1
|
De Smet S, Van Hecke T. Meat products in human nutrition and health - About hazards and risks. Meat Sci 2024; 218:109628. [PMID: 39216414 DOI: 10.1016/j.meatsci.2024.109628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Meat processing has a long history and involves a wide and ever-increasing range of chemical and physical processes, resulting in a heterogeneous food category with a wide variability in nutritional value. Despite the known benefits of meat consumption, observational epidemiological studies have shown associations between consumption of red and processed meat - but not white meat - and several non-communicable diseases, with higher relative risks for processed meat compared to unprocessed red meat. This has led global and regional nutrition and health organisations to recommend reducing consumption of unprocessed red meat and avoiding processed meat. A plethora of potentially implicated hazardous compounds present in meat or formed during processing or gastrointestinal digestion have been reported in the literature. However, our mechanistic understanding of the impact of meat consumption on human health is still very incomplete and is complicated by the simultaneous occurrence of multiple hazards and interactions with other food compounds and host factors. This narrative review briefly discusses hazards, risks and their assessment in the context of dietary guidelines. It is argued that more mechanistic studies of the interactive effects of meat products with other foods and food compounds in different dietary contexts are needed to refine and increase the evidence base for dietary guidelines. Importantly, the great diversity in the composition and degree of processing of processed meats should be better understood in terms of their impact on human health in order to develop a more nuanced approach to dietary guidelines for this food category.
Collapse
Affiliation(s)
- Stefaan De Smet
- Laboratory for Animal Nutrition and Animal Product Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Thomas Van Hecke
- Laboratory for Animal Nutrition and Animal Product Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
2
|
Feng R, Xiong X, Dou P, Li J, Benjakul S, Luo Y, Tan Y, Hong H. Quantitative analysis of 4-hydroxy-2-nonenal (HNE) in fish muscle by high-performance liquid chromatography with pre-column derivatization using (2,4-dinitrophenyl)-hydrazine. Food Chem 2024; 464:141841. [PMID: 39504905 DOI: 10.1016/j.foodchem.2024.141841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/28/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
4-Hydroxy-2-nonenal (HNE), a reactive compound produced during the peroxidation of polyunsaturated fatty acids, is implicated in numerous diseases and the degradation of food quality. Although the detection of HNE in meat has a long history, methods for detecting HNE in freshwater fish are inadequate due to the significant influence of matrix differences (i.e., the matrix effect). We developed a method to measure HNE in six freshwater fish species: Grass carp, Silver carp, Bighead carp, Common carp, Crucian carp, and Wuchang bream. This method showed excellent linearity (R2 values from 0.9943 to 0.9958) and high recovery rates (95.45-104.41 %), with limits of detection (LOD) between 0.029 and 0.176 μmol/kg, covering a range of 0.006 to 25.600 μmol/kg. Matrix effect assessment revealed matrix factors (Mf) between 0.13 and 0.47. This study enhances our understanding of lipid oxidation in fish and guides improvements in food processing techniques.
Collapse
Affiliation(s)
- Ruifang Feng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xin Xiong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Peipei Dou
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jinlin Li
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
3
|
Tian X, Vossen E, De Smet S, Van Hecke T. Glucose addition and oven-heating of pork stimulate glycoxidation and protein carbonylation, while reducing lipid oxidation during simulated gastrointestinal digestion. Food Chem 2024; 453:139662. [PMID: 38762946 DOI: 10.1016/j.foodchem.2024.139662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/29/2024] [Accepted: 05/11/2024] [Indexed: 05/21/2024]
Abstract
In the present study, it was investigated if glucose addition (3 or 5%) to pork stimulates glycoxidation (pentosidine, PEN), glycation (Maillard reaction products, MRP), lipid oxidation (4-hydroxy-2-nonenal, 4-HNE; hexanal, HEX; thiobarbituric acid reactive substances, TBARS), and protein oxidation (protein carbonyl compounds, PCC) during various heating conditions and subsequent in vitro gastrointestinal digestion. An increase in protein-bound PEN level was observed during meat digestion, which was significantly stimulated by glucose addition (up to 3.3-fold) and longer oven-heating time (up to 2.5-fold) of the meat. These changes were accompanied by the distinct formation of MRP during heating and digestion of the meats. Remarkably, stimulated glyc(oxid)ation was accompanied by increased protein oxidation, whereas lipid oxidation was decreased, indicating these reactions are interrelated during gastrointestinal digestion of meat. Glucose addition generally didn't affect these oxidative reactions when pork was packed preventing air exposure and oven-heated until a core temperature of 75 °C was reached.
Collapse
Affiliation(s)
- Xiaona Tian
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Els Vossen
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Stefaan De Smet
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Thomas Van Hecke
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
4
|
Ariz I, Ansorena D, Astiasaran I. In vitro digestion of beef and vegan burgers cooked by microwave technology: Effects on protein and lipid fractions. Food Res Int 2024; 186:114376. [PMID: 38729723 DOI: 10.1016/j.foodres.2024.114376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/26/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Commercial beef burgers and vegan analogues were purchased and, after a microwave treatment, they were submitted to an in vitro digestion (INFOGEST). Vegan cooked burgers showed similar protein content (16-17 %) but lower amounts of total peptides than beef burgers. The protein digestibility was higher in beef burgers. Peptide amounts increased during in vitro digestion, reaching similar amounts in both types of products in the micellar phase (bioaccessible fraction). The fat content in cooked vegan burgers was significantly lower than in beef burgers (16.7 and 21.2 %, respectively), with a higher amount of PUFAs and being the lipolysis activity, measure by FFA, less intense both after cooking and after the gastrointestinal process. Both types of cooked samples showed high carbonyl amounts (34.18 and 25.51 nmol/mg protein in beef and vegan samples, respectively), that decreased during in vitro digestion. On the contrary, lipid oxidation increased during gastrointestinal digestion, particularly in vegan samples. The antioxidant capacity (ABTS and DPPH) showed higher values for vegan products in cooked samples, but significantly decreased during digestion, reaching similar values for both types of products.
Collapse
Affiliation(s)
- I Ariz
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| | - D Ansorena
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| | - I Astiasaran
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
5
|
Ansorena D, Astiasaran I. Natural antioxidants (rosemary and parsley) in microwaved ground meat patties: effects of in vitro digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4465-4472. [PMID: 38345147 DOI: 10.1002/jsfa.13333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Minimizing food oxidation remains a challenge in several environments. The addition of rosemary extract (150 mg kg-1) and lyophilized parsley (7.1 g kg-1) at equivalent antioxidant activity (5550 μg Trolox equivalents kg-1) to meat patties was assessed in terms of their effect during microwave cooking and after being subjected to an in vitro digestion process. RESULTS Regardless of the use of antioxidants, cooking caused a decrease of the fat content as compared to raw samples, without noticing statistical differences in the fatty acid distribution between raw and cooked samples [44%, 47% and 6.8%, of saturated fatty acid (SFA), monounsaturated fatty acid (MUFA) and polyunsaturated fatty acid (PUFA), respectively]. However, the bioaccessible lipid fraction obtained after digestion was less saturated (around 34% SFA) and more unsaturated (35% MUFA +30% PUFA). Cooking caused, in all types of samples, an increased lipid [thiobarbituric acid reactive substances (TBARS)] and protein (carbonyls) oxidation values. The increase of TBARS during in vitro digestion was around 7 mg malondialdehyde (MDA) kg-1 for control and samples with parsley and 4.8 mg MDA kg-1 with rosemary. The addition of parsley, and particularly of rosemary, significantly increased the antioxidant activity (DPPH) of cooked and digested microwaved meat patties. CONCLUSION Whereas rosemary was effective in minimizing protein oxidation during cooking and digestion as compared to control samples, parsley could only limit it during digestion. Lipid oxidation was only limited by rosemary during in vitro digestion. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Diana Ansorena
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Iciar Astiasaran
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| |
Collapse
|
6
|
Liu W, Liu S, Ren Q, Yang R, Su S, Jiang X. Association between polyunsaturated fatty acids and progression among patients with diabetic kidney disease. Prim Care Diabetes 2024; 18:177-182. [PMID: 38242728 DOI: 10.1016/j.pcd.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/21/2024]
Abstract
AIMS Diabetic kidney disease (DKD) is the major complication of diabetes mellitus (DM) and one of the leading causes of end-stage renal disease. Early detection and treatment are contributing to delay the progression of DKD. Dietary management has potential benefits for DKD, especially the intake of polyunsaturated fatty acids (PUFAs). However, there is a lack of sufficient evidence, so we aimed to explore the association between PUFAs intake and DKD progression. METHODS In the National Heath and Nutrition Examination Survey (NHANES) between 2011-2018, a cross-sectional study was conducted among adults with T2DM. DKD was diagnosed with urine albumin to creatinine ratio (ACR) ≥ 30 mg/g or estimated glomerular filtration rate (eGFR) <60 ml/min/1.73 m2. Using Survey package of R to arrange the collected PUFAs intake data in order from small to large and divide them into four equal parts, which were expressed as Q1, Q2, Q3 and Q4 respectively. To investigate the association between PUFAs intake and DKD, a weighted univariate logistic regression analysis was performed and the odds ratio (OR) and 95% confidence interval (CI) were calculated for the association with DKD and PUFAs quartiles. RESULTS The study involved 3287 participants with T2DM, including 2043 non-DKD and 1244 DKD patients. The results showed that the intake of PUFAs was a protective factor for DKD (p = 0.022), and with the increase of the PUFAs, renal function improved in DKD patients, the adjusted mean of eGFR and Scr changing from 57 (41, 86) in Q1 to 71 (55, 101) ml/min in Q4 (p 0.001), 103 (73, 131) in Q1 to 90 (68, 117) in Q4 (p = 0.031), respectively. CONCLUSION Our study indicated that intake of more PUFAs may contribute to delay DKD progression, while different n-6/n-3 ratios need to be explored to protect the kidney.
Collapse
Affiliation(s)
- Wu Liu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shiyi Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiuyue Ren
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Ronglu Yang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shanshan Su
- Department of Nephrology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, China.
| | - Xiaoyu Jiang
- Department of Nephrology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, China.
| |
Collapse
|
7
|
Kong C, Duan C, Zhang Y, Shi C, Luo Y. Changes in Lipids and Proteins of Common Carp ( Cyprinus carpio) Fillets under Frozen Storage and Establishment of a Radial Basis Function Neural Network (RBFNN). Foods 2023; 12:2741. [PMID: 37509833 PMCID: PMC10379316 DOI: 10.3390/foods12142741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/11/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Storage via freezing remains the most effective approach for fish preservation. However, lipid oxidation and protein denaturation still occur during storage, along with nutritional loss. The extent of lipid alteration and protein denaturation are associated with human health defects. To precisely predict common carp (Cyprinus carpio) nutritional quality change during frozen storage, here, we first determined lipid oxidation and hydrolysis and protein denaturation of common carp fillets during 17 weeks of frozen preservation at 261 K, 253 K, and 245 K. Results showed that the content of thiobarbituric acid reactive substances (TBARS) and free fatty acids (FFA) were significantly increased. However, salt-soluble protein (SSP) content, Ca2+-ATPase activity, and total sulfhydryl (SH) content kept decreasing during frozen storage, with SSP content decreasing by 64.82%, 38.14%, and 11.24%, respectively, Ca2+-ATP enzyme activity decreasing to 12.50%, 18.52%, and 28.57% Piμmol/mg/min, and SH values decreasing by 70.71%, 64.92%, and 56.51% at 261 K, 253 K, and 245 K, respectively. The values at 261 K decreased more than that at 253 K and 245 K (p < 0.05). Ca2+-ATPase activity was positively correlated (r = 0.96) with SH content. Afterwards, based on the results of the above chemical experiments, we developed a radial basis function neural network (RBFNN) to predict the modification of lipid and protein of common carp fillets during frozen storage. Results showed that all the relative errors of experimental and predicted values were within ±10%. In summary, the quality of common carp can be well protected at 245 K, and the established RBFNN could effectively predict the quality of the common carp under frozen conditions at 261-245 K.
Collapse
Affiliation(s)
- Chunli Kong
- School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Caiping Duan
- School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yixuan Zhang
- School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Ce Shi
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
8
|
Rubak YT, Lalel HJD, Sanam MUE. Physicochemical, microbiological, and sensory characteristics of " Sui Wu'u" traditional pork products from Bajawa, West Flores, Indonesia. Vet World 2023; 16:1165-1175. [PMID: 37576773 PMCID: PMC10420695 DOI: 10.14202/vetworld.2023.1165-1175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/19/2023] [Indexed: 08/15/2023] Open
Abstract
Background and Aim Sui Wu'u is a traditional meat preservation product from Bajawa, a region in East Nusa Tenggara. It is made by mixing pork with salt and corn flour, which is then stored in a bamboo container (tuku) for months. After 6 months of storage, this study examined the physicochemical, microbiological, and sensory properties of Sui Wu'u. Materials and Methods Sui Wu'u products were prepared using the traditional recipe from the Bajawa community. Fresh pork (pork belly and backfat), corn flour, and salt were purchased from local/traditional markets at proportions of 65%, 30%, and 5%, respectively. The physicochemical, amino acid, fatty acid profile, microbiological, and sensory properties of Sui Wu'u were evaluated after being stored for 6 months in a bamboo container (tuku). Results The results indicated that these Sui Wu'u were mainly characterized by high-fat levels, followed by protein. The pH value, salt content, moisture content, and water activity were 4.72%, 1.72%, 6.11%, and 0.62%, respectively. Minerals (K, P, Se, and Zn) and vitamin B6, as well as amino acids, such as leucine, phenylalanine, lysine (essential amino acids), glycine, proline, glutamic acid, and alanine (non-essential amino acids), are present in Sui Wu'u. The fatty acid profile was dominated by monounsaturated fatty acids (MUFA) (21.69%), saturated fatty acids (SFA) (17.78%), and polyunsaturated fatty acids (PUFA) (5.36%). Monounsaturated fatty acids, oleic acid (C18:1n9) was the most abundant fatty acid in Sui Wu'u, followed by palmitic acid SFA (C16:0); MUFA stearic acid (C18:0); and PUFA linoleic (C18:2n-6). The microbiological characteristics of Sui Wu'u showed no detectable microorganisms (<10 CFU/g) for Salmonella, total E. coli and total Staphylococcus, and average values of 4.4 × 105 CFU/g for total microbes, which were still below the maximum limit of microbial contamination according to the regulations of the Food and Drug Supervisory Agency of the Republic of Indonesia. The sensory assessment indicated that panelists highly preferred (rated as very like) Sui Wu'u for all sensory attributes. Conclusion The physicochemical, microbiological, and sensory characteristics of Sui Wu'u after 6 months of storage indicated that it still provides essential nutrients for the body and is quite safe for consumption. The stability of Sui Wu'u's shelf life can be attributed to the appropriate combination of pork, salt, corn flour, bamboo packaging (tuku), and storage temperature. The high-fat content in Sui Wu'u can be reduced by increasing the proportion of lean meat. Ensuring strict sanitation during the manufacturing process, using high-quality pork, salt, corn flour, and proper packaging with bamboo can further improve the safety of Sui Wu'u for consumption.
Collapse
Affiliation(s)
- Yuliana Tandi Rubak
- Department of Agrotechnology, Faculty of Agriculture, Universitas Nusa Cendana, Kupang, East Nusa Tenggara 85228, Indonesia
| | - Herianus J. D. Lalel
- Department of Agrotechnology, Faculty of Agriculture, Universitas Nusa Cendana, Kupang, East Nusa Tenggara 85228, Indonesia
| | - Maxs Urias Ebenhaizar Sanam
- Department of Animal Diseases Sciences and Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Nusa Cendana, Kupang, East Nusa Tenggara 85228, Indonesia
| |
Collapse
|
9
|
Effects of ethanol pretreatment on osteogenic activity and off-flavors in blue mussel (Mytilus edulis L.) enzymatic hydrolysates. Food Res Int 2023; 167:112701. [PMID: 37087266 DOI: 10.1016/j.foodres.2023.112701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023]
Abstract
Aquatic protein hydrolysates have many biological activities, but the off-flavor seriously decreases their commercial acceptability. Therefore, it is important to invest in finding an effective deodorization of aquatic hydrolysates that do not affect activities. In this study, ethanol pretreatment of mussel was applied to establish a new method to deodorize the blue mussel (Mytilus edulis L.) hydrolysates. LC-MS and GC-MS analysis results showed that 87.34% of fatty acids, 83.94% of aldehydes, most volatile flavor compounds including aldehydes, ketones, alcohols, acids, and hydrocarbons were decreased after ethanol pretreatment. Besides, it was found that the enzymatic hydrolysates of mussel with or without ethanol pretreatment showed high osteogenic activity, which induced an increase of 33.65 ± 4.36% and 31.77 ± 5.45% in MC3T3-E1 cell growth. These results suggest that ethanol pretreatment has beneficial potential for improving the flavor aspects of blue mussel peptides which may have the potential to stimulate bone regeneration and formation.
Collapse
|
10
|
Ribes S, Genot M, Vénien A, Santé-Lhoutellier V, Peyron MA. Oral and gastrointestinal nutrient bioaccessibility of gluten-free bread is slightly affected by deficient mastication in the elderly. Food Res Int 2023; 165:112523. [PMID: 36869523 DOI: 10.1016/j.foodres.2023.112523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/13/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
The main goal of this work was to investigate the impact of impaired mastication on nutrient bioaccessibility of gluten-free bread in the elderly. In vitro boluses were produced with the AM2 masticator by using two types of programming: normal mastication (NM) and deficient mastication (DM). Static in vitro gastrointestinal digestion was performed with the digestive physiology conditions of the elderly. Subsequently, the granulometric properties of the in vitro boluses produced, their starch and protein digestibility, and lipid peroxidation after in vitro oral and gastrointestinal digestion were evaluated. DM boluses presented higher proportions of large particles, resulting in insufficiently fragmented boluses. A delay in oral starch digestion was observed in DM boluses, probably due to the presence of larger particles that limited the bolus-saliva exchanges. Furthermore, DM boluses exhibited a lower degree of protein hydrolysis at the end of gastric digestion, whereas no differences were observed for protein hydrolysis, sugar release, and lipid peroxidation at the end of digestion (intestinal phase). The results of this study show that impaired mastication somewhat delays the nutrient bioaccessibility of the gluten-free bread tested. Such understanding of the effect of oral decline on the nutrient bioaccessibility of foods is crucial when designing food commodities with enhanced functionalities for the elderly.
Collapse
Affiliation(s)
- Susana Ribes
- Departamento Tecnología de Alimentos, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; INRAE, QuaPA UR 370, F-63122 Saint Genès Champanelle, France.
| | - Mélany Genot
- INRAE, QuaPA UR 370, F-63122 Saint Genès Champanelle, France
| | - Annie Vénien
- INRAE, QuaPA UR 370, F-63122 Saint Genès Champanelle, France
| | | | - Marie-Agnès Peyron
- Université Clermont Auvergne, INRAE, UNH, F-63000 Clermont-Ferrand, France
| |
Collapse
|
11
|
Rabkin B, Tirosh O, Kanner J. Reactivity of Vitamin E as an Antioxidant in Red Meat and the Stomach Medium. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12172-12179. [PMID: 36121850 DOI: 10.1021/acs.jafc.2c03674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The stomach is a bioreactor and an important intersection of biochemical reactions that affect human health. Lipid peroxidation of meat in the stomach medium generates malondialdehyde (MDA), which is absorbed from the gut into human plasma and modifies low-density lipoprotein (LDL) to MDA-LDL. We found in the stomach medium (pH 3.0) a high antioxidant activity of vitamin E against meat lipid peroxidation, almost 35-fold higher than at pH 6.3. In the stomach medium, the antioxidant activity of vitamin E on meat lipid peroxidation was 20-fold higher than that of catechin. Vitamin E, at pH 3.0, acts synergistically with metmyoglobin (MbFe+3), as a peroxidase/antioxidant couple. The synergistic effect of MbFe+3/vitamin E was almost 150-fold higher than the antioxidant effect achieved by MbFe+3/catechin. The meat antioxidant activity was maintained continuously by addition of a low concentration of vitamin E, catechin, and vitamin C, preventing the propagation of lipid oxidation, reactive aldehyde generation, and the loss of vitamin E.
Collapse
Affiliation(s)
- Boris Rabkin
- Department of Food Science, ARO Volcani Center, Bet-Dagan 50250, Israel
| | - Oren Tirosh
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Joseph Kanner
- Department of Food Science, ARO Volcani Center, Bet-Dagan 50250, Israel
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
12
|
Zhang L, Li Q, Bao Y, Tan Y, Lametsch R, Hong H, Luo Y. Recent advances on characterization of protein oxidation in aquatic products: A comprehensive review. Crit Rev Food Sci Nutr 2022; 64:1572-1591. [PMID: 36122384 DOI: 10.1080/10408398.2022.2117788] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In addition to microbial spoilage and lipid peroxidation, protein oxidation is increasingly recognized as a major cause for quality deterioration of muscle-based foods. Although protein oxidation in muscle-based foods has attracted tremendous interest in the past decade, specific oxidative pathways and underlying mechanisms of protein oxidation in aquatic products remain largely unexplored. The present review covers the aspects of the origin and site-specific nature of protein oxidation, progress on the characterization of protein oxidation, oxidized proteins in aquatic products, and impact of protein oxidation on protein functionalities. Compared to meat protein oxidation, aquatic proteins demonstrate a less extent of oxidation on aromatic amino acids and are more susceptible to be indirectly oxidized by lipid peroxidation products. Different from traditional measurement of protein carbonyls and thiols, proteomics-based strategy better characterizes the targeted oxidation sites within proteins. The future trends using more robust and accurate targeted proteomics, such as parallel reaction monitoring strategy, to characterize protein oxidation in aquatic products are also given.
Collapse
Affiliation(s)
- Longteng Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qian Li
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - René Lametsch
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Gutiérrez-Luna K, Ansorena D, Cruz R, Astiasarán I, Casal S. Olive and echium oil gelled emulsions: simulated effect of processing temperature, gelling agent and in vitro gastrointestinal digestion on oxidation and bioactive compounds. Food Chem 2022; 402:134416. [DOI: 10.1016/j.foodchem.2022.134416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/29/2022] [Accepted: 09/25/2022] [Indexed: 10/14/2022]
|
14
|
Harahap IA, Sobral MMC, Casal S, Pinho SCM, Faria MA, Suliburska J, Ferreira IMPLVO. Fat Oxidation of Fatty Fish vs. Meat Meal Diets Under in vitro Standardized Semi-Dynamic Gastric Digestion. Front Nutr 2022; 9:901006. [PMID: 35845796 PMCID: PMC9280670 DOI: 10.3389/fnut.2022.901006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022] Open
Abstract
Meat and fish are introduced into the diet as a source of protein, but these muscle foods present different fatty acid (FA) compositions and different lipid stabilities. Fatty fish is expected to oxidize due to its higher content of polyunsaturated FA (PUFA), whereas the higher heme-Fe content of red meat will also affect lipid stability. Combining other food ingredients within a meal also influences lipid oxidation, which will not stop after meals intake. This is due to the acidic environment of the stomach together with the presence of metallic ions, a process that is scarcely understood. The goal of this study was to evaluate the oxidation of fatty fish vs. meat meal diets under in vitro standardized semi-dynamic gastric conditions and FA release from the stomach to the duodenum. Meal diets composed by 25% beef meal (BM) or fatty fish meal (FM), 25% fried potatoes, and 50% sugar soft drink were prepared. Proximate composition, FA and amino acid profiles, and meals quality indices were evaluated. Their differences in composition led to different total gastric digestion time of 242.74 (BM) and 175.20 (FM) minutes. Using the INFOGEST semi-dynamic gastric model, 4 gastric emptying (GE) were simulated in both meals. In each GE, FA profile and lipid oxidation products (LOPs) formation were assessed. As a result, more than 50% FA release to the duodenum occurred in GE1, whose percentage decreased with the time of digestion. FM exhibited the highest LOPs formation, which corroborates the high peroxidizability index measured for this meal diet. Higher LOPs formation occurred in the later GEs, which released less FA. This suggests that higher times of residence in the stomach increase FA oxidation. This study shows a higher formation of LOPs during digestion of FM using a whole meal approach. These results relate to its richness in PUFAs compared to BM. Despite higher LOPs formation, FM digests that reached duodenum still contain higher content of unoxidized PUFAs compared with BM and a desirable ω3/ω6 PUFAs ratio of ~0.43. LOPs formation in PUFA-rich meals could be reduced if those meals have a low caloric value, avoiding large times of residence in the stomach and consequently high levels of oxidation.
Collapse
Affiliation(s)
- Iskandar Azmy Harahap
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Poznan, Poland
| | - Maria Madalena C. Sobral
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- *Correspondence: Maria Madalena C. Sobral
| | - Susana Casal
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Susana C. M. Pinho
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Miguel A. Faria
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Joanna Suliburska
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Poznan, Poland
| | - Isabel M. P. L. V. O. Ferreira
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
15
|
Effects of γ-Glutamylated Hydrolysates from Porcine Hemoglobin and Meat on Kokumi Enhancement and Oxidative Stability of Emulsion-Type Sausages. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
16
|
Van Hecke T, De Smet S. The Influence of Butter and Oils on Oxidative Reactions during In Vitro Gastrointestinal Digestion of Meat and Fish. Foods 2021; 10:foods10112832. [PMID: 34829112 PMCID: PMC8625424 DOI: 10.3390/foods10112832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/22/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022] Open
Abstract
Oxidative reactions during cooking and gastrointestinal digestion of meat and fish lead to the formation of various lipid- and protein oxidation products, some of which are toxic. In the present study, it was investigated how the addition of 3% butter or oils affect lipid- and protein oxidation during cooking and in vitro digestion of meat (chicken thigh, chicken breast, beef) and fish (mackerel, cod). These muscle foods were selected based on their differences in heme-Fe and PUFA contents, and n-6/n-3 PUFA ratio, and therefore varying potential to form oxidation products during digestion. Without additional fat, mackerel digests displayed the highest n-3 PUFA oxidation (4-hydroxy-2-hexenal, propanal, thiobarbituric reactive acid substances), and chicken digests the highest n-6 PUFA oxidation (4-hydroxy-2-nonenal, hexanal), whereas both lipid- and protein oxidation (protein carbonyl compounds) were low in cod and beef digests. Lipid oxidative reactions were generally not altered by the addition of butter to any muscle matrix, whereas the addition of fish oil and safflower oil in different ratios (3:0, 2:1, 1:2, 0:3) as n-3 PUFA and n-6 PUFA source respectively, stimulated oxidative reactions, especially during digestion of beef. Since beef was considered the muscle matrix with the highest potential to stimulate oxidation in the added fat substrate, in a second experiment, beef was cooked and digested with 3% butter or seven commercial vegetable oils (sunflower-, maize-, peanut-, rapeseed-, olive-, rice bran- or coconut oil), all labeled ‘suitable for heating’. No relevant oxidative reactions were however observed during digestion of beef with any of these commercial vegetable oils.
Collapse
|
17
|
Abstract
Protein oxidation is a topic of indisputable scientific interest given the impact of oxidized proteins on food quality and safety. Carbonylation is regarded as one of the most notable post-translational modifications in proteins and yet, this reaction and its consequences are poorly understood. From a mechanistic perspective, primary protein carbonyls (i.e. α-aminoadipic and γ-glutamic semialdehydes) have been linked to radical-mediated oxidative stress, but recent studies emphasize the role alternative carbonylation pathways linked to the Maillard reaction. Secondary protein carbonyls are introduced in proteins via covalent linkage of lipid carbonyls (i.e. protein-bound malondialdehyde). The high reactivity of protein carbonyls in foods and other biological systems indicates the intricate chemistry of these species and urges further research to provide insight into these molecular mechanisms and pathways. In particular, protein carbonyls are involved in the formation of aberrant and dysfunctional protein aggregates, undergo further oxidation to yield carboxylic acids of biological relevance and establish interactions with other biomolecules such as oxidizing lipids and phytochemicals. From a methodological perspective, the routine dinitrophenylhydrazine (DNPH) method is criticized not only for the lack of accuracy and consistency but also authors typically perform a poor interpretation of DNPH results, which leads to misleading conclusions. From a practical perspective, the biological relevance of protein carbonyls in the field of food science and nutrition is still a topic of debate. Though the implication of carbonylation on impaired protein functionality and poor protein digestibility is generally recognized, the underlying mechanism of such connections requires further clarification. From a medical perspective, protein carbonyls are highlighted as markers of protein oxidation, oxidative stress and disease. Yet, the specific role of specific protein carbonyls in the onset of particular biological impairments needs further investigations. Recent studies indicates that regardless of the origin (in vivo or dietary) protein carbonyls may act as signalling molecules which activate not only the endogenous antioxidant defences but also implicate the immune system. The present paper concisely reviews the most recent advances in this topic to identify, when applicable, potential fields of interest for future studies.
Collapse
|
18
|
Padilla P, Andrade MJ, Peña FJ, Rodríguez A, Estévez M. An in vitro assay of the effect of lysine oxidation end-product, α-aminoadipic acid, on the redox status and gene expression in probiotic Lactobacillus reuteri PL503. Amino Acids 2021; 54:663-673. [PMID: 34657206 PMCID: PMC9117375 DOI: 10.1007/s00726-021-03087-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/04/2021] [Indexed: 01/18/2023]
Abstract
This study was designed to gain information about the underlying mechanisms of the effects of a food-occurring free oxidized amino acid, α-aminoadipic acid (AAA), on the probiotic Lactobacillus reuteri PL503. This bacterium was incubated in colonic-simulated conditions (37 °C for 24 h in microaerophilic conditions) and exposed to three food-compatible AAA concentrations, namely, 1 mM, 5 mM, and 10 mM. A control group with no AAA exposure was also considered. Each of the four experimental conditions was replicated three times and samplings were collected at 12, 16, 20, and 24 h. The downregulation of the uspA gene by AAA (0.5-fold decrease as compared to control) suggests that AAA is identified as a potential chemical threat. The dhaT gene, implicated in the antioxidant defense, was found to be upregulated in bacteria treated with 1 and 5 mM AAA (up to twofold increase, as compared to control), which suggest the ability of the oxidized amino acid to impair the redox status of the bacterium. In fact, AAA caused an increased production of reactive oxygen species (ROS) and the accretion of post-translational changes (protein carbonylation) in L. reuteri (up to 13 nmol allysine/mg protein vs 1.8 nmol allysine/mg protein in control). These results suggest that probiotic bacteria identify oxidized amino acids as harmful species and activate mechanisms that may protect themselves and the host against their noxious effects.
Collapse
Affiliation(s)
- Patricia Padilla
- Food Technology, IPROCAR Research Institute, University of Extremadura, 10003, Cáceres, Spain.,Faculty of Veterinary Science, IPROCAR Research Institute, Food Hygiene and Safety, University of Extremadura, 10003, Cáceres, Spain
| | - María J Andrade
- Faculty of Veterinary Science, IPROCAR Research Institute, Food Hygiene and Safety, University of Extremadura, 10003, Cáceres, Spain
| | - Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, University of Extremadura, 10003, Cáceres, Spain
| | - Alicia Rodríguez
- Faculty of Veterinary Science, IPROCAR Research Institute, Food Hygiene and Safety, University of Extremadura, 10003, Cáceres, Spain
| | - Mario Estévez
- Food Technology, IPROCAR Research Institute, University of Extremadura, 10003, Cáceres, Spain.
| |
Collapse
|
19
|
Khalid W, Arshad MS, Yasin M, Imran A, Ahmad MH. Quality Characteristics of Gamma Irradiation and Kale Leaf powder Treated Ostrich and Chicken Meat during Storage. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1963274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Waseem Khalid
- Department of Food Sciences, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Sajid Arshad
- Department of Food Sciences, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Yasin
- Food Safety Group, Nuclear Institute for Agriculture and Biology, Pakistan Atomic Energy Commission, Faisalabad, Pakistan
| | - Ali Imran
- Department of Food Sciences, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Haseeb Ahmad
- Department of Food Sciences, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| |
Collapse
|
20
|
Bhat ZF, Morton JD, Bekhit AEDA, Kumar S, Bhat HF. Thermal processing implications on the digestibility of meat, fish and seafood proteins. Compr Rev Food Sci Food Saf 2021; 20:4511-4548. [PMID: 34350699 DOI: 10.1111/1541-4337.12802] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/03/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022]
Abstract
Thermal processing is an inevitable part of the processing and preparation of meat and meat products for human consumption. However, thermal processing techniques, both commercial and domestic, induce modifications in muscle proteins which can have implications for their digestibility. The nutritive value of muscle proteins is closely related to their digestibility in the gastrointestinal tract and is determined by the end products that it presents in the assimilable form (amino acids and small peptides) for the absorption. The present review examines how different thermal processing techniques, such as sous-vide, microwave, stewing, roasting, boiling, frying, grilling, and steam cooking, affect the digestibility of muscle proteins in the gastrointestinal tract. By altering the functional and structural properties of muscle proteins, thermal processing has the potential to influence the digestibility negatively or positively, depending on the processing conditions. Thermal processes such as sous-vide can induce favourable changes, such as partial unfolding or exposure of cleavage sites, in muscle proteins and improve their digestibility whereas processes such as stewing and roasting can induce unfavourable changes, such as protein aggregation, severe oxidation, cross linking or increased disulfide (S-S) content and decrease the susceptibility of proteins during gastrointestinal digestion. The review examines how the underlying mechanisms of different processing conditions can be translated into higher or lower protein digestibility in detail. This review expands the current understanding of muscle protein digestion and generates knowledge that will be indispensable for optimizing the digestibility of thermally processed muscle foods for maximum nutritional benefits and optimal meal planning.
Collapse
Affiliation(s)
- Zuhaib F Bhat
- Division of Livestock Products Technology, SKUAST of Jammu, India
| | - James D Morton
- Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, Lincoln, New Zealand
| | | | - Sunil Kumar
- Division of Livestock Products Technology, SKUAST of Jammu, India
| | - Hina F Bhat
- Division of Biotechnology, SKUAST of Kashmir, India
| |
Collapse
|
21
|
Rombouts C, Van Meulebroek L, De Spiegeleer M, Goethals S, Van Hecke T, De Smet S, De Vos WH, Vanhaecke L. Untargeted Metabolomics Reveals Elevated L-Carnitine Metabolism in Pig and Rat Colon Tissue Following Red Versus White Meat Intake. Mol Nutr Food Res 2021; 65:e2000463. [PMID: 33550692 DOI: 10.1002/mnfr.202000463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/29/2020] [Indexed: 12/12/2022]
Abstract
SCOPE The consumption of red and processed meat, and not white meat, associates with the development of various Western diseases such as colorectal cancer and type 2 diabetes. This work aims at unraveling novel meat-associated mechanisms that are involved in disease development. METHODS AND RESULTS A non-hypothesis driven strategy of untargeted metabolomics is applied to assess colon tissue from rats (fed a high dose of beef vs. white meat) and from pigs (fed red/processed meat vs. white meat), receiving a realistic human background diet. An increased carnitine metabolism is observed, which is reflected by higher levels of acylcarnitines and 3-dehydroxycarnitine (rats and pigs) and trimethylamine-N-oxide (rats). While 3-dehydroxycarnitine is higher in HT29 cells, incubated with colonic beef digests, acylcarnitine levels are reduced. This suggests an altered response from colon cancer cell line towards meat-induced oxidative stress. Moreover, metabolic differences between rat and pigs are observed in N-glycolylneuraminic acid incorporation, prostaglandin, and fatty acid synthesis. CONCLUSION This study demonstrates elevated (acyl)carnitine metabolism in colon tissue of animals that follow a red meat-based diet, providing mechanistic insights that may aid in explaining the nutritional-physiological correlation between red/processed meat and Western diseases.
Collapse
Affiliation(s)
- Caroline Rombouts
- Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Lieven Van Meulebroek
- Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Margot De Spiegeleer
- Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Sophie Goethals
- Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
- Department of Animal Sciences and Aquatic Ecology, Laboratory for Animal Nutrition and Animal Product Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Thomas Van Hecke
- Department of Animal Sciences and Aquatic Ecology, Laboratory for Animal Nutrition and Animal Product Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Stefaan De Smet
- Department of Animal Sciences and Aquatic Ecology, Laboratory for Animal Nutrition and Animal Product Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Winnok H De Vos
- Department of Molecular Biotechnology, Cell Systems & Imaging, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Department of Veterinary Sciences, Laboratory of Cell Biology and Histology, Faculty of Veterinary Medicine, University of Antwerp, Campus Drie Eiken Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Lynn Vanhaecke
- Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
- School of Biological Sciences, Queen's University Belfast, Lisburn Road 97, Belfast, UK
| |
Collapse
|
22
|
In vitro and in vivo digestion of red cured cooked meat: oxidation, intestinal microbiota and fecal metabolites. Food Res Int 2021; 142:110203. [PMID: 33773678 DOI: 10.1016/j.foodres.2021.110203] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/15/2021] [Accepted: 01/30/2021] [Indexed: 12/12/2022]
Abstract
Mechanisms explaining epidemiological associations between red (processed) meat consumption and chronic disease risk are not yet elucidated, but may involve oxidative reactions, microbial composition alterations, inflammation and/or the formation of toxic bacterial metabolites. First, in vitro gastrointestinal digestion of 23 cooked beef-lard minces, to which varying doses of nitrite salt (range 0-40 g/kg) and sodium ascorbate (range 0-2 g/kg) were added, showed that nitrite salt decreased protein carbonylation up to 3-fold, and inhibited lipid oxidation, demonstrated by up to 4-fold lower levels of 'thiobarbituric acid reactive substances', 32-fold lower 4-hydroxynonenal, and 21-fold lower hexanal values. The use of ascorbate increased the antioxidant effect of low nitrite salt levels, whereas it slightly increased protein carbonylation at higher doses of nitrite salt. The addition of a low dose of ascorbate without nitrite salt slightly promoted oxidation during digestion, whereas higher doses had varying antioxidant effects. Second, 40 rats were fed a diet of cooked chicken- or beef-lard minces, either or not cured, for three weeks. Beef, compared to chicken, consumption increased lipid oxidation (2- to 4-fold) during digestion, and gut protein fermentation (cecal iso-butyrate, (iso-)valerate, and fecal indole, cresol), but oxidative stress and inflammation were generally not affected. Cured, compared to fresh, meat consumption significantly increased stomach protein carbonylation (+16%), colonic Ruminococcaceae (2.1-fold) and cecal propionate (+18%), whereas it decreased cecal butyrate (-25%), fecal phenol (-69%) and dimethyl disulfide (-61%) levels. Fecal acetaldehyde and diacetyl levels were increased in beef-fed rats by 2.8-fold and 5.9-fold respectively, and fecal carbon disulfide was 4-fold higher in rats consuming cured beef vs. fresh chicken. Given their known toxicity, the role of acetaldehyde and carbon disulfide in the relation between meat consumption and health should be investigated in future studies.
Collapse
|
23
|
Martini S, Cattivelli A, Conte A, Tagliazucchi D. Black, green, and pink pepper affect differently lipid oxidation during cooking and in vitro digestion of meat. Food Chem 2021; 350:129246. [PMID: 33610839 DOI: 10.1016/j.foodchem.2021.129246] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 11/26/2022]
Abstract
Lipid oxidation products generated during meat digestion may contribute to the apparent epidemiological link between red meat intake and the risk of cardiovascular diseases and colorectal cancer. The aim of this work was to assess the lipid oxidation inhibitory activity of black, green, and pink pepper during cooking and in vitro digestion of meat. Peppers were characterized for their phenolic profiles by LC-ESI-MS and the antioxidant properties. Pink pepper showed the highest phenolic content and antioxidant activities. Then, the peppers were added to meat either before or after cooking, and the meat was subjected to in vitro digestion. Pink pepper added before cooking was the most effective, with an inhibition of 80% and 72% in lipid hydroperoxides and TBA-RS formation after digestion, respectively. These findings suggest that peppers, particularly pink pepper, can be used to minimize lipid oxidation in the gastro-intestinal tract and for the design of healthy dietary patterns.
Collapse
Affiliation(s)
- Serena Martini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42100 Reggio Emilia, Italy.
| | - Alice Cattivelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42100 Reggio Emilia, Italy.
| | - Angela Conte
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42100 Reggio Emilia, Italy.
| | - Davide Tagliazucchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42100 Reggio Emilia, Italy.
| |
Collapse
|
24
|
Delgado J, Ansorena D, Van Hecke T, Astiasarán I, De Smet S, Estévez M. Meat lipids, NaCl and carnitine: Do they unveil the conundrum of the association between red and processed meat intake and cardiovascular diseases?_Invited Review. Meat Sci 2021; 171:108278. [DOI: 10.1016/j.meatsci.2020.108278] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022]
|
25
|
Hamzalıoğlu A, Gökmen V. Potential reactions of thermal process contaminants during digestion. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
26
|
Sobral MMC, Casal S, Faria MA, Cunha SC, Ferreira IMLO. Influence of culinary practices on protein and lipid oxidation of chicken meat burgers during cooking and in vitro gastrointestinal digestion. Food Chem Toxicol 2020; 141:111401. [DOI: 10.1016/j.fct.2020.111401] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022]
|
27
|
Li N, Wu X, Zhuang W, Xia L, Chen Y, Wu C, Rao Z, Du L, Zhao R, Yi M, Wan Q, Zhou Y. Fish consumption and multiple health outcomes: Umbrella review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.02.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|