1
|
Jia Z, Yu X, Wang X, Li J. Therapeutic Effects of Coenzyme Q10 in the Treatment of Ischemic Stroke. Curr Nutr Rep 2024; 13:679-690. [PMID: 39227555 DOI: 10.1007/s13668-024-00568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 09/05/2024]
Abstract
PURPOSE OF REVIEW Ischemic stroke is the second deadly disease worldwide, but current treatment is very limited. The brain, rich in lipids and high in oxygen consumption, is susceptible to damage from oxidative stress after ischemic stroke. Thus, antioxidants are promising neuroprotective agents for treatment and prevention of ischemic stroke. Coenzyme Q10 is the only lipophilic antioxidant that can be synthesized de novo by cells and plays a key role as an electron carrier in the oxidative phosphorylation of the mitochondrial electron transport chain. However, the reduced form of coenzyme Q10 (Ubiquinol) levels are significantly deficient in the brain. The aim of this article is to review the therapeutic effects and mechanisms of coenzyme Q10 in ischemic stroke. RECENT FINDINGS Current studies have found that coenzyme Q10 protects and treats ischemic stroke through multiple mechanisms based on the evidence from in vitro experiments, in vivo experiments, and clinical observations. For the first time, we reviewed the neuroprotective effects of coenzyme Q10 in ischemic stroke. Coenzyme Q10 exerts neuroprotective effects after ischemic stroke through anti-oxidative stress, anti-nitrosative stress, anti-inflammation, and anti-cell death. Here, we provided the evidence on the therapeutic and preventive effects of coenzyme Q10 in ischemic stroke and suggested the potential value of coenzyme Q10 as a medication candidate.
Collapse
Affiliation(s)
- Zhilei Jia
- Science and Technology Innovation Platform Management Center of Jilin Province, Changchun, Jilin, 130000, China
| | - Xiaoya Yu
- Science and Technology Innovation Platform Management Center of Jilin Province, Changchun, Jilin, 130000, China
| | - Xu Wang
- School of Public Health, Jilin University, Changchun, Jilin, 130021, China.
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China.
| | - Jinhua Li
- School of Public Health, Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
2
|
Liao M, He X, Zhou Y, Peng W, Zhao XM, Jiang M. Coenzyme Q10 in atherosclerosis. Eur J Pharmacol 2024; 970:176481. [PMID: 38493916 DOI: 10.1016/j.ejphar.2024.176481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
Atherosclerotic disease is a chronic disease that predominantly affects the elderly and is the most common cause of cardiovascular death worldwide. Atherosclerosis is closely related to processes such as abnormal lipid transport and metabolism, impaired endothelial function, inflammation, and oxidative stress. Coenzyme Q10 (CoQ10) is a key component of complex Ⅰ in the electron transport chain and an important endogenous antioxidant that may play a role in decelerating the progression of atherosclerosis. Here, the different forms of CoQ10 presence in the electron transport chain are reviewed, as well as its physiological role in regulating processes such as oxidative stress, inflammatory response, lipid metabolism and cellular autophagy. It was also found that CoQ10 plays beneficial effects in atherosclerosis by mitigating lipid transportation, endothelial inflammation, metabolic abnormalities, and thrombotic processes from the perspectives of molecular mechanisms, animal experiments, and clinical evidence. Besides, the combined use of CoQ10 with other drugs has better synergistic therapeutic effects. It seems reasonable to suggest that CoQ10 could be used in the treatment of atherosclerotic cardiovascular diseases while more basic and clinical studies are needed.
Collapse
Affiliation(s)
- Minjun Liao
- Institute of Cardiovascular Disease, Department of Pathophysiology, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001, PR China; Department of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China
| | - Xueke He
- Institute of Cardiovascular Disease, Department of Pathophysiology, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001, PR China
| | - Yangyang Zhou
- Institute of Cardiovascular Disease, Department of Pathophysiology, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001, PR China; Department of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China
| | - Weiqiang Peng
- Institute of Cardiovascular Disease, Department of Pathophysiology, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001, PR China; Department of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China
| | - Xiao-Mei Zhao
- College of Public Health, University of South China, Hengyang, 421001, Hunan, PR China.
| | - Miao Jiang
- Institute of Cardiovascular Disease, Department of Pathophysiology, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001, PR China.
| |
Collapse
|
3
|
Coenzyme Q10 supplementation improves cholesterol efflux capacity and anti-inflammatory properties of HDL in Chinese adults with dyslipidemia. Nutrition 2022; 101:111703. [DOI: 10.1016/j.nut.2022.111703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/25/2022] [Accepted: 04/11/2022] [Indexed: 11/21/2022]
|
4
|
Rabanal-Ruiz Y, Llanos-González E, Alcain FJ. The Use of Coenzyme Q10 in Cardiovascular Diseases. Antioxidants (Basel) 2021; 10:antiox10050755. [PMID: 34068578 PMCID: PMC8151454 DOI: 10.3390/antiox10050755] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023] Open
Abstract
CoQ10 is an endogenous antioxidant produced in all cells that plays an essential role in energy metabolism and antioxidant protection. CoQ10 distribution is not uniform among different organs, and the highest concentration is observed in the heart, though its levels decrease with age. Advanced age is the major risk factor for cardiovascular disease and endothelial dysfunction triggered by oxidative stress that impairs mitochondrial bioenergetic and reduces NO bioavailability, thus affecting vasodilatation. The rationale of the use of CoQ10 in cardiovascular diseases is that the loss of contractile function due to an energy depletion status in the mitochondria and reduced levels of NO for vasodilatation has been associated with low endogenous CoQ10 levels. Clinical evidence shows that CoQ10 supplementation for prolonged periods is safe, well-tolerated and significantly increases the concentration of CoQ10 in plasma up to 3–5 µg/mL. CoQ10 supplementation reduces oxidative stress and mortality from cardiovascular causes and improves clinical outcome in patients undergoing coronary artery bypass graft surgery, prevents the accumulation of oxLDL in arteries, decreases vascular stiffness and hypertension, improves endothelial dysfunction by reducing the source of ROS in the vascular system and increases the NO levels for vasodilation.
Collapse
Affiliation(s)
- Yoana Rabanal-Ruiz
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (Y.R.-R.); (E.L.-G.)
- Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research CRIB, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Emilio Llanos-González
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (Y.R.-R.); (E.L.-G.)
- Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research CRIB, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Francisco Javier Alcain
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (Y.R.-R.); (E.L.-G.)
- Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research CRIB, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
- Correspondence:
| |
Collapse
|
5
|
Analysis of Low Molecular Weight Substances and Related Processes Influencing Cellular Cholesterol Efflux. Pharmaceut Med 2020; 33:465-498. [PMID: 31933239 PMCID: PMC7101889 DOI: 10.1007/s40290-019-00308-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cholesterol efflux is the key process protecting the vascular system from the development of atherosclerotic lesions. Various extracellular and intracellular events affect the ability of the cell to efflux excess cholesterol. To explore the possible pathways and processes that promote or inhibit cholesterol efflux, we applied a combined cheminformatic and bioinformatic approach. We performed a comprehensive analysis of published data on the various substances influencing cholesterol efflux and found 153 low molecular weight substances that are included in the Chemical Entities of Biological Interest (ChEBI) database. Pathway enrichment was performed for substances identified within the Reactome database, and 45 substances were selected in 93 significant pathways. The most common pathways included the energy-dependent processes related to active cholesterol transport from the cell, lipoprotein metabolism and lipid transport, and signaling pathways. The activators and inhibitors of cholesterol efflux were non-uniformly distributed among the different pathways: the substances influencing ‘biological oxidations’ activate cholesterol efflux and the substances influencing ‘Signaling by GPCR and PTK6’ inhibit efflux. This analysis may be used in the search and design of efflux effectors for therapies targeting structural and functional high-density lipoprotein deficiency.
Collapse
|
6
|
Ya F, Xu XR, Tian Z, Gallant RC, Song F, Shi Y, Wu Y, Wan J, Zhao Y, Adili R, Ling W, Ni H, Yang Y. Coenzyme Q10 attenuates platelet integrin αIIbβ3 signaling and platelet hyper-reactivity in ApoE-deficient mice. Food Funct 2020; 11:139-152. [DOI: 10.1039/c9fo01686d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CoQ10 supplementation in ApoE−/− mice attenuates high-fat diet-induced platelet hyper-reactivity via down-regulating platelet αIIbβ3 signaling, and thus protecting against atherothrombosis.
Collapse
|
7
|
Ya F, Xu XR, Shi Y, Gallant RC, Song F, Zuo X, Zhao Y, Tian Z, Zhang C, Xu X, Ling W, Ni H, Yang Y. Coenzyme Q10 Upregulates Platelet cAMP/PKA Pathway and Attenuates Integrin αIIbβ3 Signaling and Thrombus Growth. Mol Nutr Food Res 2019; 63:e1900662. [PMID: 31512815 DOI: 10.1002/mnfr.201900662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/22/2019] [Indexed: 12/11/2022]
Abstract
SCOPE Platelet integrin αIIbβ3 is the key mediator of atherothrombosis. Supplementation of coenzyme Q10 (CoQ10), a fat-soluble molecule that exists in various foods, exerts protective cardiovascular effects. This study aims to investigate whether and how CoQ10 acts on αIIbβ3 signaling and thrombosis, the major cause of cardiovascular diseases. METHODS AND RESULTS Using a series of platelet functional assays in vitro, it is demonstrated that CoQ10 reduces human platelet aggregation, granule secretion, platelet spreading, and clot retraction. It is further demonstrated that CoQ10 inhibits platelet integrin αIIbβ3 outside-in signaling. These inhibitory effects are mainly mediated by upregulating cAMP/PKA pathway, where CoQ10 stimulates the A2A adenosine receptor and decreases phosphodiesterase 3A phosphorylation. Moreover, CoQ10 attenuates murine thrombus growth and vessel occlusion in a ferric chloride (FeCl3 )-induced thrombosis model in vivo. Importantly, the randomized, double-blind, placebo-controlled clinical trial in dyslipidemic patients demonstrates that 24 weeks of CoQ10 supplementation increases platelet CoQ10 concentrations, enhances the cAMP/PKA pathway, and attenuates αIIbβ3 outside-in signaling, leading to decreased platelet aggregation and granule release. CONCLUSION Through upregulating the platelet cAMP/PKA pathway, and attenuating αIIbβ3 signaling and thrombus growth, CoQ10 supplementation may play an important protective role in patients with risks of cardiovascular diseases.
Collapse
Affiliation(s)
- Fuli Ya
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, 510080, China.,Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, China.,Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou, Guangdong Province, 510080, China
| | - Xiaohong Ruby Xu
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada
| | - Yilin Shi
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, 510080, China.,Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, China.,Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou, Guangdong Province, 510080, China
| | - Reid C Gallant
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada
| | - Fenglin Song
- School of Food Science, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, 510006, China
| | - Xiao Zuo
- Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, China.,Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou, Guangdong Province, 510080, China.,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong Province, 510006, China
| | - Yimin Zhao
- Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, China.,Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou, Guangdong Province, 510080, China.,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong Province, 510006, China
| | - Zezhong Tian
- Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, China.,Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou, Guangdong Province, 510080, China.,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong Province, 510006, China
| | - Cheng Zhang
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China
| | - Xiping Xu
- National Clinical Research Center for Kidney Disease, Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, 510080, China.,Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, China.,Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou, Guangdong Province, 510080, China
| | - Heyu Ni
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada.,Canadian Blood Services Centre for Innovation, Toronto, Ontario, M5G 2M1, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5S 1A1, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, M5S 1A1, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, M5S 1A1, Canada
| | - Yan Yang
- Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, China.,Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou, Guangdong Province, 510080, China.,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong Province, 510006, China
| |
Collapse
|
8
|
Farràs M, Arranz S, Carrión S, Subirana I, Muñoz-Aguayo D, Blanchart G, Kool M, Solà R, Motilva MJ, Escolà-Gil JC, Rubió L, Fernández-Castillejo S, Pedret A, Estruch R, Covas MI, Fitó M, Hernáez Á, Castañer O. A Functional Virgin Olive Oil Enriched with Olive Oil and Thyme Phenolic Compounds Improves the Expression of Cholesterol Efflux-Related Genes: A Randomized, Crossover, Controlled Trial. Nutrients 2019; 11:nu11081732. [PMID: 31357534 PMCID: PMC6723782 DOI: 10.3390/nu11081732] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022] Open
Abstract
The consumption of antioxidant-rich foods such as virgin olive oil (VOO) promotes high-density lipoprotein (HDL) anti-atherogenic capacities. Intake of functional VOOs (enriched with olive/thyme phenolic compounds (PCs)) also improves HDL functions, but the gene expression changes behind these benefits are not fully understood. Our aim was to determine whether these functional VOOs could enhance the expression of cholesterol efflux-related genes. In a randomized, double-blind, crossover, controlled trial, 22 hypercholesterolemic subjects ingested for three weeks 25 mL/day of: (1) a functional VOO enriched with olive oil PCs (500 mg/kg); (2) a functional VOO enriched with olive oil (250 mg/kg) and thyme PCs (250 mg/kg; FVOOT), and; (3) a natural VOO (olive oil PCs: 80 mg/kg, control intervention). We assessed whether these interventions improved the expression of cholesterol efflux-related genes in peripheral blood mononuclear cells by quantitative reverse-transcription polymerase chain reactions. The FVOOT intervention upregulated the expression of CYP27A1 (p = 0.041 and p = 0.053, versus baseline and the control intervention, respectively), CAV1 (p = 0.070, versus the control intervention), and LXRβ, RXRα, and PPARβ/δ (p = 0.005, p = 0.005, and p = 0.038, respectively, relative to the baseline). The consumption of a functional VOO enriched with olive oil and thyme PCs enhanced the expression of key cholesterol efflux regulators, such as CYP27A1 and nuclear receptor-related genes.
Collapse
Affiliation(s)
- Marta Farràs
- Molecular Bases of Cardiovascular Risk Group, IIB-Sant Pau, 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, 28029 Madrid, Spain
| | - Sara Arranz
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Sílvia Carrión
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Isaac Subirana
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Cardiovascular Genetics and Epidemiology Research Group, IMIM, 08003 Barcelona, Spain
| | - Daniel Muñoz-Aguayo
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029 Madrid, Spain
| | - Gemma Blanchart
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Marjon Kool
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Rosa Solà
- Functional Nutrition, Oxidation, and Cardiovascular Diseases Group, Universitat Rovira i Virgili, 43201 Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili, 43204 Reus, Spain
- Hospital Universitari Sant Joan de Reus, 43204 Reus, Spain
| | - María José Motilva
- Instituto de Ciencias de la Vid y el Vino, CSIC-Universidad de la Rioja, 26007 Logroño, Spain
| | - Joan Carles Escolà-Gil
- Molecular Bases of Cardiovascular Risk Group, IIB-Sant Pau, 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, 28029 Madrid, Spain
| | - Laura Rubió
- Food Technology Department, Agrotecnio Center, University of Lleida, 25198 Lleida, Spain
| | - Sara Fernández-Castillejo
- Functional Nutrition, Oxidation, and Cardiovascular Diseases Group, Universitat Rovira i Virgili, 43201 Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili, 43204 Reus, Spain
| | - Anna Pedret
- Functional Nutrition, Oxidation, and Cardiovascular Diseases Group, Universitat Rovira i Virgili, 43201 Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili, 43204 Reus, Spain
| | - Ramón Estruch
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029 Madrid, Spain
- Internal Medicine Service, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Cardiovascular Risk, Nutrition and Aging Research Unit, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - María Isabel Covas
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029 Madrid, Spain
- NUPROAS Handelsbolag, Nackă, Sweden
| | - Montserrat Fitó
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029 Madrid, Spain
| | - Álvaro Hernáez
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029 Madrid, Spain.
- Cardiovascular Risk, Nutrition and Aging Research Unit, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.
| | - Olga Castañer
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029 Madrid, Spain.
| |
Collapse
|
9
|
Yu XH, Zhang DW, Zheng XL, Tang CK. Cholesterol transport system: An integrated cholesterol transport model involved in atherosclerosis. Prog Lipid Res 2018; 73:65-91. [PMID: 30528667 DOI: 10.1016/j.plipres.2018.12.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/30/2018] [Accepted: 12/01/2018] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, the pathological basis of most cardiovascular disease (CVD), is closely associated with cholesterol accumulation in the arterial intima. Excessive cholesterol is removed by the reverse cholesterol transport (RCT) pathway, representing a major antiatherogenic mechanism. In addition to the RCT, other pathways are required for maintaining the whole-body cholesterol homeostasis. Thus, we propose a working model of integrated cholesterol transport, termed the cholesterol transport system (CTS), to describe body cholesterol metabolism. The novel model not only involves the classical view of RCT but also contains other steps, such as cholesterol absorption in the small intestine, low-density lipoprotein uptake by the liver, and transintestinal cholesterol excretion. Extensive studies have shown that dysfunctional CTS is one of the major causes for hypercholesterolemia and atherosclerosis. Currently, several drugs are available to improve the CTS efficiently. There are also several therapeutic approaches that have entered into clinical trials and shown considerable promise for decreasing the risk of CVD. In recent years, a variety of novel findings reveal the molecular mechanisms for the CTS and its role in the development of atherosclerosis, thereby providing novel insights into the understanding of whole-body cholesterol transport and metabolism. In this review, we summarize the latest advances in this area with an emphasis on the therapeutic potential of targeting the CTS in CVD patients.
Collapse
Affiliation(s)
- Xiao-Hua Yu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Alberta, Canada
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
10
|
Suárez-Rivero JM, de la Mata M, Pavón AD, Villanueva-Paz M, Povea-Cabello S, Cotán D, Álvarez-Córdoba M, Villalón-García I, Ybot-González P, Salas JJ, Muñiz O, Cordero MD, Sánchez-Alcázar JA. Intracellular cholesterol accumulation and coenzyme Q 10 deficiency in Familial Hypercholesterolemia. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3697-3713. [PMID: 30292637 DOI: 10.1016/j.bbadis.2018.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/07/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022]
Abstract
Familial Hypercholesterolemia (FH) is an autosomal co-dominant genetic disorder characterized by elevated low-density lipoprotein (LDL) cholesterol levels and increased risk for premature cardiovascular disease. Here, we examined FH pathophysiology in skin fibroblasts derived from FH patients harboring heterozygous mutations in the LDL-receptor. Fibroblasts from FH patients showed a reduced LDL-uptake associated with increased intracellular cholesterol levels and coenzyme Q10 (CoQ10) deficiency, suggesting dysregulation of the mevalonate pathway. Secondary CoQ10 deficiency was associated with mitochondrial depolarization and mitophagy activation in FH fibroblasts. Persistent mitophagy altered autophagy flux and induced inflammasome activation accompanied by increased production of cytokines by mutant cells. All the pathological alterations in FH fibroblasts were also reproduced in a human endothelial cell line by LDL-receptor gene silencing. Both increased intracellular cholesterol and mitochondrial dysfunction in FH fibroblasts were partially restored by CoQ10 supplementation. Dysregulated mevalonate pathway in FH, including increased expression of cholesterogenic enzymes and decreased expression of CoQ10 biosynthetic enzymes, was also corrected by CoQ10 treatment. Reduced CoQ10 content and mitochondrial dysfunction may play an important role in the pathophysiology of early atherosclerosis in FH. The diagnosis of CoQ10 deficiency and mitochondrial impairment in FH patients may also be important to establish early treatment with CoQ10.
Collapse
Affiliation(s)
- Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Mario de la Mata
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Ana Delgado Pavón
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Marina Villanueva-Paz
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - David Cotán
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Patricia Ybot-González
- Grupo de Neurodesarrollo, Unidad de Gestión de Pediatría, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS), Spain
| | - Joaquín J Salas
- Departamento de Bioquímica y Biología Molecular de Productos Vegetales, Instituto de la Grasa (CSIC), Spain
| | - Ovidio Muñiz
- Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Mario D Cordero
- Instituto de Nutrición y Tecnología de los Alimentos "José Mataix Verdú", Departamento de Fisiología, Centro de Investigación Biomédica, Universidad de Granada, 18100 Granada, Spain
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain.
| |
Collapse
|
11
|
Moss JWE, Williams JO, Ramji DP. Nutraceuticals as therapeutic agents for atherosclerosis. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1562-1572. [PMID: 29454074 PMCID: PMC5906642 DOI: 10.1016/j.bbadis.2018.02.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/06/2018] [Accepted: 02/12/2018] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, a chronic inflammatory disorder of medium and large arteries and an underlying cause of cardiovascular disease (CVD), is responsible for a third of all global deaths. Current treatments for CVD, such as optimized statin therapy, are associated with considerable residual risk and several side effects in some patients. The outcome of research on the identification of alternative pharmaceutical agents for the treatment of CVD has been relatively disappointing with many promising leads failing at the clinical level. Nutraceuticals, products from food sources with health benefits beyond their nutritional value, represent promising agents in the prevention of CVD or as an add-on therapy with current treatments. This review will highlight the potential of several nutraceuticals, including polyunsaturated fatty acids, flavonoids and other polyphenols, as anti-CVD therapies based on clinical and pre-clinical mechanism-based studies.
Collapse
Affiliation(s)
- Joe W E Moss
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Jessica O Williams
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Dipak P Ramji
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK.
| |
Collapse
|
12
|
Abstract
Atherosclerosis is a chronic inflammatory disease affecting large and medium arteries and is considered to be a major underlying cause of cardiovascular disease (CVD). Although the development of pharmacotherapies to treat CVD has contributed to a decline in cardiac mortality in the past few decades, CVD is estimated to be the cause of one-third of deaths globally. Nutraceuticals are natural nutritional compounds that are beneficial for the prevention or treatment of disease and, therefore, are a possible therapeutic avenue for the treatment of atherosclerosis. The purpose of this Review is to highlight potential nutraceuticals for use as antiatherogenic therapies with evidence from in vitro and in vivo studies. Furthermore, the current evidence from observational and randomized clinical studies into the role of nutraceuticals in preventing atherosclerosis in humans will also be discussed.
Collapse
Affiliation(s)
- Joe W E Moss
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Dipak P Ramji
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| |
Collapse
|