1
|
Ma Y, Zhu Y, Wang F, Zhao G, Huang L, Lu R, Wang D, Tian X, Ye Y. 3,3'-Diindolylmethane promotes bone formation - A assessment in MC3T3-E1 cells and zebrafish. Biochem Pharmacol 2024; 230:116618. [PMID: 39528071 DOI: 10.1016/j.bcp.2024.116618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/18/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Osteoporosis is a common degenerative bone disease in middle-aged and elderly people. The current drugs used to treat osteoporosis have many side effects and low patient compliance. Phytochemotherapy may be safer and more effective. 3,3'-diindolemethane (DIM) is the digestive product of indole-3-methanol in cruciferous vegetables in the stomach, which is a kind of anti-tumor and anti-oxidation phytochemical. However, the effects of DIM on osteoblasts and the mechanism by which DIM regulates bone formation are not fully understood. The aim of this study was to investigate the effects of DIM on the bone formation of mouse preosteoblasts MC3T3-E1 and zebrafish. DIM promotes proliferation and osteogenic differentiation of MC3T3-E1 cells in vitro, and also plays a bone promoting role by increasing the interaction between BRCA1-Associated Protein 1(BAP1) and Inositol 1,4,5-Trisphosphate Receptor(IP3R), up-regulating the expression of BAP1 and IP3R and downstream storage operation calcium entry (SOCE) related protein Recombinant Stromal Interaction Molecule 1(STIM1). The effect of DIM on osteoporosis was confirmed in zebrafish osteoporosis model, and its molecular mechanism may be related to BAP1/IP3R/SOCE signaling pathway. These findings highlight the potential therapeutic value of DIM in the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Ying Ma
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yin Zhu
- Department of Oncology, Jurong Hospital Affiliated to Jiangsu University, Zhenjiang, China
| | - Feng Wang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Guoyang Zhao
- Orthopedics Department, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lianlian Huang
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China; Center for Experimental Research, Affiliated Kunshan Hospital to Jiangsu University, Suzhou, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xinyu Tian
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College, Jiangsu University, Nanjing, China
| | - Yang Ye
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
2
|
Zhang F, Ganesan K, Liu Q, Chen J. A Review of the Pharmacological Potential of Spatholobus suberectus Dunn on Cancer. Cells 2022; 11:cells11182885. [PMID: 36139460 PMCID: PMC9497142 DOI: 10.3390/cells11182885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Spatholobus suberectus Dunn (SSD) has been extensively employed in Traditional Chinese Medicine to treat several ailments. SSD and its active compounds are effective therapeutic agents for treating a variety of diseases with negligible side effects. Therefore, we aimed to investigate its phytochemistry, pharmacology, and potential therapeutic effects exclusively in cancer prevention and treatment. Phytochemical and pharmacological information was collected and arranged in a rational order. SSD has been frequently attributed to having antioxidant, anti-diabetic, anti-inflammatory, hematopoietic, neuroprotective, antimicrobial, and anticancer properties. Evidence has indicated that the bioactive constituents in SSD have attracted increasing scientific attention due to their preventive role in cancers. Further, the present review provides the current information on the health implications of SSD, thus allowing for future clinical trials to explore its restorative benefits. All data of in vitro and animal investigations of SSD, as well as its effect on human health, were obtained from an electronic search and library database. The diverse pharmacological potential of SSD provides an opportunity for preclinical drug discovery, and this comprehensive review strongly indicates that SSD is an excellent anti-tumorigenic agent that modulates or prevents breast cancer.
Collapse
Affiliation(s)
- Feng Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen 518057, China
| | - Kumar Ganesan
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qingqing Liu
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jianping Chen
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen 518057, China
- Correspondence: ; Tel.: +852-3917-6479
| |
Collapse
|
3
|
A Review of Twenty Years of Research on the Regulation of Signaling Pathways by Natural Products in Breast Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113412. [PMID: 35684353 PMCID: PMC9182524 DOI: 10.3390/molecules27113412] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 12/21/2022]
Abstract
Breast cancer (BC) is the second leading cause of death among women, and it has become a global health issue due to the increasing number of cases. Different treatment options, including radiotherapy, surgery, chemotherapy and anti-estrogen therapy, aromatase inhibitors, anti-angiogenesis drugs, and anthracyclines, are available for BC treatment. However, due to its high occurrence and disease progression, effective therapeutic options for metastatic BC are still lacking. Considering this scenario, there is an urgent need for an effective therapeutic strategy to meet the current challenges of BC. Natural products have been screened as anticancer agents as they are cost-effective, possess low toxicity and fewer side effects, and are considered alternative therapeutic options for BC therapy. Natural products showed anticancer activities against BC through the inhibition of angiogenesis, cell migrations, proliferations, and tumor growth; cell cycle arrest by inducing apoptosis and cell death, the downstream regulation of signaling pathways (such as Notch, NF-κB, PI3K/Akt/mTOR, MAPK/ERK, and NFAT-MDM2), and the regulation of EMT processes. Natural products also acted synergistically to overcome the drug resistance issue, thus improving their efficacy as an emerging therapeutic option for BC therapy. This review focused on the emerging roles of novel natural products and derived bioactive compounds as therapeutic agents against BC. The present review also discussed the mechanism of action through signaling pathways and the synergistic approach of natural compounds to improve their efficacy. We discussed the recent in vivo and in vitro studies for exploring the overexpression of oncogenes in the case of BC and the current status of newly discovered natural products in clinical investigations.
Collapse
|
4
|
Kumar G, Du B, Chen J. Effects and mechanisms of dietary bioactive compounds on breast cancer prevention. Pharmacol Res 2021; 178:105974. [PMID: 34818569 DOI: 10.1016/j.phrs.2021.105974] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/17/2022]
Abstract
Breast cancer (BC) is the most often diagnosed cancer among females globally and has become an increasing global health issue over the last decades. Despite the substantial improvement in screening methods for initial diagnosis, effective therapy remains lacking. Still, there has been high recurrence and disease progression after treatment of surgery, endocrine therapy, chemotherapy, and radiotherapy. Considering this view, there is a crucial requirement to develop safe, freely accessible, and effective anticancer therapy for BC. The dietary bioactive compounds as auspicious anticancer agents have been recognized to be active and their implications in the treatment of BC with negligible side effects. Hence, this review focused on various dietary bioactive compounds as potential therapeutic agents in the prevention and treatment of BC with the mechanisms of action. Bioactive compounds have chemo-preventive properties as they inhibit the proliferation of cancer cells, downregulate the expression of estrogen receptors, and cell cycle arrest by inducing apoptotic settings in tumor cells. Therapeutic drugs or natural compounds generally incorporate engineered nanoparticles with ideal sizes, shapes, and enhance their solubility, circulatory half-life, and biodistribution. All data of in vitro, in vivo, and clinical studies of dietary bioactive compounds and their impact on BC were collected from Science Direct, PubMed, and Google Scholar. The data of chemopreventive and anticancer activity of dietary bioactive compounds were collected and orchestrated in a suitable place in the review. These shreds of data will be extremely beneficial to recognize a series of additional diet-derived bioactive compounds to treat BC with the lowest side effects.
Collapse
Affiliation(s)
- Ganesan Kumar
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
| | - Jianping Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
5
|
Islam SU, Ahmed MB, Ahsan H, Islam M, Shehzad A, Sonn JK, Lee YS. An Update on the Role of Dietary Phytochemicals in Human Skin Cancer: New Insights into Molecular Mechanisms. Antioxidants (Basel) 2020; 9:E916. [PMID: 32993035 PMCID: PMC7600476 DOI: 10.3390/antiox9100916] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
Human skin is continuously subjected to environmental stresses, as well as extrinsic and intrinsic noxious agents. Although skin adopts various molecular mechanisms to maintain homeostasis, excessive and repeated stresses can overwhelm these systems, leading to serious cutaneous damage, including both melanoma and non-melanoma skin cancers. Phytochemicals present in the diet possess the desirable effects of protecting the skin from damaging free radicals as well as other benefits. Dietary phytochemicals appear to be effective in preventing skin cancer and are inexpensive, widely available, and well tolerated. Multiple in vitro and in vivo studies have demonstrated the significant anti-inflammatory, antioxidant, and anti-angiogenic characteristics of dietary phytochemicals against skin malignancy. Moreover, dietary phytochemicals affect multiple important cellular processes including cell cycle, angiogenesis, and metastasis to control skin cancer progression. Herein, we discuss the advantages of key dietary phytochemicals in whole fruits and vegetables, their bioavailability, and underlying molecular mechanisms for preventing skin cancer. Current challenges and future prospects for research are also reviewed. To date, most of the chemoprevention investigations have been conducted preclinically, and additional clinical trials are required to conform and validate the preclinical results in humans.
Collapse
Affiliation(s)
- Salman Ul Islam
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
| | - Muhammad Bilal Ahmed
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
| | - Haseeb Ahsan
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
- Department of Pharmacy, Faculty of Life and Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Mazharul Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah 2509, Oman;
| | - Adeeb Shehzad
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Jong Kyung Sonn
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
| | - Young Sup Lee
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
| |
Collapse
|
6
|
Epigenetic Regulation of NRF2/KEAP1 by Phytochemicals. Antioxidants (Basel) 2020; 9:antiox9090865. [PMID: 32938017 PMCID: PMC7555619 DOI: 10.3390/antiox9090865] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Epigenetics has provided a new dimension to our understanding of nuclear factor erythroid 2–related factor 2/Kelch-like ECH-associated protein 1 (human NRF2/KEAP1 and murine Nrf2/Keap1) signaling. Unlike the genetic changes affecting DNA sequence, the reversible nature of epigenetic alterations provides an attractive avenue for cancer interception. Thus, targeting epigenetic mechanisms in the corresponding signaling networks represents an enticing strategy for therapeutic intervention with dietary phytochemicals acting at transcriptional, post-transcriptional, and post-translational levels. This regulation involves the interplay of histone modifications and DNA methylation states in the human NFE2L2/KEAP1 and murine Nfe2l2/Keap1 genes, acetylation of lysine residues in NRF2 and Nrf2, interaction with bromodomain and extraterminal domain (BET) acetyl “reader” proteins, and non-coding RNAs such as microRNA (miRNA) and long non-coding RNA (lncRNA). Phytochemicals documented to modulate NRF2 signaling act by reversing hypermethylated states in the CpG islands of NFE2L2 or Nfe2l2, via the inhibition of DNA methyltransferases (DNMTs) and histone deacetylases (HDACs), through the induction of ten-eleven translocation (TET) enzymes, or by inducing miRNA to target the 3′-UTR of the corresponding mRNA transcripts. To date, fewer than twenty phytochemicals have been reported as NRF2 epigenetic modifiers, including curcumin, sulforaphane, resveratrol, reserpine, and ursolic acid. This opens avenues for exploring additional dietary phytochemicals that regulate the human epigenome, and the potential for novel strategies to target NRF2 signaling with a view to beneficial interception of cancer and other chronic diseases.
Collapse
|
7
|
Ahmad R, Khan MA, Srivastava A, Gupta A, Srivastava A, Jafri TR, Siddiqui Z, Chaubey S, Khan T, Srivastava AK. Anticancer Potential of Dietary Natural Products: A Comprehensive Review. Anticancer Agents Med Chem 2020; 20:122-236. [DOI: 10.2174/1871520619666191015103712] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
Nature is a rich source of natural drug-like compounds with minimal side effects. Phytochemicals
better known as “Natural Products” are found abundantly in a number of plants. Since time immemorial, spices
have been widely used in Indian cuisine as flavoring and coloring agents. Most of these spices and condiments
are derived from various biodiversity hotspots in India (which contribute 75% of global spice production) and
form the crux of India’s multidiverse and multicultural cuisine. Apart from their aroma, flavor and taste, these
spices and condiments are known to possess several medicinal properties also. Most of these spices are mentioned
in the Ayurveda, the indigenous system of medicine. The antimicrobial, antioxidant, antiproliferative,
antihypertensive and antidiabetic properties of several of these natural products are well documented in
Ayurveda. These phytoconstituemts are known to act as functional immunoboosters, immunomodulators as well
as anti-inflammatory agents. As anticancer agents, their mechanistic action involves cancer cell death via induction
of apoptosis, necrosis and autophagy. The present review provides a comprehensive and collective update
on the potential of 66 commonly used spices as well as their bioactive constituents as anticancer agents. The
review also provides an in-depth update of all major in vitro, in vivo, clinical and pharmacological studies done
on these spices with special emphasis on the potential of these spices and their bioactive constituents as potential
functional foods for prevention, treatment and management of cancer.
Collapse
Affiliation(s)
- Rumana Ahmad
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Mohsin A. Khan
- Chancellor, Era University, Sarfarazganj, Hardoi Road, Lucknow-226003, UP, India
| | - A.N. Srivastava
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Anamika Gupta
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Aditi Srivastava
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tanvir R. Jafri
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Zainab Siddiqui
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Sunaina Chaubey
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow 226026, UP, India
| | - Arvind K. Srivastava
- Department of Food and Nutrition, Era University, Sarfarazganj, Lucknow-226003, UP, India
| |
Collapse
|
8
|
Farhan M, Malik A, Ullah MF, Afaq S, Faisal M, Farooqi AA, Biersack B, Schobert R, Ahmad A. Garcinol Sensitizes NSCLC Cells to Standard Therapies by Regulating EMT-Modulating miRNAs. Int J Mol Sci 2019; 20:ijms20040800. [PMID: 30781783 PMCID: PMC6413107 DOI: 10.3390/ijms20040800] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 12/24/2022] Open
Abstract
Garcinol, a dietary factor obtained from Garcinia indica, modulates several key cellular signaling pathways as well as the expression of miRNAs. Acquired resistance to standard therapies, such as erlotinib and cisplatin, is a hallmark of non-small cell lung cancer (NSCLC) cells that often involves miRNA-regulated epithelial-to-mesenchymal transition (EMT). We used A549 cells that were exposed to transforming growth factor beta 1 (TGF-β1), resulting in A549M cells with mesenchymal and drug resistant phenotype, and report that garcinol sensitized resistant cells with mesenchymal phenotype to erlotinib as well as cisplatin with significant decrease in their IC50 values. It also potentiated the apoptosis-inducing activity of erlotinib in A549M and the endogenously mesenchymal H1299 NSCLC cells. Further, garcinol significantly upregulated several key EMT-regulating miRNAs, such as miR-200b, miR-205, miR-218, and let-7c. Antagonizing miRNAs, through anti-miRNA transfections, attenuated the EMT-modulating activity of garcinol, as determined by mRNA expression of EMT markers, E-cadherin, vimentin, and Zinc Finger E-Box Binding Homeobox 1 (ZEB1). This further led to repression of erlotinib as well as cisplatin sensitization, thus establishing the mechanistic role of miRNAs, particularly miR-200c and let-7c, in garcinol-mediated reversal of EMT and the resulting sensitization of NSCLC cells to standard therapies.
Collapse
Affiliation(s)
- Mohd Farhan
- College of Basic Sciences, King Faisal University, Hofuf, 400, Al Ahsa 31982, Saudi Arabia.
| | - Arshi Malik
- Clinical Biochemistry, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia.
| | - Mohammad Fahad Ullah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, University of Tabuk, Tabuk 71491, Saudi Arabia.
| | - Sarah Afaq
- Clinical Biochemistry, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia.
| | - Mohd Faisal
- Department of Psychiatry, University Hospital Limerick, Limerick V94 T9PX, Ireland.
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan.
| | - Bernhard Biersack
- Organic Chemistry Laboratory, Universitätsstr. 30, 95447 Bayreuth, Germany.
| | - Rainer Schobert
- Organic Chemistry Laboratory, Universitätsstr. 30, 95447 Bayreuth, Germany.
| | - Aamir Ahmad
- Department of Pathology, Wayne State University and Karmanos Cancer Institute, Detroit, MI 48201, USA.
| |
Collapse
|
9
|
Fayyaz S, Javed Z, Attar R, Farooqi AA, Yaylim I, Ahmad A. MicroRNA regulation of TRAIL mediated signaling in different cancers: Control of micro steering wheels during the journey from bench-top to the bedside. Semin Cancer Biol 2019; 58:56-64. [PMID: 30716480 DOI: 10.1016/j.semcancer.2019.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/14/2022]
Abstract
Large-scale sequencing methodologies have helped us identify numerous genomic alterations and we have started to scratch the surface of many new targets for treatment of cancer and the associated predictive biomarkers. TRAIL (TNF-related apoptosis-inducing ligand) is a highly appreciated anti-cancer molecule because of its ability to selectively target cancer cells. However, confluence of information suggests that cancer cells develop resistance against TRAIL-based therapeutics. It is being realized that overexpression of anti-apoptotic proteins and inactivation of pro-apoptotic proteins significantly impairs TRAIL triggered apoptosis, particularly in clinical settings. Re-balancing of pro-and anti-apoptotic proteins and upregulation of death receptors with functionally active extrinsic and intrinsic apoptotic pathways are necessary to sensitize cancer cells to TRAIL based therapeutics. microRNAs (miRNAs) are involved in regulation of myriad of molecular processes and characterized into oncogenic and tumor suppressor miRNAs. Accumulating data has identified miRNAs which positively or negatively regulate TRAIL mediated signaling in cancer cells, helping us understand different steps at which TRAIL-mediated apoptotic signaling can be targeted. Here, we assess the status of our understanding of the mechanisms related to miRNA regulation of TRAIL mediated signaling, as well as the existing gaps therein, and discuss the challenges and opportunities that will help us get closer to personalized medicine.
Collapse
Affiliation(s)
- Sundas Fayyaz
- Department of Biochemistry, Rashid Latif Medical College (RLMC), Pakistan
| | - Zeeshan Javed
- Department of Biochemistry, Rashid Latif Medical College (RLMC), Pakistan
| | - Rukset Attar
- Department of Obstetrics and Gynecology, Yeditepe University Hospital, Istanbul, Turkey
| | | | - Ilhan Yaylim
- Department of Molecular Medicine, Aziz Sancar İnstitute of Experimental Medicine, İstanbul University, İstanbul, Turkey
| | - Aamir Ahmad
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA.
| |
Collapse
|
10
|
Iqbal J, Abbasi BA, Ahmad R, Batool R, Mahmood T, Ali B, Khalil AT, Kanwal S, Afzal Shah S, Alam MM, Bashir S, Badshah H, Munir A. Potential phytochemicals in the fight against skin cancer: Current landscape and future perspectives. Biomed Pharmacother 2019; 109:1381-1393. [DOI: 10.1016/j.biopha.2018.10.107] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/12/2018] [Accepted: 10/20/2018] [Indexed: 02/06/2023] Open
|
11
|
Iqbal J, Abbasi BA, Batool R, Mahmood T, Ali B, Khalil AT, Kanwal S, Shah SA, Ahmad R. Potential phytocompounds for developing breast cancer therapeutics: Nature’s healing touch. Eur J Pharmacol 2018. [DOI: 10.1016/j.ejphar.2018.03.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Regulation of Cell Signaling Pathways and miRNAs by Resveratrol in Different Cancers. Int J Mol Sci 2018; 19:ijms19030652. [PMID: 29495357 PMCID: PMC5877513 DOI: 10.3390/ijms19030652] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 02/08/2018] [Accepted: 02/25/2018] [Indexed: 12/13/2022] Open
Abstract
Genomic and proteomic studies have helped improve our understanding of the underlying mechanism(s) of cancer development and progression. Mutations, overexpressed oncogenes, inactivated/downregulated tumor suppressors, loss of apoptosis, and dysregulated signal transduction cascades are some of the well-studied areas of research. Resveratrol has gained considerable attention in the last two decades because of its pleiotropic anticancer activities. In this review, we have summarized the regulation of WNT, SHH (sonic hedgehog)/GLI (glioma-associated oncogene homolog), TGFβ1 (transforming growth factor beta 1)/SMAD, NOTCH, TRAIL (tumor necrosis factor-related apoptosis-inducing ligand), STAT (signal transducer and activator of transcription), and microRNAs by resveratrol in different cancers. The importance of these signaling pathways in cancer progression, along with their modulation by resveratrol, is discussed. Further, we also evaluate the mechanisms and implications of the downregulation of oncogenic miRNAs and the upregulation of tumor suppressor miRNAs by resveratrol, both of which also define its ability to inhibit tumor growth and metastasis. It is envisioned that designing effective clinical trials will be helpful for the identification of resveratrol responders and non-responders and the elucidation of how this phytochemical can be combined with current therapeutic options to improve their clinical efficacy and reduce off-target effects.
Collapse
|
13
|
Zubair H, Bhardwaj A, Ahmad A, Srivastava SK, Khan MA, Patel GK, Singh S, Singh AP. Hydroxytyrosol Induces Apoptosis and Cell Cycle Arrest and Suppresses Multiple Oncogenic Signaling Pathways in Prostate Cancer Cells. Nutr Cancer 2017; 69:932-942. [PMID: 28718667 DOI: 10.1080/01635581.2017.1339818] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SCOPE Hydroxytyrosol (HT), a polyphenol from olives, is a potential anticancer agent. This study was designed to evaluate the anticancer activity of HT against prostate cancer cells, and the mechanism thereof. METHODS AND RESULTS Treatment of LNCaP and C4-2 prostate cancer cells with HT resulted in a dose-dependent inhibition of proliferation. This was in contrast to HT's ineffectiveness against normal prostate epithelial cells RWPE1 and PWLE2, suggesting cancer-cell-specific effect. HT induced G1/S cell cycle arrest, with inhibition of cyclins D1/E and cdk2/4 and induction of inhibitory p21/p27. HT also induced apoptosis, as confirmed by flow cytometry, caspase activation, PARP cleavage, and BAX/Bcl-2 ratio. It inhibited the phosphorylation of Akt/STAT3, and induced cytoplasmic retention of NF-κB, which may explain its observed effects. Finally, HT inhibited androgen receptor (AR) expression and the secretion of AR-responsive prostate-specific antigen. CONCLUSION Castration-resistant prostate cancers retain AR signaling and are often marked by activated Akt, NF-κB, and STAT3 signaling. Our results establish a pleiotropic activity of HT against these oncogenic signaling pathways. Combined with its nontoxic effects against normal cells, our results support further testing of HT for prostate cancer therapy.
Collapse
Affiliation(s)
- Haseeb Zubair
- a Department of Oncologic Sciences , Mitchell Cancer Institute, University of South Alabama , Mobile , Alabama , USA
| | - Arun Bhardwaj
- a Department of Oncologic Sciences , Mitchell Cancer Institute, University of South Alabama , Mobile , Alabama , USA
| | - Aamir Ahmad
- a Department of Oncologic Sciences , Mitchell Cancer Institute, University of South Alabama , Mobile , Alabama , USA
| | - Sanjeev Kumar Srivastava
- a Department of Oncologic Sciences , Mitchell Cancer Institute, University of South Alabama , Mobile , Alabama , USA
| | - Mohammad Aslam Khan
- a Department of Oncologic Sciences , Mitchell Cancer Institute, University of South Alabama , Mobile , Alabama , USA
| | - Girijesh Kumar Patel
- a Department of Oncologic Sciences , Mitchell Cancer Institute, University of South Alabama , Mobile , Alabama , USA
| | - Seema Singh
- a Department of Oncologic Sciences , Mitchell Cancer Institute, University of South Alabama , Mobile , Alabama , USA.,b Department of Biochemistry and Molecular Biology , College of Medicine, University of South Alabama , Mobile , Alabama , USA
| | - Ajay Partap Singh
- a Department of Oncologic Sciences , Mitchell Cancer Institute, University of South Alabama , Mobile , Alabama , USA.,b Department of Biochemistry and Molecular Biology , College of Medicine, University of South Alabama , Mobile , Alabama , USA
| |
Collapse
|
14
|
Gu TT, Song L, Chen TY, Wang X, Zhao XJ, Ding XQ, Yang YZ, Pan Y, Zhang DM, Kong LD. Fructose downregulates miR-330 to induce renal inflammatory response and insulin signaling impairment: Attenuation by morin. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201600760] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 02/03/2017] [Accepted: 02/07/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Ting-Ting Gu
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; Nanjing P. R. China
| | - Lin Song
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; Nanjing P. R. China
| | - Tian-Yu Chen
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; Nanjing P. R. China
| | - Xing Wang
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; Nanjing P. R. China
| | - Xiao-Juan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; Nanjing P. R. China
| | - Xiao-Qin Ding
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; Nanjing P. R. China
| | - Yan-Zi Yang
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; Nanjing P. R. China
| | - Ying Pan
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; Nanjing P. R. China
| | - Dong-Mei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; Nanjing P. R. China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; Nanjing P. R. China
| |
Collapse
|
15
|
Zubair H, Azim S, Ahmad A, Khan MA, Patel GK, Singh S, Singh AP. Cancer Chemoprevention by Phytochemicals: Nature's Healing Touch. Molecules 2017; 22:molecules22030395. [PMID: 28273819 PMCID: PMC6155418 DOI: 10.3390/molecules22030395] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 12/28/2022] Open
Abstract
Phytochemicals are an important part of traditional medicine and have been investigated in detail for possible inclusion in modern medicine as well. These compounds often serve as the backbone for the synthesis of novel therapeutic agents. For many years, phytochemicals have demonstrated encouraging activity against various human cancer models in pre-clinical assays. Here, we discuss select phytochemicals—curcumin, epigallocatechin-3-gallate (EGCG), resveratrol, plumbagin and honokiol—in the context of their reported effects on the processes of inflammation and oxidative stress, which play a key role in tumorigenesis. We also discuss the emerging evidence on modulation of tumor microenvironment by these phytochemicals which can possibly define their cancer-specific action. Finally, we provide recent updates on how low bioavailability, a major concern with phytochemicals, is being circumvented and the general efficacy being improved, by synthesis of novel chemical analogs and nanoformulations.
Collapse
Affiliation(s)
- Haseeb Zubair
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Shafquat Azim
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Aamir Ahmad
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Mohammad Aslam Khan
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Girijesh Kumar Patel
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
- Department of Molecular Biology and Biochemistry, College of Medicine, University of South Alabama, Mobile, AL 36688, USA.
| | - Ajay Pratap Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
- Department of Molecular Biology and Biochemistry, College of Medicine, University of South Alabama, Mobile, AL 36688, USA.
| |
Collapse
|
16
|
Biersack B. Non-coding RNA/microRNA-modulatory dietary factors and natural products for improved cancer therapy and prevention: Alkaloids, organosulfur compounds, aliphatic carboxylic acids and water-soluble vitamins. Noncoding RNA Res 2016; 1:51-63. [PMID: 30159411 PMCID: PMC6096427 DOI: 10.1016/j.ncrna.2016.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/01/2016] [Accepted: 09/01/2016] [Indexed: 02/06/2023] Open
Abstract
Non-coding small RNA molecules, the microRNAs (miRNAs), contribute decisively to the epigenetic regulation processes in cancer cells. Problematic pathogenic properties of cancer cells and the response of cancers towards anticancer drugs are highly influenced by miRNAs. Both increased drug activity and formation of tumor resistance are regulated by miRNAs. Further to this, the survival and proliferation of cancer cells and the formation of metastases is based on the modulated expression of certain miRNAs. In particular, drug-resistant cancer stem-like cells (CSCs) depend on the presence and absence of specific miRNAs. Fortunately, several small molecule natural compounds were discovered that target miRNAs involved in the modulation of tumor aggressiveness and drug resistance. This review gives an overview of the effects of a selection of naturally occurring small molecules (alkaloids, organosulfur compounds, aliphatic carboxylic acids and water-soluble vitamins) on miRNAs that are closely tangled with cancer diseases.
Collapse
Key Words
- AM, allyl mercaptan
- AOM, azoxymethane
- Aliphatic carboxylic acids
- Alkaloids
- Anticancer drugs
- CPT, camptothecin
- DADS, diallyl disulfide
- DHA, docosahexaenoic acid
- DIM, 3,3′-diindolylmethane
- EPA, eicosapentaenoic acid
- FA, folic acid
- GTC, green tea catechins
- I3C, indole-3-carbinol
- MiRNA
- NaB, sodium butyrate
- Organosulfur compounds
- PEITC, phenethylisothiocyanate
- PUFA, polyunsaturated fatty acid
- SAMC, S-allylmercaptocysteine
- SFN, sulforaphane
- TSA, trichostatin A
- Water-soluble vitamins
Collapse
|
17
|
Pohlig F, Ulrich J, Lenze U, Mühlhofer HML, Harrasser N, Suren C, Schauwecker J, Mayer-Kuckuk P, von Eisenhart-Rothe R. Glucosamine sulfate suppresses the expression of matrix metalloproteinase-3 in osteosarcoma cells in vitro. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:313. [PMID: 27562075 PMCID: PMC5000453 DOI: 10.1186/s12906-016-1315-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/23/2016] [Indexed: 01/02/2023]
Abstract
Background Glucosamine, a common dietary supplement, has a possible anti-sarcoma effect. However, an understanding of the underlying mechanism of such an effect is limited. For this study we hypothesized that glucosamine suppresses the basal level of matrix metalloproteinase expression in human osteosarcoma cell lines. Methods We examined the osteosarcoma cell lines, MG-63 and SaOS-2. Cells were exposed to 0, 10, 50 and 100 μg/ml glucosamine sulfate for 48 h and treatment toxicity was determined through measurement of cell viability and proliferation. Relative gene expression of matrix metalloproteinase (MMP)-2, -3 and -9 was quantified by real-time polymerase chain reaction. Protein levels of MMP-2 and -9 were assessed by ELISA. Results Administration of 10, 50 or 100 μg/ml glucosamine sulfate had no effect on the cell viability of MG-63 and SaOS-2 cells. A significant reduction of MMP expression in both cell lines was observed only for MMP-3, while a decrease in MMP-9 was seen in SaOS-2 cells. The expression of MMP-2 was not significantly affected in either cell line. Protein level of MMP-3 was reduced in both cell lines upon stimulation with 10 μg/ml glucosamine sulfate whereas for MMP-9 a decrease could only be observed in SaOS-2 cells. Conclusion In this study, we found a pronounced suppressive effect of glucosamine sulfate particularly on MMP-3 and also MMP-9 mRNA and protein levels in osteosarcoma cell lines in vitro. The data warrants further investigations into the potential anti-tumor efficacy of glucosamine sulfate in osteosarcoma. Electronic supplementary material The online version of this article (doi:10.1186/s12906-016-1315-6) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Kim SM. Cellular and Molecular Mechanisms of 3,3'-Diindolylmethane in Gastrointestinal Cancer. Int J Mol Sci 2016; 17:ijms17071155. [PMID: 27447608 PMCID: PMC4964527 DOI: 10.3390/ijms17071155] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 12/18/2022] Open
Abstract
Studies in humans have shown that 3,3′-diindolylmethane (DIM), which is found in cruciferous vegetables, such as cabbage and broccoli, is effective in the attenuation of gastrointestinal cancers. This review presents the latest findings on the use, targets, and modes of action of DIM for the treatment of human gastrointestinal cancers. DIM acts upon several cellular and molecular processes in gastrointestinal cancer cells, including apoptosis, autophagy, invasion, cell cycle regulation, metastasis, angiogenesis, and endoplasmic reticulum (ER) stress. In addition, DIM increases the efficacy of other drugs or therapeutic chemicals when used in combinatorial treatment for gastrointestinal cancer. The studies to date offer strong evidence to support the use of DIM as an anticancer and therapeutic agent for gastrointestinal cancer. Therefore, this review provides a comprehensive understanding of the preventive and therapeutic properties of DIM in addition to its different perspective on the safety of DIM in clinical applications for the treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Soo Mi Kim
- Department of Physiology, Chonbuk National University Medical School, Jeonju 561-180, Korea.
| |
Collapse
|