1
|
Chen Y, Luo YM, Li D, Liu H, Luo X, Zhang X, Ling Y, Ouyang W. Characteristics of Myocardial Structure and Central Carbon Metabolism during the Early and Compensatory Stages of Cardiac Hypertrophy. J Proteome Res 2024; 23:4229-4241. [PMID: 39178178 DOI: 10.1021/acs.jproteome.4c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Cardiac hypertrophy is a classical forerunner of heart failure and myocardial structural and metabolic remodeling are closely associated with cardiac hypertrophy. We aim to investigate the characteristics of myocardial structure and central carbon metabolism of cardiac hypertrophy at different stages. Using echocardiography and pathological staining, early and compensatory cardiac hypertrophy were respectively defined as within 7 days and from 7 to 14 days after transverse aortic constriction (TAC) in mice. Among mass-spectrometry-based metabolomics, we identified 45 central carbon metabolites. Differential metabolite analysis showed that six metabolites, including citrate, cis-aconitate and so on, decreased significantly on day 1 after TAC. Ten metabolites, including l-lactate, (S)-2-hydroxyglutarate and so on, were obviously changed on days 10 and 14. Pathway analysis showed that these metabolites were involved in seven metabolic pathways, including carbohydrates, amino acids and so on. Western blot showed the expression of ATP-citrate lyase, malate dehydrogenase 1 and lactate dehydrogenase A in myocardium changed markedly on day 3, while the phosphorylation level of AMP-activated protein kinase did not show significantly difference. We hope our research will promote deeper understanding and early diagnosis of cardiac hypertrophy in clinical practice. All raw data were deposited in MetaboLights (MTBLS10555).
Collapse
Affiliation(s)
- Yuan Chen
- Department of Nuclear Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou 510280, China
- Laboratory of Heart Center, Zhujiang Hospital of Southern Medical University, Guangzhou 510280, China
| | - Yu-Mei Luo
- Department of Nuclear Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou 510280, China
| | - Dong Li
- Department of Nuclear Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou 510280, China
- Laboratory of Heart Center, Zhujiang Hospital of Southern Medical University, Guangzhou 510280, China
| | - Haiqiong Liu
- Department of Health Management, Zhujiang Hospital of Southern Medical University, Guangzhou 510280, China
| | - Xiaoqin Luo
- Department of Nuclear Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou 510280, China
| | - Xinlei Zhang
- Department of Nuclear Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou 510280, China
| | - Yuanna Ling
- Department of Nuclear Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou 510280, China
| | - Wei Ouyang
- Department of Nuclear Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
2
|
Li Q, Xia B, Wu J, Yuan X, Lu X, Huang C, Gu H, Zheng K, You Q, Liu K. Indole-3-Carbinol (I3C) Protects the Heart From Ischemia/Reperfusion Injury by Inhibiting Oxidative Stress, Inflammation, and Cellular Apoptosis in Mice. Front Pharmacol 2022; 13:924174. [PMID: 35734410 PMCID: PMC9208008 DOI: 10.3389/fphar.2022.924174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Strategies for treating myocardial ischemia in the clinic usually include re-canalization of the coronary arteries to restore blood supply to the myocardium. However, myocardial reperfusion insult often leads to oxidative stress and inflammation, which in turn leads to apoptosis and necrosis of myocardial cells, for which there are no standard treatment methods. The aim of this study was to determine the pharmacological effect of indole-3-carbinol (I3C), a phytochemical found in most cruciferous vegetables, in a mouse model of myocardial ischemia/reperfusion injury (MIRI). Our results showed that I3C pretreatment (100 mg/kg, once daily, i. p.) prevented the MIRI-induced increase in infarct size and serum creatine kinase (CK) and lactate dehydrogenase (LDH) in mice. I3C pretreatment also suppressed cardiac apoptosis in MIRI mice by increasing the expression levels of the anti-apoptotic protein Bcl-2 and decreasing the expression levels of several apoptotic proteins, including Bax, caspase-3, and caspase-9. In addition, I3C pretreatment was found to reduce the levels of parameters reflecting oxidative stress, such as dihydroethidium (DHE), malondialdehyde (MDA), reactive oxygen species (ROS), and nitric oxide (NO), while increasing the levels of parameters reflecting anti-oxidation, such as total antioxidant capacity (T-AOC) and glutathione (GSH), in MIRI-induced ischemic heart tissue. I3C pretreatment was also able to remarkably decrease the expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) mRNA in ischemic heart tissue. These results demonstrate that administration of I3C protects the heart from MIRI through its anti-apoptotic, antioxidant, and anti-inflammatory effects.
Collapse
Affiliation(s)
- Qi Li
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Boyu Xia
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Jingjing Wu
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Xiaomei Yuan
- Department of Cardiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Hongcheng Gu
- Medical College, Nantong University, Nantong, China
| | - Koulong Zheng
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Qingsheng You
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Qingsheng You, ; Kun Liu,
| | - Kun Liu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Qingsheng You, ; Kun Liu,
| |
Collapse
|
3
|
Small molecule QF84139 ameliorates cardiac hypertrophy via activating the AMPK signaling pathway. Acta Pharmacol Sin 2022; 43:588-601. [PMID: 33967278 PMCID: PMC8888632 DOI: 10.1038/s41401-021-00678-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac hypertrophy is a common adaptive response to a variety of stimuli, but prolonged hypertrophy leads to heart failure. Hence, discovery of agents treating cardiac hypertrophy is urgently needed. In the present study, we investigated the effects of QF84139, a newly synthesized pyrazine derivative, on cardiac hypertrophy and the underlying mechanisms. In neonatal rat cardiomyocytes (NRCMs), pretreatment with QF84139 (1-10 μM) concentration-dependently inhibited phenylephrine-induced hypertrophic responses characterized by fetal genes reactivation, increased ANP protein level and enlarged cardiomyocytes. In adult male mice, administration of QF84139 (5-90 mg·kg-1·d-1, i.p., for 2 weeks) dose-dependently reversed transverse aortic constriction (TAC)-induced cardiac hypertrophy displayed by cardiomyocyte size, left ventricular mass, heart weights, and reactivation of fetal genes. We further revealed that QF84139 selectively activated the AMPK signaling pathway without affecting the phosphorylation of CaMKIIδ, ERK1/2, AKT, PKCε, and P38 kinases in phenylephrine-treated NRCMs and in the hearts of TAC-treated mice. In NRCMs, QF84139 did not show additive effects with metformin on the AMPK activation, whereas the anti-hypertrophic effect of QF84139 was abolished by an AMPK inhibitor Compound C or knockdown of AMPKα2. In AMPKα2-deficient mice, the anti-hypertrophic effect of QF84139 was also vanished. These results demonstrate that QF84139 attenuates the PE- and TAC-induced cardiac hypertrophy via activating the AMPK signaling. This structurally novel compound would be a promising lead compound for developing effective agents for the treatment of cardiac hypertrophy.
Collapse
|
4
|
Kamal RM, Abdull Razis AF, Mohd Sukri NS, Perimal EK, Ahmad H, Patrick R, Djedaini-Pilard F, Mazzon E, Rigaud S. Beneficial Health Effects of Glucosinolates-Derived Isothiocyanates on Cardiovascular and Neurodegenerative Diseases. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030624. [PMID: 35163897 PMCID: PMC8838317 DOI: 10.3390/molecules27030624] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/17/2022]
Abstract
Neurodegenerative diseases (NDDs) and cardiovascular diseases (CVDs) are illnesses that affect the nervous system and heart, all of which are vital to the human body. To maintain health of the human body, vegetable diets serve as a preventive approach and particularly Brassica vegetables have been associated with lower risks of chronic diseases, especially NDDs and CVDs. Interestingly, glucosinolates (GLs) and isothiocyanates (ITCs) are phytochemicals that are mostly found in the Cruciferae family and they have been largely documented as antioxidants contributing to both cardio- and neuroprotective effects. The hydrolytic breakdown of GLs into ITCs such as sulforaphane (SFN), phenylethyl ITC (PEITC), moringin (MG), erucin (ER), and allyl ITC (AITC) has been recognized to exert significant effects with regards to cardio- and neuroprotection. From past in vivo and/or in vitro studies, those phytochemicals have displayed the ability to mitigate the adverse effects of reactive oxidation species (ROS), inflammation, and apoptosis, which are the primary causes of CVDs and NDDs. This review focuses on the protective effects of those GL-derived ITCs, featuring their beneficial effects and the mechanisms behind those effects in CVDs and NDDs.
Collapse
Affiliation(s)
- Ramla Muhammad Kamal
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Department of Pharmacology, Federal University Dutse, Dutse 720101, Jigawa State, Nigeria
| | - Ahmad Faizal Abdull Razis
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence:
| | - Nurul Syafuhah Mohd Sukri
- Faculty of Applied Science and Technology, Universiti Tun Hussein Onn Malaysia, Batu Pahat 86400, Johor, Malaysia;
| | - Enoch Kumar Perimal
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Hafandi Ahmad
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Rollin Patrick
- Université d’Orléans et CNRS, ICOA, UMR 7311, BP 6759, CEDEX 02, F-45067 Orléans, France;
| | - Florence Djedaini-Pilard
- LG2A UMR 7378, Université de Picardie Jules Verne, 33 rue Saint Leu—UFR des Sciences, F-80000 Amiens, France; (F.D.-P.); (S.R.)
| | - Emanuela Mazzon
- Laboratorio di Neurologia Sperimentale, IRCCS Centro Neurolesi "Bonino Pulejo", 98124 Messina, Italy;
| | - Sébastien Rigaud
- LG2A UMR 7378, Université de Picardie Jules Verne, 33 rue Saint Leu—UFR des Sciences, F-80000 Amiens, France; (F.D.-P.); (S.R.)
| |
Collapse
|
5
|
Mohamad KA, El-Naga RN, Wahdan SA. Neuroprotective effects of indole-3-carbinol on the rotenone rat model of Parkinson's disease: Impact of the SIRT1-AMPK signaling pathway. Toxicol Appl Pharmacol 2022; 435:115853. [PMID: 34973289 DOI: 10.1016/j.taap.2021.115853] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/26/2021] [Accepted: 12/24/2021] [Indexed: 10/19/2022]
Abstract
Parkinson's disease (PD) is the second most common progressive neurodegenerative disorder. Although mounting studies have been conducted, no effective therapy is available to halt its progression. Indole-3-carbinol (I3C) is a naturally occurring compound obtained by β-thioglucosidase-mediated autolysis of glucobrassicin in cruciferous vegetables. Besides its powerful antioxidant activity, I3C has shown neuroprotection against depression and chemically induced neurotoxicity via its anti-inflammatory and antiapoptotic effects. This study aimed to investigate the neuroprotective effects of I3C against rotenone (ROT)-induced PD in male albino rats. The possible protective mechanisms were also explored. PD was induced by subcutaneous administration of ROT (2 mg/kg) for 28 days. The effects of I3C (25, 50, and 100 mg/kg/day) were assessed by catalepsy test (bar test), spontaneous locomotor activity, rotarod test, weight change, tyrosine hydroxylase (TH) expression, α-synuclein (α-Syn) expression, striatal dopamine (DA) content, and histological examination. The highest dose of I3C (100 mg/kg) was the most effective to prevent ROT-mediated motor dysfunctions and amend striatal DA decrease, weight loss, neurodegeneration, TH expression reduction, and α-Syn expression increase in both the midbrain and striatum. Further mechanistic investigations revealed that the neuroprotective effects of I3C are partially attributed to its anti-inflammatory and antiapoptotic effects and the activation of the sirtuin 1/AMP-activated protein kinase pathway. Altogether, these results suggested that I3C could attenuate biochemical, molecular, and functional changes in a rat PD model with following repeated rotenone exposures.
Collapse
Affiliation(s)
- Khalid A Mohamad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Reem N El-Naga
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Sara A Wahdan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
6
|
Zhang N, Liao HH, Feng H, Mou SQ, Li WJ, Aiyasiding X, Lin Z, Ding W, Zhou ZY, Yan H, Chen S, Tang QZ. Knockout of AMPKα2 Blocked the Protection of Sestrin2 Overexpression Against Cardiac Hypertrophy Induced by Pressure Overload. Front Pharmacol 2021; 12:716884. [PMID: 34867324 PMCID: PMC8635785 DOI: 10.3389/fphar.2021.716884] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 10/13/2021] [Indexed: 12/02/2022] Open
Abstract
Objectives: Sestrin2 (Sesn2) has been demonstrated to be a cysteine sulfinyl reductase and protects cells from multiple stress insults, including hypoxia, endoplasmic reticulum stress, and oxidative stress. However, the roles and mechanisms of Sesn2 in pressure overload-induced mouse cardiac hypertrophy have not been clearly clarified. This study intended to investigate whether sestrin2 (Sesn2) overexpression could prevent pressure overload-induced cardiac hypertrophy via an AMPKα2 dependent pathway through conditional knockout of AMPKα2. Methods and results: Sesn2 expression was significantly increased in mice hearts at 2 and 4 weeks after aortic banding (AB) surgery, but decreased to 60–70% of the baseline at 8 weeks. Sesn2 overexpression (at 3, 6, and 9 folds) showed little cardiac genetic toxicity in transgenic mice. Cardiac dysfunctions induced by pressure overload were attenuated by cardiomyocyte-specific Sesn2 overexpression when measured by echocardiography and hemodynamic analysis. Results of HE and PSR staining showed that Sesn2 overexpression significantly alleviated cardiac hypertrophy and fibrosis in mice hearts induced by pressure overload. Meanwhile, adenovirus-mediated-Sesn2 overexpression markedly suppressed angiotensin II-induced neonatal rat cardiomyocyte hypertrophy in vitro. Mechanistically, Sesn2 overexpression increased AMPKα2 phosphorylation but inhibited mTORC1 phosphorylation. The cardiac protections of Sesn2 overexpression were also via regulating oxidative stress by enhancing Nrf2/HO-1 signaling, restoring SOD activity, and suppressing NADPH activity. Particularly, we first proved the vital role of AMPKα2 in the regulation of Sesn2 with AMPKα2 knockout (AMPKα2-/-) mice and Sesn2 transgenic mice crossed with AMPKα2-/-, since Sesn2 overexpression failed to improve cardiac function, inhibit cardiac hypertrophy and fibrosis, and attenuate oxidative stress after AMPKα2 knockout. Conclusion: This study uniquely revealed that Sesn2 overexpression showed little genetic toxicity in mice hearts and inhibited mTORC1 activation and oxidative stress to protect against pressure overload-induced cardiac hypertrophy in an AMPKα2 dependent pathway. Thus, interventions through promoting Sesn2 expression might be a potential strategy for treating pathological cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Hai-Han Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Hong Feng
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shan-Qi Mou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Wen-Jing Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Xiahenazi Aiyasiding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Zheng Lin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Zi-Ying Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Han Yan
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Si Chen
- Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| |
Collapse
|
7
|
Akkiraju S, Kanala SR, Khatri S, Kutagulla VK, Mallela V, Peraman R. Cardioprotective potential of indol-3-carbinol against high salt induced myocardial stress and hypertrophy in Sprague dawley rats besides molecular docking on muscarinic receptor-2. Nat Prod Res 2021; 36:2610-2614. [PMID: 33858276 DOI: 10.1080/14786419.2021.1912042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The vegetative chemical constituent, indol-3-carbinol (I-3-C) studied for its cardioprotective potential in male Sprague dawley rats. The I-3-C at 20 mg/Kg b.w, p.o significantly (p < 0.001) attenuated the high salt induced hypertrophy and produced antihypertensive effect (p < 0.001) as similar to losartan. Further, it significantly reduced the levels of C-reactive protein (p < 0.05), creatinine kinases isoenzyme (p < 0.01), serum lactate dehydrogenase (p < 0.05), myeloperoxidase (p < 0.01) and hydroxyproline (p < 0.01), subsequently increased the nitric oxide level (p < 0.05). The carotid ligation for vascular reactivity against vasopressors revealed a lesser magnitude of change (p < 0.05) in invasive blood pressure for I-3-C, compared to high salt treated animals (p < 0.001). In histology of heart tissue also supported the cardioprotective effect of I-3-C. In silico molecular docking of I-3-C on muscarinic receptor-2 showed the amino acid interaction as similar to acetylcholine.
Collapse
Affiliation(s)
- Sudheer Akkiraju
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research (RIPER) - Autonomous, Anantapur, Andhra Pradesh, India
| | - Somasekhar Reddy Kanala
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research (RIPER) - Autonomous, Anantapur, Andhra Pradesh, India
| | - Sardip Khatri
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research (RIPER) - Autonomous, Anantapur, Andhra Pradesh, India
| | - Vinay Kumar Kutagulla
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research (RIPER) - Autonomous, Anantapur, Andhra Pradesh, India
| | - Vijayajyothi Mallela
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research (RIPER) - Autonomous, Anantapur, Andhra Pradesh, India
| | - Ramalingam Peraman
- RERDS-Centre for Pharmaceutical Research, Raghavendra Institute of Pharmaceutical Education and Research (RIPER) Campus, Anantapur, Andhra Pradesh, India
| |
Collapse
|
8
|
Sophoricoside ameliorates cardiac hypertrophy by activating AMPK/mTORC1-mediated autophagy. Biosci Rep 2021; 40:226492. [PMID: 32964914 PMCID: PMC7677750 DOI: 10.1042/bsr20200661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/20/2020] [Accepted: 08/03/2020] [Indexed: 02/01/2023] Open
Abstract
Aim: The study aims to evaluate protective effects of sophoricoside (Sop) on cardiac hypertrophy. Meanwhile, the potential and significance of Sop should be broadened and it should be considered as an attractive drug for the treatment of pathological cardiac hypertrophy and heart failure. Methods: Using the phenylephrine (PE)-induced neonatal rat cardiomyocytes (NRCMs) enlargement model, the potent protection of Sop against cardiomyocytes enlargement was evaluated. The function of Sop was validated in mice received transverse aortic coarctation (TAC) or sham surgery. At 1 week after TAC surgery, mice were treated with Sop for the following 4 weeks, the hearts were harvested after echocardiography examination. Results: Our study revealed that Sop significantly mitigated TAC-induced heart dysfunction, cardiomyocyte hypertrophy and cardiac fibrosis. Mechanistically, Sop treatment induced a remarkable activation of AMPK/mTORC1-autophagy cascade following sustained hypertrophic stimulation. Importantly, the protective effect of Sop was largely abolished by the AMPKα inhibitor Compound C, suggesting an AMPK activation-dependent manner of Sop function on suppressing pathological cardiac hypertrophy. Conclusion: Sop ameliorates cardiac hypertrophy by activating AMPK/mTORC1-mediated autophagy. Hence, Sop might be an attractive candidate for the treatment of pathological cardiac hypertrophy and heart failure.
Collapse
|
9
|
Almushayti AY, Brandt K, Carroll MA, Scotter MJ. Current analytical methods for determination of glucosinolates in vegetables and human tissues. J Chromatogr A 2021; 1643:462060. [PMID: 33770631 DOI: 10.1016/j.chroma.2021.462060] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/18/2021] [Accepted: 03/05/2021] [Indexed: 10/21/2022]
Abstract
Numerous epidemiological studies have indicated the potential effects of glucosinolates and their metabolites against cancer as well as other non-communicable diseases, such as cardiovascular disease and neurodegenerative disorders. However, information on the presence and quantity of glucosinolates in commonly consumed vegetables and in human fluids is sparse, largely because well-standardised methods for glucosinolate determination are not available, resulting in published data being inconsistent and conflicting. Thus, studies published since 2002 on the most recent developments of glucosinolate extraction and identification have been collected and reviewed with emphasis on determination of the intact glucosinolates by LC-MS and LC-MS/MS. This overview highlights the glucosinolate extraction methods used, the stability of glucosinolates during extraction, the availability of stable isotope labelled internal standards and the use of NMR for purity analysis, as well as the current analytical techniques that have been applied for glucosinolate analysis, e.g. liquid chromatography with mass spectrometric detection (LC-MS). It aims to interpret the findings with a focus on the development of a validated method, which will help to determine the glucosinolate content of vegetative plants and human tissues, and the identification and determination of selected glucosinolate metabolites.
Collapse
Affiliation(s)
- Albatul Y Almushayti
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK; College of Agriculture and Veterinary Medicine, Department of Food Science and Human Nutrition, Qassim University, Qassim, KSA.
| | - Kirsten Brandt
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| | - Michael A Carroll
- School of Natural & Environmental Sciences-Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | | |
Collapse
|
10
|
Xu M, Liu PP, Li H. Innate Immune Signaling and Its Role in Metabolic and Cardiovascular Diseases. Physiol Rev 2019; 99:893-948. [PMID: 30565509 DOI: 10.1152/physrev.00065.2017] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The innate immune system is an evolutionarily conserved system that senses and defends against infection and irritation. Innate immune signaling is a complex cascade that quickly recognizes infectious threats through multiple germline-encoded cell surface or cytoplasmic receptors and transmits signals for the deployment of proper countermeasures through adaptors, kinases, and transcription factors, resulting in the production of cytokines. As the first response of the innate immune system to pathogenic signals, inflammatory responses must be rapid and specific to establish a physical barrier against the spread of infection and must subsequently be terminated once the pathogens have been cleared. Long-lasting and low-grade chronic inflammation is a distinguishing feature of type 2 diabetes and cardiovascular diseases, which are currently major public health problems. Cardiometabolic stress-induced inflammatory responses activate innate immune signaling, which directly contributes to the development of cardiometabolic diseases. Additionally, although the innate immune elements are highly conserved in higher-order jawed vertebrates, lower-grade jawless vertebrates lack several transcription factors and inflammatory cytokine genes downstream of the Toll-like receptors (TLRs) and retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) pathways, suggesting that innate immune signaling components may additionally function in an immune-independent way. Notably, recent studies from our group and others have revealed that innate immune signaling can function as a vital regulator of cardiometabolic homeostasis independent of its immune function. Therefore, further investigation of innate immune signaling in cardiometabolic systems may facilitate the discovery of new strategies to manage the initiation and progression of cardiometabolic disorders, leading to better treatments for these diseases. In this review, we summarize the current progress in innate immune signaling studies and the regulatory function of innate immunity in cardiometabolic diseases. Notably, we highlight the immune-independent effects of innate immune signaling components on the development of cardiometabolic disorders.
Collapse
Affiliation(s)
- Meng Xu
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| | - Peter P Liu
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| |
Collapse
|
11
|
Zhang N, Wei WY, Liao HH, Yang Z, Hu C, Wang SS, Deng W, Tang QZ. AdipoRon, an adiponectin receptor agonist, attenuates cardiac remodeling induced by pressure overload. J Mol Med (Berl) 2018; 96:1345-1357. [PMID: 30341569 DOI: 10.1007/s00109-018-1696-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 09/08/2018] [Accepted: 09/18/2018] [Indexed: 12/22/2022]
Abstract
AdipoRon, a small-molecule adiponectin receptor (AdipoR) agonist, has been reported to be implicated in cardiovascular diseases. However, its role in pressure-overload-induced cardiac remodeling is still elusive. To elucidate the role of AdipoRon in the pathogenesis of cardiac remodeling in vivo and vitro, in the left ventricle of human end-stage heart failure, the expression of AdipoR2 is upregulated. Meanwhile, increased expression of AdipoR2 was also observed in mice failing hearts. Oral administration of AdipoRon alleviated cardiac hypertrophy and fibrosis induced by pressure overload, as evidenced by the beneficial change of cross-sectional area of cardiomyocytes, heart weight-to-body weight ratio, gene expression of hypertrophic markers, ventricle collagen ratio, and cardiac function. The AMPKα activation mediated by AdipoRon significantly inhibited AngII-induced TGF-β1 expression and cardiac fibroblast differentiation, and these inhibitory effects were abrogated by treatment with the AMPK inhibitor Compound C. Consistent with the above results, AdipoRon abolished the ability to retard AngII-induced TGF-β1 expression in AMPKα2-/- cardiac fibroblasts. In AMPKα2-/- mice subjected to aortic banding, AdipoRon abolished the protective effect, as indicated by increased cross-sectional area, cardiac collagen ratio, and cardiac dysfunction. Our results demonstrated that AdipoR2 expression was markedly increased in the failing hearts. AdipoRon inhibited TGF-β1 expression and myofibroblast differentiation in AMPKα-dependent manner in vitro. In line with the vitro results, AMPKα2-/- mice markedly abrogated the inhibitory effects of AdipoRon in cardiac remodeling. These results indicated AdipoRon may hold promise of an effective therapy against pressure-overload-induced cardiac remodeling. KEY MESSAGES: • The increased expression of AdipoR2 is observed in human and mice failing hearts, the changeable expression of AdipoR suggests the possible role of AdipoR in cardiac remodeling. • Oral administration of AdipoRon alleviates cardiac hypertrophy and fibrosis induced by pressure overload, and AMPKα activation mediated by AdipoRon significantly inhibited AngII-induced TGF-β1 expression and cardiac fibroblast differentiation. • These findings provide new mechanistic insight and open new therapeutic pathways for heart failure.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Cardiology, Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
| | - Wen-Ying Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hai-Han Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zheng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Can Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Sha-Sha Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China.
- Cardiovascular Research Institute of Wuhan University, Wuhan, China.
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China.
- Cardiovascular Research Institute of Wuhan University, Wuhan, China.
- Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
12
|
Liu XY, Liao HH, Feng H, Zhang N, Yang JJ, Li WJ, Chen S, Deng W, Tang QZ. Icariside II attenuates cardiac remodeling via AMPKα2/mTORC1 in vivo and in vitro. J Pharmacol Sci 2018; 138:38-45. [DOI: 10.1016/j.jphs.2018.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/01/2018] [Accepted: 08/21/2018] [Indexed: 02/07/2023] Open
|
13
|
Mechanisms contributing to cardiac remodelling. Clin Sci (Lond) 2017; 131:2319-2345. [PMID: 28842527 DOI: 10.1042/cs20171167] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 12/14/2022]
Abstract
Cardiac remodelling is classified as physiological (in response to growth, exercise and pregnancy) or pathological (in response to inflammation, ischaemia, ischaemia/reperfusion (I/R) injury, biomechanical stress, excess neurohormonal activation and excess afterload). Physiological remodelling of the heart is characterized by a fine-tuned and orchestrated process of beneficial adaptations. Pathological cardiac remodelling is the process of structural and functional changes in the left ventricle (LV) in response to internal or external cardiovascular damage or influence by pathogenic risk factors, and is a precursor of clinical heart failure (HF). Pathological remodelling is associated with fibrosis, inflammation and cellular dysfunction (e.g. abnormal cardiomyocyte/non-cardiomyocyte interactions, oxidative stress, endoplasmic reticulum (ER) stress, autophagy alterations, impairment of metabolism and signalling pathways), leading to HF. This review describes the key molecular and cellular responses involved in pathological cardiac remodelling.
Collapse
|
14
|
Ma ZG, Dai J, Wei WY, Zhang WB, Xu SC, Liao HH, Yang Z, Tang QZ. Asiatic Acid Protects against Cardiac Hypertrophy through Activating AMPKα Signalling Pathway. Int J Biol Sci 2016; 12:861-71. [PMID: 27313499 PMCID: PMC4910604 DOI: 10.7150/ijbs.14213] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 03/23/2016] [Indexed: 12/22/2022] Open
Abstract
Background: AMPactivated protein kinase α (AMPKα) is closely involved in the process of cardiac hypertrophy. Asiatic acid (AA), a pentacyclic triterpene, was found to activate AMPKα in our preliminary experiment. However, its effects on the development of cardiac hypertrophy remain unclear. The present study was to determine whether AA could protect against cardiac hypertrophy. Methods: Mice subjected to aortic banding were orally given AA (10 or 30mg/kg) for 7 weeks. In the inhibitory experiment, Compound C was intraperitoneally injected for 3 weeks after surgery. Results: Our results showed that AA markedly inhibited hypertrophic responses induced by pressure overload or angiotensin II. AA also suppressed cardiac fibrosis in vivo and accumulation of collagen in vitro. The protective effects of AA were mediated by activation of AMPKα and inhibition of the mammalian target of rapamycin (mTOR) pathway and extracellular signal-regulated kinase (ERK) in vivo and in vitro. However, AA lost the protective effects after AMPKα inhibition or gene deficiency. Conclusions: AA protects against cardiac hypertrophy by activating AMPKα, and has the potential to be used for the treatment of heart failure.
Collapse
Affiliation(s)
- Zhen-Guo Ma
- 1. Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China;; 2. Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Jia Dai
- 1. Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China;; 2. Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Wen-Ying Wei
- 1. Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China;; 2. Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Wen-Bin Zhang
- 1. Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China;; 2. Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Si-Chi Xu
- 1. Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China;; 2. Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Hai-Han Liao
- 1. Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China;; 2. Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Zheng Yang
- 1. Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China;; 2. Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Qi-Zhu Tang
- 1. Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China;; 2. Cardiovascular Research Institute of Wuhan University, Wuhan, China
| |
Collapse
|
15
|
AMPK in cardiac fibrosis and repair: Actions beyond metabolic regulation. J Mol Cell Cardiol 2016; 91:188-200. [PMID: 26772531 DOI: 10.1016/j.yjmcc.2016.01.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/28/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023]
Abstract
Fibrosis is a general term encompassing a plethora of pathologies that span all systems and is marked by increased deposition of collagen. Injury of variable etiology gives rise to complex cascades involving several cell-types and molecular signals, leading to the excessive accumulation of extracellular matrix that promotes fibrosis and eventually leads to organ failure. Cardiac fibrosis is a dynamic process associated notably with ischemia, hypertrophy, volume- and pressure-overload, aging and diabetes mellitus. It has profoundly deleterious consequences on the normal architecture and functioning of the myocardium and is associated with considerable mortality and morbidity. The AMP-activated protein kinase (AMPK) is a ubiquitously expressed cellular energy sensor and an essential component of the adaptive response to cardiomyocyte stress that occurs during ischemia. Nevertheless, its actions extend well beyond its energy-regulating role and it appears to possess an essential role in regulating fibrosis of the myocardium. In this review paper, we will summarize the main elements and crucial players of cardiac fibrosis. In addition, we will provide an overview of the diverse roles of AMPK in the heart and discuss in detail its implication in cardiac fibrosis. Lastly, we will highlight the recently published literature concerning AMPK-targeting current therapy and novel strategies aiming to attenuate fibrosis.
Collapse
|
16
|
Licznerska B, Baer-Dubowska W. Indole-3-Carbinol and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 928:131-154. [PMID: 27671815 DOI: 10.1007/978-3-319-41334-1_6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Indole-3-carbinol (I3C), a common phytochemical in cruciferous vegetables, and its condensation product, 3,3'-diindolylmethane (DIM) exert several biological activities on cellular and molecular levels, which contribute to their well-recognized chemoprevention potential. Initially, these compounds were classified as blocking agents that increase drug-metabolizing enzyme activity. Now it is widely accepted that I3C and DIM affect multiple signaling pathways and target molecules controlling cell division, apoptosis, or angiogenesis deregulated in cancer cells. Although most of the current data support the role of I3C and DIM in prevention of hormone-dependent cancers, it seems that their application in prevention of the other cancer as well as cardiovascular disease, obesity, and diabetes reduction is also possible. This chapter summarizes the current experimental data on the I3C and DIM activity and the results of clinical studies indicating their role in prevention of chronic diseases.
Collapse
Affiliation(s)
- Barbara Licznerska
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Wanda Baer-Dubowska
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
17
|
Anti-cancer and cardioprotective effects of indol-3-carbinol in doxorubicin-treated mice. J Infect Chemother 2016; 22:36-43. [DOI: 10.1016/j.jiac.2015.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 09/28/2015] [Accepted: 10/06/2015] [Indexed: 12/17/2022]
|
18
|
Abstract
Previous study has demonstrated that oleanolic acid (OA) possessing the anti-inflammatory and anti-oxidant properties blunted high-glucose-induced diabetic cardiomyopathy and ameliorated experimental autoimmune myocarditis in mice. However, little is known about its effects on pressure overload-induced cardiac remodeling. Herein, we investigated the effect of OA on cardiac remodeling and underlying mechanism. Mice, subjected to aortic banding (AB), were randomly assigned into control group and experimental group. OA premixed in diets was administered to mice after 3 days of AB. Echocardiography and catheter-based measurements of hemodynamic parameters were performed after 8 weeks' treatment of OA. Histologic examination and molecular analyses were used to assess cardiac hypertrophy and tissue fibrosis. In addition, the inhibitory effects of OA on H9c2 cardiomyocytes and cardiac primary fibroblast responded to the stimulation of AngII were also investigated. OA ameliorated the systolic and diastolic dysfunction induced by pressure overload evidenced by echocardiography and catheter-based measurements. OA also decreased the mRNA expression of cardiac hypertrophy and fibrosis markers evidenced by RT-PCR. It has been shown in our study that pressure overload activated the phosphorylations of Akt, mTOR, p70s6k, S6, GSK3β, and FoxO3a, and treatment of OA attenuated the phosphorylation of these proteins. In addition, hypertrophy of cardiomyocytes and fibrosis markers induced by AngII was inhibited by OA in vitro. Our findings uncover that OA suppressed AB-induced cardiac hypertrophy, partly by inhibiting the activity of Akt/mTOR pathway, and suggest that treatment of OA may have a benefit on retarding the progress of cardiac remodeling under long terms of pressure overload.
Collapse
|
19
|
Puukila S, Bryan S, Laakso A, Abdel-Malak J, Gurney C, Agostino A, Belló-Klein A, Prasad K, Khaper N. Secoisolariciresinol diglucoside abrogates oxidative stress-induced damage in cardiac iron overload condition. PLoS One 2015; 10:e0122852. [PMID: 25822525 PMCID: PMC4379144 DOI: 10.1371/journal.pone.0122852] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/23/2015] [Indexed: 02/07/2023] Open
Abstract
Cardiac iron overload is directly associated with cardiac dysfunction and can ultimately lead to heart failure. This study examined the effect of secoisolariciresinol diglucoside (SDG), a component of flaxseed, on iron overload induced cardiac damage by evaluating oxidative stress, inflammation and apoptosis in H9c2 cardiomyocytes. Cells were incubated with 50 μ5M iron for 24 hours and/or a 24 hour pre-treatment of 500 μ M SDG. Cardiac iron overload resulted in increased oxidative stress and gene expression of the inflammatory mediators tumor necrosis factor-α, interleukin-10 and interferon γ, as well as matrix metalloproteinases-2 and -9. Increased apoptosis was evident by increased active caspase 3/7 activity and increased protein expression of Forkhead box O3a, caspase 3 and Bax. Cardiac iron overload also resulted in increased protein expression of p70S6 Kinase 1 and decreased expression of AMP-activated protein kinase. Pre-treatment with SDG abrogated the iron-induced increases in oxidative stress, inflammation and apoptosis, as well as the increased p70S6 Kinase 1 and decreased AMP-activated protein kinase expression. The decrease in superoxide dismutase activity by iron treatment was prevented by pre-treatment with SDG in the presence of iron. Based on these findings we conclude that SDG was cytoprotective in an in vitro model of iron overload induced redox-inflammatory damage, suggesting a novel potential role for SDG in cardiac iron overload.
Collapse
Affiliation(s)
- Stephanie Puukila
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Sean Bryan
- Northern Ontario School of Medicine, Lakehead University, Thunder Bay, Ontario, Canada
| | - Anna Laakso
- Northern Ontario School of Medicine, Lakehead University, Thunder Bay, Ontario, Canada
| | | | - Carli Gurney
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Adrian Agostino
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Adriane Belló-Klein
- Department of Physiology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Kailash Prasad
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Neelam Khaper
- Northern Ontario School of Medicine, Lakehead University, Thunder Bay, Ontario, Canada
- * E-mail:
| |
Collapse
|
20
|
3,3'-Diindolylmethane improves myocardial energy metabolism imbalance induced by pressure overload via AMPKα in mice. Int J Cardiol 2014; 177:235-7. [PMID: 25499385 DOI: 10.1016/j.ijcard.2014.09.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 09/16/2014] [Indexed: 11/23/2022]
|
21
|
DENG WEI, FANG YI, LIU YUAN, ZHOU HENG, CHENG ZHIHONG, ZHANG YANG, SUN DI, HE MENGYING, LIN YAFEN, ZHANG RUI, ZHANG JIEYU, LI WEI, TANG QIZHU. Sanguinarine protects against pressure overload-induced cardiac remodeling via inhibition of nuclear factor-κB activation. Mol Med Rep 2014; 10:211-6. [DOI: 10.3892/mmr.2014.2206] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 03/28/2014] [Indexed: 11/06/2022] Open
|
22
|
Hesperetin protects against cardiac remodelling induced by pressure overload in mice. J Mol Histol 2013; 44:575-85. [PMID: 23719775 DOI: 10.1007/s10735-013-9514-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 05/22/2013] [Indexed: 10/26/2022]
Abstract
Cardiac remodelling is a major determinant of heart failure (HF) and is characterised by cardiac hypertrophy, fibrosis, oxidative stress and myocytes apoptosis. Hesperetin, which belongs to the flavonoid subgroup of citrus flavonoids, is the main flavonoid in oranges and possesses multiple pharmacological properties. However, its role in cardiac remodelling remains unknown. We determined the effect of hesperetin on cardiac hypertrophy, fibrosis and heart function using an aortic banding (AB) mouse. Male, 8-10-week-old, wild-type C57 mice with or without oral hesperetin administration were subjected to AB or a sham operation. Our data demonstrated that hesperetin protected against cardiac hypertrophy, fibrosis and dysfunction induced by AB, as assessed by heart weigh/body weight, lung weight/body weight, heart weight/tibia length, echocardiographic and haemodynamic parameters, histological analysis, and gene expression of hypertrophic and fibrotic markers. Also, hesperetin attenuated oxidative stress and myocytes apoptosis induced by AB. The inhibitory effect of hesperetin on cardiac remodelling was mediated by blocking PKCα/βII-AKT, JNK and TGFβ1-Smad signalling pathways. In conclusion, we found that the orange flavonoid hesperetin protected against cardiac remodelling induced by pressure overload via inhibiting cardiac hypertrophy, fibrosis, oxidative stress and myocytes apoptosis. These findings suggest a potential therapeutic drug for cardiac remodelling and HF.
Collapse
|