifidobacteria and Lactobacillus. Several different substrate-dependent gene expressions are induced to break down oligosaccharide molecules shown by those probiotics. The hydrolysis can occur either by membrane bound (extracellular) or cytoplasmic (intracellular) enzyme of the enteric bacteria. Therefore, this review narrates several prebiotic metabolisms occur during gut fermentation, and metabolite production i.e. organic acids conversion.
Collapse
Affiliation(s)
- Muhamad Hanif Rawi
- Faculty of Agricultural and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Jalan Nyabau, 97008 Bintulu, Sarawak Malaysia
| | - Siti Aisyah Zaman
- Faculty of Agricultural and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Jalan Nyabau, 97008 Bintulu, Sarawak Malaysia
| | - Khairul Faizal Pa'ee
- Food Technology Section, Universiti Kuala Lumpur Branch Campus Malaysian Institute of Chemical and Bio-Engineering Technology (UniKL-MICET), Bandar Vendor, Taboh Naning, 78000 Alor Gajah, Melaka Malaysia
| | - Sui Sien Leong
- Faculty of Agricultural and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Jalan Nyabau, 97008 Bintulu, Sarawak Malaysia
| | - Shahrul Razid Sarbini
- Faculty of Agricultural and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Jalan Nyabau, 97008 Bintulu, Sarawak Malaysia
| |
Collapse
|
9
|
Karimi R, Azizi MH, Sahari MA, Kazem AE. In vitro fermentation profile of soluble dietary fibers obtained by different enzymatic extractions from barley bran. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.bcdf.2019.100205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Bussolo de Souza C, Jonathan M, Isay Saad SM, Schols HA, Venema K. Characterization and in vitro digestibility of by-products from Brazilian food industry: Cassava bagasse, orange bagasse and passion fruit peel. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.bcdf.2018.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Pham VT, Mohajeri MH. The application of in vitro human intestinal models on the screening and development of pre- and probiotics. Benef Microbes 2018; 9:725-742. [PMID: 29695182 DOI: 10.3920/bm2017.0164] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The importance of the gut microbiota community on host's health and disease has long been recognised and is well documented. The development of pro- and prebiotic interventions offers an opportunity for the modulation of the gut microbiota towards long lasting health. In vitro fermentation models were developed as a powerful tool to study the impact of pro- and prebiotics on the gut microbiota under tightly controlled conditions, which allow dynamic sampling over time in reactors mimicking different colon regions. These models have been further evolved to suit specific experimental purposes, e.g. including immobilised faecal microbiota, peristaltic movement, mucin microcosm and the ability to perform treatments in parallel. In this review we discuss the advantages, disadvantages and technical considerations of the most frequently used models. We further focus on recent advances in the application of these models in prebiotics and probiotics research and outline their predictability for clinical research.
Collapse
Affiliation(s)
- V T Pham
- 1 DSM Nutritional Products Ltd., R&D Human Nutrition and Health, P.O. Box 2676, 4002 Basel, Switzerland
| | - M H Mohajeri
- 1 DSM Nutritional Products Ltd., R&D Human Nutrition and Health, P.O. Box 2676, 4002 Basel, Switzerland.,2 University of Zurich, Winterthurerstr. 190, 8057 Zürich, Switzerland
| |
Collapse
|
12
|
Harris HC, Edwards CA, Morrison DJ. Impact of Glycosidic Bond Configuration on Short Chain Fatty Acid Production from Model Fermentable Carbohydrates by the Human Gut Microbiota. Nutrients 2017; 9:nu9010026. [PMID: 28045429 PMCID: PMC5295070 DOI: 10.3390/nu9010026] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/16/2016] [Accepted: 12/22/2016] [Indexed: 12/21/2022] Open
Abstract
Short chain fatty acids (SCFA) are the major products of carbohydrate fermentation by gut bacteria. Different carbohydrates are associated with characteristic SCFA profiles although the mechanisms are unclear. The individual SCFA profile may determine any resultant health benefits. Understanding determinants of individual SCFA production would enable substrate choice to be tailored for colonic SCFA manipulation. To test the hypothesis that the orientation and position of the glycosidic bond is a determinant of SCFA production profile, a miniaturized in vitro human colonic batch fermentation model was used to study a range of isomeric glucose disaccharides. Diglucose α(1-1) fermentation led to significantly higher butyrate production (p < 0.01) and a lower proportion of acetate (p < 0.01) compared with other α bonded diglucoses. Diglucose β(1-4) also led to significantly higher butyrate production (p < 0.05) and significantly increased the proportions of propionate and butyrate compared with diglucose α(1-4) (p < 0.05). There was no significant effect of glycosidic bond configuration on absolute propionate production. Despite some differences in the SCFA production of different glucose disaccharides, there was no clear relationship between SCFA production and bond configuration, suggesting that other factors may be responsible for promoting selective SCFA production by the gut microbiota from different carbohydrates.
Collapse
Affiliation(s)
- Hannah C Harris
- School of Medicine, Dentistry and Nursing, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G31 2ER, UK.
- Scottish Universities Environmental Research Centre, University of Glasgow, Glasgow G75 0QF, UK.
| | - Christine A Edwards
- School of Medicine, Dentistry and Nursing, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G31 2ER, UK.
| | - Douglas J Morrison
- Scottish Universities Environmental Research Centre, University of Glasgow, Glasgow G75 0QF, UK.
| |
Collapse
|
13
|
Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, de Los Reyes-Gavilán CG, Salazar N. Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health. Front Microbiol 2016; 7:185. [PMID: 26925050 PMCID: PMC4756104 DOI: 10.3389/fmicb.2016.00185] [Citation(s) in RCA: 1228] [Impact Index Per Article: 153.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/02/2016] [Indexed: 12/18/2022] Open
Abstract
The colon is inhabited by a dense population of microorganisms, the so-called “gut microbiota,” able to ferment carbohydrates and proteins that escape absorption in the small intestine during digestion. This microbiota produces a wide range of metabolites, including short chain fatty acids (SCFA). These compounds are absorbed in the large bowel and are defined as 1-6 carbon volatile fatty acids which can present straight or branched-chain conformation. Their production is influenced by the pattern of food intake and diet-mediated changes in the gut microbiota. SCFA have distinct physiological effects: they contribute to shaping the gut environment, influence the physiology of the colon, they can be used as energy sources by host cells and the intestinal microbiota and they also participate in different host-signaling mechanisms. We summarize the current knowledge about the production of SCFA, including bacterial cross-feedings interactions, and the biological properties of these metabolites with impact on the human health.
Collapse
Affiliation(s)
- David Ríos-Covián
- Probiotics and Prebiotics Group, Department of Biochemistry and Microbiology of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Patricia Ruas-Madiedo
- Probiotics and Prebiotics Group, Department of Biochemistry and Microbiology of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Abelardo Margolles
- Probiotics and Prebiotics Group, Department of Biochemistry and Microbiology of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Miguel Gueimonde
- Probiotics and Prebiotics Group, Department of Biochemistry and Microbiology of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Clara G de Los Reyes-Gavilán
- Probiotics and Prebiotics Group, Department of Biochemistry and Microbiology of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Nuria Salazar
- Probiotics and Prebiotics Group, Department of Biochemistry and Microbiology of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| |
Collapse
|
14
|
Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, de los Reyes-Gavilán CG, Salazar N. Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health. Front Microbiol 2016; 7:185. [PMID: 26925050 PMCID: PMC4756104 DOI: 10.3389/fmicb.2016.00185 10.3389/fmicb.2016.00185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The colon is inhabited by a dense population of microorganisms, the so-called "gut microbiota," able to ferment carbohydrates and proteins that escape absorption in the small intestine during digestion. This microbiota produces a wide range of metabolites, including short chain fatty acids (SCFA). These compounds are absorbed in the large bowel and are defined as 1-6 carbon volatile fatty acids which can present straight or branched-chain conformation. Their production is influenced by the pattern of food intake and diet-mediated changes in the gut microbiota. SCFA have distinct physiological effects: they contribute to shaping the gut environment, influence the physiology of the colon, they can be used as energy sources by host cells and the intestinal microbiota and they also participate in different host-signaling mechanisms. We summarize the current knowledge about the production of SCFA, including bacterial cross-feedings interactions, and the biological properties of these metabolites with impact on the human health.
Collapse
|
15
|
Li L, Jiang H, Kim HJ, Yum MY, Campbell MR, Jane JL, White PJ, Hendrich S. Increased Butyrate Production During Long-Term Fermentation of In Vitro-Digested High Amylose Cornstarch Residues with Human Feces. J Food Sci 2015; 80:M1997-2004. [PMID: 26256258 DOI: 10.1111/1750-3841.12982] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 06/23/2015] [Indexed: 11/29/2022]
Abstract
An in vitro semi-continuous long-term (3 wk) anaerobic incubation system simulating lower gut fermentation was used to determine variability in gut microbial metabolism between 4 predigested high amylose-resistant starch residues (SR): SRV, SRVI, SRVII, and SRGEMS in human fecal samples. Subjects participated twice, 5 mo apart: 30 in Phase I (15 lean, 9 overweight and 6 obese), 29 in Phase II (15 lean, 9 overweight, 5 obese); 13 of 15 lean subjects participated in both phases. Of the 4 SRs, SRV displayed the highest gelatinization temperature, peak temperature, enthalpy changes, and the least digestibility compared with the other SRs. In both phases, compared with blank controls, all SRs increased butyrate ∼2-fold which stabilized at week 2 and only SRV caused greater propionate concentration (∼30%) after 3 wk which might have been partly mediated by its lesser digestibility. Fecal samples from lean and overweight/obese subjects incubated with SRs showed similar short-chain fatty acid production across both time points, which suggests that resistant starch may benefit individuals across BMIs.
Collapse
Affiliation(s)
- Li Li
- Dept. of Food Science and Human Nutrition, Iowa State Univ, 220 Mackay Hall, Ames, IA, 50011, U.S.A
| | - Hongxin Jiang
- Dept. of Food Science and Human Nutrition, Iowa State Univ, 220 Mackay Hall, Ames, IA, 50011, U.S.A
| | - Hyun-Jung Kim
- Dept. of Food Science and Human Nutrition, Iowa State Univ, 220 Mackay Hall, Ames, IA, 50011, U.S.A
| | - Man-Yu Yum
- Dept. of Statistics, Iowa State Univ, 1121 Snedecor Hall, Ames, IA, 50011, U.S.A
| | - Mark R Campbell
- Dept. of Agriculture Sciences, TrumanState Univ, 2072 Magruder Hall, Kirksville, MO, 63501, U.S.A
| | - Jay-Lin Jane
- Dept. of Food Science and Human Nutrition, Iowa State Univ, 220 Mackay Hall, Ames, IA, 50011, U.S.A
| | - Pamela J White
- Dept. of Food Science and Human Nutrition, Iowa State Univ, 220 Mackay Hall, Ames, IA, 50011, U.S.A
| | - Suzanne Hendrich
- Dept. of Food Science and Human Nutrition, Iowa State Univ, 220 Mackay Hall, Ames, IA, 50011, U.S.A
| |
Collapse
|
16
|
Aguirre M, Eck A, Koenen ME, Savelkoul PHM, Budding AE, Venema K. Evaluation of an optimal preparation of human standardized fecal inocula for in vitro fermentation studies. J Microbiol Methods 2015. [PMID: 26222994 DOI: 10.1016/j.mimet.2015.07.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study investigated the optimal preservation approach to prepare human feces as inoculum for in vitro fermentations as an alternative to the use of fresh feces. The four treatments studied were: Treatment 1) fresh feces resuspended in dialysate solution+glycerol; Treatment 2) fresh feces resuspended in dialysate solution+glycerol and then stored at -80°C; Treatment 3) fecal sample frozen with 1.5 g glycerol; and Treatment 4) fecal sample frozen. All the treatments contained 8.75 g of feces, 3.5 ml dialysate and 4.9 ml glycerol when inoculated in TIM-2 in vitro system. Treatment 1 (fresh fecal preparation) was used as a reference. The effects were evaluated in terms of i) metabolic activity and ii) composition of the microbiota using fermentation experiments in the TIM-2 in vitro system. In all treatments, high levels of acetate were produced followed by n-butyrate and propionate. However, the metabolic activity of the bacteria, in terms of short-chain fatty acid production, was affected by the different treatments. Microbiota composition was analyzed using the IS-pro profiling technique. Diversity in Actinobacteria, Firmicutes, Fusobacteria and Verrucomicrobia and Proteobacteria groups seemed to be preserved in all treatments whereas it was observed to decline in the Bacteroidetes group. Preparing a human fecal inoculum resuspended in dialysate solution with glycerol and then stored at -80°C showed high similarities to the results obtained with fresh feces, and is proposed as the optimal way to freeze fecal material as an alternative to fresh feces for in vitro fermentation studies.
Collapse
Affiliation(s)
- Marisol Aguirre
- Top Institute of Food & Nutrition, PO Box 557, 6700 AA Wageningen, The Netherlands; Maastricht University, School of Nutrition, Toxicology and Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Department of Human Biology, PO Box 616, 6200 MD, Maastricht, The Netherlands; The Netherlands Organization for Applied Scientific research, TNO, PO Box 360, 3700 AJ, Zeist, The Netherlands.
| | - Anat Eck
- VU University Medical Center, Department of Medical Microbiology and Infection Control, 1081 BT Amsterdam, The Netherlands.
| | - Marjorie E Koenen
- The Netherlands Organization for Applied Scientific research, TNO, PO Box 360, 3700 AJ, Zeist, The Netherlands.
| | - Paul H M Savelkoul
- VU University Medical Center, Department of Medical Microbiology and Infection Control, 1081 BT Amsterdam, The Netherlands; Maastricht University Medical Center, Department of Medical Microbiology, PO Box 5800, 6202 AZ, Maastricht, The Netherlands.
| | - Andries E Budding
- VU University Medical Center, Department of Medical Microbiology and Infection Control, 1081 BT Amsterdam, The Netherlands.
| | - Koen Venema
- Top Institute of Food & Nutrition, PO Box 557, 6700 AA Wageningen, The Netherlands; The Netherlands Organization for Applied Scientific research, TNO, PO Box 360, 3700 AJ, Zeist, The Netherlands.
| |
Collapse
|
17
|
Kim J, Zhang C, Shin M. Forming rice starch gels by adding retrograded and cross-linked resistant starch prepared from rice starch. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0108-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
18
|
Abstract
The gut microbiota plays important roles in proper gut function and can contribute to or help prevent disease. Whole grains, including oats, constitute important sources of nutrients for the gut microbiota and contribute to a healthy gut microbiome. In particular, whole grains provide NSP and resistant starch, unsaturated TAG and complex lipids, and phenolics. The composition of these constituents is unique in oats compared with other whole grains. Therefore, oats may contribute distinctive effects on gut health relative to other grains. Studies designed to determine these effects may uncover new human-health benefits of oat consumption.
Collapse
|
19
|
Venema K, van den Abbeele P. Experimental models of the gut microbiome. Best Pract Res Clin Gastroenterol 2013; 27:115-26. [PMID: 23768557 DOI: 10.1016/j.bpg.2013.03.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/02/2013] [Accepted: 03/14/2013] [Indexed: 02/08/2023]
Abstract
The human gut contains a diverse microbiota with large potential to influence health. Given the difficulty to access the main sites of the gut, in vitro models have been developed to dynamically monitor microbial processes at the site of metabolic activity. These models range from simple batch fermentations to complex multi-compartmental continuous systems. The latter include different models, focussing on similar but each also on distinct digestive parameters. The most intensively used include the three-stage continuous culture system, SHIME(®), EnteroMix, Lacroix model and TIM-2. Especially after inclusion of surface-attached mucosal microbes (M-SHIME), such models have been shown representative of the in vivo situation in terms of microbial composition and activity. They have even been shown to maintain the interpersonal variation among different human fecal inocula. Novel developments, such as the incorporation of host cells, will further broaden the potential of in vitro models to unravel the importance of gut microbes for human health and disease.
Collapse
Affiliation(s)
- Koen Venema
- TNO, P.O. Box 360, 3700 AJ Zeist, The Netherlands.
| | | |
Collapse
|
20
|
Guerra A, Etienne-Mesmin L, Livrelli V, Denis S, Blanquet-Diot S, Alric M. Relevance and challenges in modeling human gastric and small intestinal digestion. Trends Biotechnol 2012; 30:591-600. [DOI: 10.1016/j.tibtech.2012.08.001] [Citation(s) in RCA: 294] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/30/2012] [Accepted: 08/01/2012] [Indexed: 12/14/2022]
|
21
|
Grootaert C, Marzorati M, Van den Abbeele P, Van de Wiele T, Possemiers S. Prebiotics to manage the microbial control of energy homeostasis. Benef Microbes 2011; 2:305-18. [DOI: 10.3920/bm2011.0020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The prevalence of obesity is continuously growing and has reached epidemic proportions. It is clear that current methods to combat obesity are not effective enough to reduce the problem. Therefore, further investigation is needed to develop new strategies. Recent research pointed out a potential role of the microbial community associated to the human host in controlling and influencing the energy homeostasis. According to the concept of Gastrointestinal Resource Management, this microbiota and its metabolic potential can be steered with the aim of improving host health. This review therefore focuses on the modulation of the intestinal microbiota through prebiotics with the aim to control several aspects of metabolic homeostasis. In a first part, the importance of host-microbe cross-talk at the intestinal epithelium is discussed. Yet, energy metabolism, which includes both lipid and glucose metabolism, is also regulated by several key organs including the adipose tissue, brain, liver, muscles, pancreas and gut. Therefore, in a second part, we will discuss the microbial factors that are involved in the communication between these different tissues, and their potential management. Finally, we will give some future prospects of the use of prebiotics in an individualised treatment of metabolic disorders.
Collapse
Affiliation(s)
- C. Grootaert
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - M. Marzorati
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - P. Van den Abbeele
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - T. Van de Wiele
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - S. Possemiers
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
22
|
Anson NM, Havenaar R, Vaes W, Coulier L, Venema K, Selinheimo E, Bast A, Haenen GR. Effect of bioprocessing of wheat bran in wholemeal wheat breads on the colonic SCFA production in vitro and postprandial plasma concentrations in men. Food Chem 2011; 128:404-9. [DOI: 10.1016/j.foodchem.2011.03.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 02/07/2011] [Accepted: 03/08/2011] [Indexed: 11/30/2022]
|
23
|
Kaur A, Rose DJ, Rumpagaporn P, Patterson JA, Hamaker BR. In vitro batch fecal fermentation comparison of gas and short-chain fatty acid production using "slowly fermentable" dietary fibers. J Food Sci 2011; 76:H137-42. [PMID: 22417432 DOI: 10.1111/j.1750-3841.2011.02172.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
UNLABELLED Sustained colonic fermentation supplies beneficial fermentative by-products to the distal colon, which is particularly prone to intestinal ailments. Blunted/delayed initial fermentation may also lead to less bloating. Previously, we reported that starch-entrapped alginate-based microspheres act as a slowly fermenting dietary fiber. This material was used in the present study to provide a benchmark to compare to other "slowly fermentable" fibers. Dietary fibers with previous reports of slow fermentation, namely, long-chain inulin, psyllium, alkali-soluble corn bran arabinoxylan, and long-chain β-glucan, as well as starch-entrapped microspheres were subjected to in vitro upper gastrointestinal digestion and human fecal fermentation and measured over 48 h for pH, gas, and short-chain fatty acids (SCFA). The resistant fraction of cooked and cooled potato starch was used as another form of fermentable starch and fructooligosaccharides (FOS) served as a fast fermenting control. Corn bran arabinoxylan and long-chain β-glucan initially appeared slower fermenting with comparatively low gas and SCFA production, but later fermented rapidly with little remaining in the final half of the fermentation period. Long-chain inulin and psyllium had slow and moderate, but incomplete, fermentation. The resistant fraction of cooked and cooled potato starch fermented rapidly and appeared similar to FOS. In conclusion, compared to the benchmark slowly fermentable starch-entrapped microspheres, a number of the purported slowly fermentable fibers fermented fairly rapidly overall and, of this group, only the starch-entrapped microspheres appreciably fermented in the second half of the fermentation period. PRACTICAL APPLICATION Consumption of dietary fibers, particularly commercial prebiotics, leads to uncomfortable feelings of bloating and flatulence due to their rapid degradation in our large intestine. This article employs claimed potential slowly fermenting fibers and compares their fermentation rates with a benchmark slow fermenting fiber that we fabricated in an in vitro simulation of the human digestive system. Results show a variety of fermentation profiles only some of which have slow and extended rate of fermentation.
Collapse
Affiliation(s)
- Amandeep Kaur
- Whistler Center for Carbohydrate Research and Dept. of Food Science, Purdue Univ., West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
24
|
Thompson LU, Maningat CC, Woo K, Seib PA. In Vitro Digestion of RS4-Type Resistant Wheat and Potato Starches, and Fermentation of Indigestible Fractions. Cereal Chem 2011. [DOI: 10.1094/cchem-07-10-0098] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Lilian U. Thompson
- Dept. of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
- Corresponding author. Phone: 416-978-3523. Fax: 416-978-5882. E-mail:
| | | | | | - Paul A. Seib
- Dept. Grain Science and Industry, Kansas State University, Manhattan, KS 66506
| |
Collapse
|
25
|
Song JY, Park JH, Shin M. The effects of annealing and acid hydrolysis on resistant starch level and the properties of cross-linked RS4 rice starch. STARCH-STARKE 2010. [DOI: 10.1002/star.201000097] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Affiliation(s)
- Genyi Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, Indiana 47907‐1160
| | - Bruce R. Hamaker
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, Indiana 47907‐1160
- Corresponding author. E‐mail:
| |
Collapse
|
27
|
Kim HJ, White PJ. In vitro fermentation of oat flours from typical and high beta-glucan oat lines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:7529-7536. [PMID: 19572543 DOI: 10.1021/jf900788c] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Two publicly available oat (Avena sativa) lines, "Jim" and "Paul" (5.17 and 5.31% beta-glucan, respectively), and one experimental oat line "N979" (7.70% beta-glucan), were used to study the effect of beta-glucan levels in oat flours during simulated in vitro digestion and fermentation with human fecal flora obtained from different individuals. The oat flours were digested by using human digestion enzymes and fermented by batch fermentation under anaerobic conditions for 24 h. The fermentation progress was monitored by measuring pH, total gas, and short-chain fatty acid (SCFA) production. Significant effects of beta-glucan on the formation of gas and total SCFA were observed compared to the blank without substrate (P < 0.05); however, there were no differences in pH changes, total gas, and total SCFA production among oat lines (P > 0.05). Acetate, propionate, and butyrate were the main SCFA produced from digested oat flours during fermentation. More propionate and less acetate were produced from digested oat flours compared to lactulose. Different human fecal floras obtained from three healthy individuals had similar patterns in the change of pH and the production of gas during fermentation. Total SCFA after 24 h of fermentation were not different, but the formation rates of total SCFA differed between individuals. In vitro fermentation of digested oat flours with beta-glucan could provide favorable environmental conditions for the colon and these findings, thus, will help in developing oat-based food products with desirable health benefits.
Collapse
Affiliation(s)
- Hyun Jung Kim
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
28
|
Rose DJ, Keshavarzian A, Patterson JA, Venkatachalam M, Gillevet P, Hamaker BR. Starch-entrapped microspheres extend in vitro fecal fermentation, increase butyrate production, and influence microbiota pattern. Mol Nutr Food Res 2008; 53 Suppl 1:S121-30. [DOI: 10.1002/mnfr.200800033] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Stewart ML, Savarino V, Slavin JL. Assessment of dietary fiber fermentation: Effect of Lactobacillus reuteri and reproducibility of short-chain fatty acid concentrations. Mol Nutr Food Res 2008; 53 Suppl 1:S114-20. [DOI: 10.1002/mnfr.200700523] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Fässler C, Gill CIR, Arrigoni E, Rowland I, Amadò R. Fermentation of Resistant Starches: Influence of In Vitro Models on Colon Carcinogenesis. Nutr Cancer 2007; 58:85-92. [PMID: 17571971 DOI: 10.1080/01635580701308232] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Resistant starch type 2 (RS2) and type 3 (RS3) containing preparations were digested using a batch (a) and a dynamic in vitro model (b). Furthermore, in vivo obtained indigestible fractions from ileostomy patients were used (c). Subsequently these samples were fermented with human feces with a batch and a dynamic in vitro method. The fermentation supernatants were used to treat CACO2 cells. Cytotoxicity, anti-genotoxicity against hydrogen peroxide (comet assay) and the effect on barrier function measured by trans-epithelial electrical resistance were determined. Dynamically fermented samples led to high cytotoxic activity, probably due to additional compounds added during in vitro fermentation. As a consequence only batch fermented samples were investigated further. Batch fermentation of RS resulted in an anti-genotoxic activity ranging from 9-30% decrease in DNA damage for all the samples, except for RS2-b. It is assumed that the changes in RS2 structures due to dynamic digestion resulted in a different fermentation profile not leading to any anti-genotoxic effect. Additionally, in vitro batch fermentation of RS caused an improvement in integrity across the intestinal barrier by approximately 22% for all the samples. We have demonstrated that batch in vitro fermentation of RS2 and RS3 preparations differently pre-digested are capable of inhibiting the initiation and promotion stage in colon carcinogenesis in vitro.
Collapse
Affiliation(s)
- Caroline Fässler
- Institute of Food Science and Nutrition, ETH Zurich, Schmelzbergstrasse) Zurich, Switzerland
| | | | | | | | | |
Collapse
|