1
|
Beniwal A, Jain JC, Jain A. Lipids: A Major Culprit in Diabetic Nephropathy. Curr Diabetes Rev 2024; 20:60-69. [PMID: 38018185 DOI: 10.2174/0115733998259273231101052549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/13/2023] [Accepted: 09/28/2023] [Indexed: 11/30/2023]
Abstract
The pathophysiology of diabetic nephropathy (DN) is too complex and involves a variety of pathways and mediators. Hyperglycaemia and dyslipidemia are identified as major risk factors for diabetic nephropathy. Various studies revealed the fact that dyslipidemia is a major contributor to the process of diabetic nephropathy. Dyslipidemia refers to abnormal lipid levels. Lipids like LDL, free fatty acids, abnormal lipoproteins, ceramides, etc., are unsafe for kidneys. They target proximal tubular epithelial cells, podocytes, and tubulointerstitial tissues through biochemical changes, especially by enhancing the release of reactive oxygen species (ROS) and lipid peroxidation, endorsing tissue inflammation and mitochondrial damage, which give rise to nephropathy. Major lipid targets identified are SREBP1, LXR, FXR PPAR, CD-36, PKc, AGE/RAGE pathway, and ferroptosis. The drug acting on these targets has shown improvement in DN patients. Various preclinical and clinical studies support the fact that hyperlipidemic agents are promising targets for DN. Therefore, in conjunction with other standard therapies, drugs acting on dyslipidemia can be added as a part of the regimen in order to prevent the incidence of ESRD and CVD.
Collapse
Affiliation(s)
- Ankita Beniwal
- College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Jasmine Chaudhary Jain
- College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Akash Jain
- College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| |
Collapse
|
2
|
Nikooyeh B, Zargaraan A, Ebrahimof S, Kalayi A, Zahedirad M, Yazdani H, Rismanchi M, Karami T, Khazraei M, Jafarpour A, Neyestani TR. Daily consumption of γ-oryzanol-fortified canola oil, compared with unfortified canola and sunflower oils, resulted in a better improvement of certain cardiometabolic biomarkers of adult subjects with type 2 diabetes: a randomized controlled clinical trial. Eur J Med Res 2023; 28:416. [PMID: 37817285 PMCID: PMC10563320 DOI: 10.1186/s40001-023-01409-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND This study was undertaken to examine the effects of daily consumption of γ-oryzanol (ORZ)-fortified canola oil, as compared with plain canola and sunflower oils, on certain cardiometabolic indicators. METHODS Ninety-two adult subjects from both sexes with T2D were randomly assigned to one of the three groups to receive: (a) ORZ-fortified canola oil (Group 1; n1 = 30); (b) unfortified canola oil (Group 2; n2 = 32); or (c) sunflower oil (Group 3; n3 = 30) for 12 weeks. The participants were instructed to use only the given oils for all cooking (but frying) purposes. Anthropometric, dietary and biochemical assessments were done initially and finally. RESULTS Though body mass index (BMI) significantly decreased in all three groups, only in Groups 1 and 2 waist circumference (WC) showed a significant decrement (-2.6 ± 0.1 and -2.2 ± 0.1 cm in Groups 1 and 2 respectively, p < 0.001 for both) which was accompanied by a significant reduction of blood pressure just in Group 1. Fasting blood glucose (FBG) and glycated hemoglobin (HbA1c) showed a significant decrease only in ORZ-fortified canola oil group (-7.7 ± 0.4 mg/dL, p = 0.039 and -0.7 ± 0.1%, p < 0.001, respectively). However, insulin resistance, as judged by HOMA-IR, did not change significantly. In addition, serum triglyceride (TG) concentrations decreased in all three groups but only in ORZ-fortified canola oil was this decrement statistically significant (-17.9 ± 2.1 mg/dL, p = 0.005). Other components of serum lipid profile did not change significantly in either group. CONCLUSIONS Consumption of either sunflower or canola oils for 12 weeks improved certain studied biomarkers. However, only ORZ-fortified canola oil resulted in a significant decrease of blood pressure, WC, FBG, HbA1c and TG. These findings can help both clinicians and public health authorities for dietary recommendations to subjects with T2D and presumably the whole community. TRIAL REGISTRATION number at clinicaltrials.gov (NCT05271045).
Collapse
Affiliation(s)
- Bahareh Nikooyeh
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azizollaah Zargaraan
- Department of Food and Nutrition Policy and Planning Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition and Food Science, Shahid Beheshti University of Medical Sciences and Health Services, Tehran, Iran
| | - Samira Ebrahimof
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Kalayi
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maliheh Zahedirad
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hootan Yazdani
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Rismanchi
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Taher Karami
- Department of Research and Development, Kourosh Food Industry, Tehran, Iran
| | | | - Ali Jafarpour
- Quality Assurance Unit, Kourosh Food Industry, Tehran, Iran
| | - Tirang R Neyestani
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
V G, Das M, Zarei M, Vp M, Harohally NV, G SK. Studies on the partial characterization of extracted glycosaminoglycans from fish waste and its potentiality in modulating obesity through in-vitro and in-vivo. Glycoconj J 2022; 39:525-542. [PMID: 35913650 DOI: 10.1007/s10719-022-10077-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022]
Abstract
Glycosaminoglycans (GAGs) are bioactive polysaccharides or glycoconjugates found in the fish waste having significant health impacts. In the present study it has been attempted to extract GAGs from mackerel fish waste through chemical and enzymatic methods. Further, the extracted GAGs (e-GAGs) were analyzed for their composition (uronic acid, total sugar & sulfate), chemical characterization was carried out through techniques of scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) & Proton NMR. Further, probable major GAGs present was identified by enzymatic digestion. The biological potential of the extracted glycoconjugate was assessed further through in-vitro and in-vivo studies. In-vitro biological activity showed good lipase inhibition (IC50, 2.6 mg/mL) and bile acid binding properties (dose-dependent). Lipid accumulation lowered in the e-GAGs differentiated 3T3L1 preadipocyte cells have also been observed. The high fat fed animal (in-vivo) study showed ameliorative effect via reducing blood sugar∼1.28↓, lipid profile↓, plasma insulin∼3.5↓, improved glucose tolerance, and homeostatic model assessment for insulin resistance (HOMA-IR, ∼3.0↓). Furthermore, elimination of bile acid (BA) due to GAG-BA binding properties resultant in removal of elevated fecal triglyceride and cholesterol suggesting its lipid lowering activity. Regulation of various proteins linked to carbohydrate and lipid metabolism including fatty acid synthase (FAS), low density lipoproteins receptor (LDL-R), 7α-hydroxylase, glucose transporter-4 (GLUT4) and Peroxisome proliferator- activated receptor gamma (PPAR-γ) were significant (p < 0.05) with e-GAGs treatment when compared to HFD group. Thus, the e-GAGs showed potential hypolipidemic activity through elimination of bile acid binding property together with regulating the specific protein related to obesity and its associated complications.
Collapse
Affiliation(s)
- Geetha V
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, 570 020, Mysore, India
| | - Moumita Das
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, 570 020, Mysore, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mehrdad Zarei
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, 570 020, Mysore, India
| | - Mayookha Vp
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, 570 020, Mysore, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Nanishankar V Harohally
- Department of Spices and Flavour Sciences, CSIR-Central Food Technological Research Institute, 570 020, Mysore, India
| | - Suresh Kumar G
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, 570 020, Mysore, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
4
|
Rice Bran Stabilisation and Oil Extraction Using the Microwave-Assisted Method and Its Effects on GABA and Gamma-Oryzanol Compounds. Foods 2022; 11:foods11070912. [PMID: 35406999 PMCID: PMC8997534 DOI: 10.3390/foods11070912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Rice bran oil (RBO) is a valuable ingredient extracted from rice bran (RB), a side stream of polishing rice grain in the milling process. RBO is rich in bioactive ingredients with potential health benefits, such as gamma-oryzanol (GO) and gamma-aminobutyric acid (GABA). Despite its benefits, the quality of RBO depends on the degree of stabilisation of the RB, which is easily affected by lipase enzymes, and thus needs an effective treatment prior to RBO production. To assess the potential of the microwave-assisted method for RB stabilisation and RBO extraction, three Carolino rice varieties (Ariete, Teti, Luna) were tested. The effect of RB stabilisation was evaluated via acid value, water absorption, and GO and GABA levels. The RBO yield was optimised by solvent, temperature, and solvent-to-sample ratio, and the GO and fatty acid levels were determined. The RB stabilisation for the Luna variety did not affect the GO and GABA; for the Ariete and Teti varieties, the GO decreased by 34.4% and 24.2%, and the GABA increased by 26.5% and 47.0%, respectively. The GO levels in RBO samples were not affected by RB stabilisation. The RBO nutritional value was confirmed by the suitable ratio (>2) between polyunsaturated (PUFA) and saturated fatty acids (SFA), with the Teti variety presenting the highest ratio.
Collapse
|
5
|
Qiu B, Qi X, Wang J. CircTLK1 Downregulation Attenuates High Glucose-Induced Human Mesangial Cell Injury by Blocking the AKT/NF-κB Pathway Through Sponging miR-126-5p/miR-204-5p. Biochem Genet 2021; 60:1471-1487. [PMID: 34731387 DOI: 10.1007/s10528-021-10146-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 10/21/2021] [Indexed: 11/25/2022]
Abstract
Diabetic nephropathy (DN) is the main cause of end-stage renal disease. Circular RNA hsa_circ_0004442 (circTLK1) accelerates the progression of renal cell carcinoma. However, the role of circTLK1 in DN pathogenesis is indistinct. The expression of circTLK1, microRNA-126-5p (miR-126-5p), and microRNA-204-5p (miR-204-5p) was tested by quantitative real-time polymerase chain reaction. The levels of interleukin-6 and interleukin-1β were measured by enzyme-linked immunosorbent assay. The levels of reactive oxygen species and malondialdehyde and the activity of superoxide dismutase were determined with corresponding kits. Several protein levels were evaluated with western blotting. The relationship between circTLK1 and miR-126-5p/miR-204-5p was verified by dual-luciferase reporter assay. CircTLK1 was highly expressed in DN patient's serum and high-glucose (HG)-treated human mesangial cells. Functionally, circTLK1 inhibition reduced HG-induced inflammation, oxidative stress, and ECM accumulation in human mesangial cells. CircTLK1 was verified as a sponge for miR-126-5p and miR-204-5p, which were downregulated in DN patient's serum and HG-treated human mesangial cells. Both miR-126-5p and miR-204-5p upregulation decreased inflammation, oxidative stress, and ECM accumulation in HG-treated human mesangial cells and circTLK1 silencing-mediated influence on HG-induced human mesangial cell injury was overturned by miR-126-5p or miR-204-5p inhibition. Moreover, circTLK1 knockdown blocked the AKT/NF-κB pathway by sponging miR-126-5p/miR-204-5p. CircTLK1 downregulation alleviated HG-induced inflammation, oxidative stress, and ECM accumulation through blocking the AKT/NF-κB pathway via sponging miR-126-5p/miR-204-5p, providing a new mechanism to comprehend the pathogenesis of DN.
Collapse
Affiliation(s)
- Binghua Qiu
- Department of General Medicine, Weifang People's Hospital, Weifang, 261041, Shandong, China
| | - Xin Qi
- Department of Science and Education, People's Hospital of Gaoxin Weifang, Weifang, 261041, Shandong, China
| | - Juan Wang
- Department of Gastroenterology, the First Hospital of Zibo City, No. 4, Emeishan East Road, Boshan District, Zibo, 255200, Shandong, China.
| |
Collapse
|
6
|
Ramazani E, Akaberi M, Emami SA, Tayarani-Najaran Z. Biological and Pharmacological Effects of Gamma-oryzanol: An Updated Review of the Molecular Mechanisms. Curr Pharm Des 2021; 27:2299-2316. [PMID: 33138751 DOI: 10.2174/1381612826666201102101428] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Gamma-oryzanol (γ-oryzanol) is one of the rice bran oil (RBO) compounds, known as a principal food source throughout the world. In recent numerous experimental studies, γ-oryzanol has been revealed to have several useful pharmacological properties, such as anti-oxidant, anti-inflammatory, anti-cancer, anti-diabetic, ameliorating unpleasant menopausal symptoms, cholesterol-lowering, improving plasma lipid pattern, etc. Methods: In this study, we reviewed the scientific literature published up until 2020, which has evaluated the biological and pharmacological activity of gamma-oryzanol. This review summarizes the published data found in PubMed, Science Direct, and Scopus. RESULTS AND CONCLUSION The present review attempts to summarize the most related articles about the pharmacological and therapeutic potential from recent studies on γ-oryzanol to gain insights into design further studies to achieve new evidence that confirm the observed effects.
Collapse
Affiliation(s)
- Elham Ramazani
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Akaberi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani-Najaran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Peng Y, Yang X, Luo X, Liu C, Cao X, Wang H, Guo L. Novel mechanisms underlying anti-polycystic ovary like syndrome effects of electroacupuncture in rats: suppressing SREBP1 to mitigate insulin resistance, mitochondrial dysfunction and oxidative stress. Biol Res 2020; 53:50. [PMID: 33109277 PMCID: PMC7590702 DOI: 10.1186/s40659-020-00317-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/15/2020] [Indexed: 12/23/2022] Open
Abstract
Background Acupuncture, a therapy of traditional Chinese medicine, is confirmed to exert the therapeutic action on polycystic ovary syndrome (PCOS). However, the detailed therapeutic mechanisms of acupuncture in PCOS remain ambiguous. In this study, we further investigated whether electroacupuncture (EA) alleviated PCOS-like symptoms in rats via regulating a metabolic regulator, sterol regulatory element binding protein-1 (SREBP1). Methods The PCOS-like rat model was built by hypodermic injection with dehydroepiandrosterone (DHEA). The rats were subjected to EA intervention (ST29 and SP6 acupuncture points) for 5 weeks. Primary granulosa cells were isolated from control and PCOS-like rats for evaluating insulin resistance, mitochondrial dysfunction and oxidative stress in vitro. Results The expression of SREBP1 was increased in PCOS-like rats, which was suppressed by EA treatment. In addition, lentivirus-mediated overexpression of SREBP1 restrained EA treatment-induced improvement in pathological changes, serum hormone levels and insulin resistance in rats. In addition, overexpression of SREBP1 repressed insulin-stimulated phosphorylation of insulin receptor β (IR) and AKT in primary granulosa cells. Moreover, upregulation of SREBP1 further exacerbated mitochondrial dysfunction and oxidative stress in granulosa cells isolated from PCOS-like rats. Mechanically, EA treatment suppressed SREBP1 expression through inducing the activation of AMP-activated protein kinase (AMPK) signaling pathway in PCOS-like rats. Conclusion EA intervention alleviated PCOS-like symptoms in rats via improving IR, mitochondrial dysfunction and oxidative stress through regulating SREBP1, a lipid metabolism regulator. Our findings illuminate the novel protective mechanisms of EA in the treatment of PCOS.
Collapse
Affiliation(s)
- Yan Peng
- Disease Prevention Center, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | - Xinming Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | - Xi Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | - Chunhong Liu
- College of Basic Medicine Sciences, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | - Xia Cao
- Document Retrival Center, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | - Hongyan Wang
- Department of Gynecological Oncology, Cancer Hospital of Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Liyuan Guo
- Department of Gynecological Oncology, Cancer Hospital of Harbin Medical University, Harbin, 150081, People's Republic of China.
| |
Collapse
|
8
|
Opazo-Ríos L, Mas S, Marín-Royo G, Mezzano S, Gómez-Guerrero C, Moreno JA, Egido J. Lipotoxicity and Diabetic Nephropathy: Novel Mechanistic Insights and Therapeutic Opportunities. Int J Mol Sci 2020; 21:E2632. [PMID: 32290082 PMCID: PMC7177360 DOI: 10.3390/ijms21072632] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Abstract
Lipotoxicity is characterized by the ectopic accumulation of lipids in organs different from adipose tissue. Lipotoxicity is mainly associated with dysfunctional signaling and insulin resistance response in non-adipose tissue such as myocardium, pancreas, skeletal muscle, liver, and kidney. Serum lipid abnormalities and renal ectopic lipid accumulation have been associated with the development of kidney diseases, in particular diabetic nephropathy. Chronic hyperinsulinemia, often seen in type 2 diabetes, plays a crucial role in blood and liver lipid metabolism abnormalities, thus resulting in increased non-esterified fatty acids (NEFA). Excessive lipid accumulation alters cellular homeostasis and activates lipogenic and glycogenic cell-signaling pathways. Recent evidences indicate that both quantity and quality of lipids are involved in renal damage associated to lipotoxicity by activating inflammation, oxidative stress, mitochondrial dysfunction, and cell-death. The pathological effects of lipotoxicity have been observed in renal cells, thus promoting podocyte injury, tubular damage, mesangial proliferation, endothelial activation, and formation of macrophage-derived foam cells. Therefore, this review examines the recent preclinical and clinical research about the potentially harmful effects of lipids in the kidney, metabolic markers associated with these mechanisms, major signaling pathways affected, the causes of excessive lipid accumulation, and the types of lipids involved, as well as offers a comprehensive update of therapeutic strategies targeting lipotoxicity.
Collapse
Affiliation(s)
- Lucas Opazo-Ríos
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (L.O.-R.); (G.M.-R.); (C.G.-G.); (J.E.)
| | - Sebastián Mas
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (L.O.-R.); (G.M.-R.); (C.G.-G.); (J.E.)
| | - Gema Marín-Royo
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (L.O.-R.); (G.M.-R.); (C.G.-G.); (J.E.)
| | - Sergio Mezzano
- Laboratorio de Nefrología, Facultad de Medicina, Universidad Austral de Chile, 5090000 Valdivia, Chile;
| | - Carmen Gómez-Guerrero
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (L.O.-R.); (G.M.-R.); (C.G.-G.); (J.E.)
| | - Juan Antonio Moreno
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain
- Hospital Universitario Reina Sofía, 14004 Cordoba, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (L.O.-R.); (G.M.-R.); (C.G.-G.); (J.E.)
| |
Collapse
|
9
|
Li Y, Li Y, Zheng S. Inhibition of NADPH Oxidase 5 (NOX5) Suppresses High Glucose-Induced Oxidative Stress, Inflammation and Extracellular Matrix Accumulation in Human Glomerular Mesangial Cells. Med Sci Monit 2020; 26:e919399. [PMID: 32012145 PMCID: PMC7020764 DOI: 10.12659/msm.919399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background The aim of this study was to explore the effects of NADPH oxidase 5 (NOX5) in high glucose-stimulated human glomerular mesangial cells (HMCs). Material/Methods Cells were cultured under normal glucose (NG) or high glucose (HG) conditions. Then, NOX5 siRNA was transfected into HG-treated HMCs. A Cell Counting Kit-8 assay, colony formation assay and 5-ethynyl-20-deoxyuridine (EDU) incorporation assay were applied to measure cell proliferative ability. In addition, the levels of oxidative stress factors including reactive oxygen species (ROS), malonaldehyde (MDA), NADPH, superoxide dismutase (SOD), and glutathione peroxidase (GSH-PX), inflammatory cytokines including tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, IL-1β, and monocyte chemoattractant protein-1 (MCP-1) in HMCs were detected by kits. Moreover, the expression of TLR4/NF-κB signaling and extracellular matrix (ECM) associated genes were evaluated by western blotting. Results The results revealed that the NOX5 was overexpressed in HG-treated HMCs. Silencing of NOX5 decreased proliferation of HMCs induced by HG. And NOX5 silencing alleviated the production of MDA and NADPH accompanied by an increase of SOD and GSH-PX levels. Additionally, the contents of TNF-α, IL-6, IL-1β, and MCP-1 were reduced after transfection with NOX5 siRNA. Furthermore, silencing of NOX5 deceased the expression of collagen I, collagen IV, TGF-β1, and fibronectin induced by HG stimulation. TLR4, MyD88, and phospho-NF-κB p65 expression were downregulated notably in NOX5 silencing group. Conclusions Taken together, these findings demonstrated that inhibition of NOX5 attenuated HG-induced HMCs oxidative stress, inflammation, and ECM accumulation, suggesting that NOX5 may serve as a potential therapeutic target for diabetic nephropathy (DN) treatment.
Collapse
Affiliation(s)
- Yingxin Li
- Department of Endocrinology, Second Clinical Medical College, Inner Mongolia University for Nationalities (Inner Mongolia Forestry General Hospital), Tongliao, Inner Mongolia, China (mainland)
| | - Yarong Li
- Department of Endocrinology, The Centre Hospital of Wuhan, Wuhan, Hubei, China (mainland)
| | - Shouhao Zheng
- Department of Nephrology, Taizhou First People's Hospital, Taizhou, Zhejiang, China (mainland)
| |
Collapse
|
10
|
Qi MY, Wang XT, Xu HL, Yang ZL, Cheng Y, Zhou B. Protective effect of ferulic acid on STZ-induced diabetic nephropathy in rats. Food Funct 2020; 11:3706-3718. [DOI: 10.1039/c9fo02398d] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ferulic acid protects against diabetic nephropathy in STZ-induced rats by attenuating oxidative stress, inflammation, fibrosis and podocyte injury.
Collapse
Affiliation(s)
- Min-you Qi
- Institution of Pharmacology
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou
- China
| | - Xu-tao Wang
- Institution of Pharmacology
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou
- China
| | - Hui-lin Xu
- Institution of Pharmacology
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou
- China
| | - Zhang-liang Yang
- Institution of Pharmacology
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou
- China
| | - Yin Cheng
- Institution of Pharmacology
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou
- China
| | - Bin Zhou
- Institution of Pharmacology
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou
- China
| |
Collapse
|
11
|
Al-Okbi SY, Mohamed DA, Hamed TE, Al-Siedy ES. Rice bran as source of nutraceuticals for management of cardiovascular diseases, cardio-renal syndrome and hepatic cancer. JOURNAL OF HERBMED PHARMACOLOGY 2020. [DOI: 10.15171/jhp.2020.10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Introduction: The interrelation between cardiovascular diseases (CVDs) and renal dysfunction and the beneficial role of nutraceuticals are worthy to be studied. Nutraceuticals with anticancer effects are gaining great importance. The aim of this research was studying the anti-cancer, CVDs prevention and renal dysfunction properties of γ-oryzanol (γ-O) and rice bran oil/γ-O mixture (RBO/γ-O) as nutraceuticals. Methods: Rats were divided into 7 groups. Group 1 was fed on balanced diet and served as normal control (NC). Group 2 consumed high-fat-sucrose diet (HFSD) as CVD control. Groups 3 and 4 were fed on HFSD and treated by γ-O and RBO/γ-O, respectively. Group 5 was maintained on HFSD with cisplatin injection (cardiorenal syndrome control) (CRSC). Groups 6 and 7 were treated like group 5 and given either γ-O or RBO/γ-O. Plasma lipid profile, malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), catalase activity, creatinine and urea were determined besides urinary creatinine clearance. Nutraceuticals’ anticancer effect was assessed in hepatocellular carcinoma cell (HepG2) line. Results: Significant increases (P < 0.05) in lipid parameters with reduction of high-density lipoprotein cholesterol (HDL-C) were noticed in CVD control compared to NC group; the same changes were demonstrated in CRSC with lesser extent. In CVD control and CRSC groups; a significant increase (P < 0.05) in MDA and TNF-α with a reduction in catalase were noticed. Kidney dysfunction was demonstrated in the CRSC group. Administration of both RBO/γ-O and γ-O produced variable improvements in all parameters in both models and had anticancer effects. Conclusion: RBO/γ-O and γ-O had protective effects on CVDs and cardiorenal syndrome as well as anti-hepatocellular carcinoma activities with superiority of RBO/γ-O.
Collapse
Affiliation(s)
- Sahar Y. Al-Okbi
- Nutrition and Food Sciences Department, National Research Centre, Cairo, Egypt
| | - Doha A. Mohamed
- Nutrition and Food Sciences Department, National Research Centre, Cairo, Egypt
| | - Thanaa E. Hamed
- Nutrition and Food Sciences Department, National Research Centre, Cairo, Egypt
| | - Enas S.K. Al-Siedy
- Nutrition and Food Sciences Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
12
|
Liu Z, Han Y, Zhao F, Zhao Z, Tian J, Jia K. Nobiletin suppresses high-glucose-induced inflammation and ECM accumulation in human mesangial cells through STAT3/NF-κB pathway. J Cell Biochem 2018; 120:3467-3473. [PMID: 30499124 DOI: 10.1002/jcb.27621] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/14/2018] [Indexed: 02/06/2023]
Abstract
Diabetic nephropathy (DN) is a complication of chronic diabetes and the main cause of end-stage renal disease all over the world. Inflammation and extracellular matrix (ECM) accumulation play important roles in the pathogenesis of DN. Evidence suggested that nobiletin acts anti-inflammatory role and plays a critical role in diabetes; however, its role in DN remains unclear. In the current study, we promulgated the nobiletin involved in high-glucose-induced glomerular mesangial cell inflammation and ECM accumulation. Nobiletin treatment significantly abrogated high-glucose-induced glomerular mesangial cell proliferation. Nobiletin treatment markedly suppressed inflammation cytokine secretion, including interleukin (IL)-1β, IL-6, tumor necrosis factor α, and monocyte chemoattractant protein 1 in high-glucose-induced glomerular mesangial cell. Also, exposed nobiletin to high-glucose-induced glomerular mesangial cell considerably reduced ECM accumulation through inhibited ECM-associated protein type 4 collagen and fibronectin expression. Furthermore, nobiletin treatment abolished nuclear factor κB (NF-κB) pathway activation through signal transducer and activator of transcription 3 (STAT3) inhibition. Overexpression STAT3 reversed the effects of nobiletin on high-glucose-induced glomerular mesangial cell proliferation, inflammation, ECM accumulation, and NF-κB pathway activation. Hence, our results suggest that nobiletin play roles in high-glucose-induced glomerular mesangial cells through inhibiting inflammation and ECM accumulation, and the STAT3/NF-κB pathway was involved in the function of nobiletin.
Collapse
Affiliation(s)
- Zhenzhou Liu
- Department of Integrated Chinese and Western Medicine II, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Yanru Han
- Department of Integrated Chinese and Western Medicine II, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Fucheng Zhao
- Department of Integrated Chinese and Western Medicine II, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Zhenxia Zhao
- Department of Integrated Chinese and Western Medicine II, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Junlei Tian
- Department of Neurology IV, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Kui Jia
- Department of Integrated Chinese and Western Medicine II, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| |
Collapse
|