1
|
Zhang J, Lv W, Liu X, Sun Z, Zeng M, Kang J, Zhang Q, Liu F, Ma S, Su J, Cao K, Liu J. Ginsenoside Rh4 prevents endothelial dysfunction as a novel AMPK activator. Br J Pharmacol 2024; 181:3346-3363. [PMID: 38757416 DOI: 10.1111/bph.16403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND AND PURPOSE The AMP-activated protein kinase (AMPK) signalling pathway is a desirable target for various cardiovascular diseases (CVD), while the involvement of AMPK-mediated specific downstream pathways and effective interventions in hyperlipidaemia-induced endothelial dysfunction remain largely unknown. Herein, we aim to identify an effective AMPK activator and to explore its efficacy and mechanism against endothelial dysfunction. EXPERIMENTAL APPROACH Molecular docking technique was adopted to screen for the potent AMPK activator among 11 most common rare ginsenosides. In vivo, poloxamer 407 (P407) was used to induce acute hyperlipidaemia in C57BL/6J mice. In vitro, palmitic acid (PA) was used to induce lipid toxicity in HAEC cells. KEY RESULTS We discovered the strongest binding of ginsenoside Rh4 to AMPKα1 and confirmed the action of Rh4 on AMPK activation. Rh4 effectively attenuated hyperlipidaemia-related endothelial injury and oxidative stress both in vivo and in vitro and restored cell viability, mitochondrial membrane potential and mitochondrial oxygen consumption rate in HAEC cells. Mechanistically, Rh4 bound to AMPKα1 and simultaneously up-regulated AKT/eNOS-mediated NO release, promoted PGC-1α-mediated mitochondrial biogenesis and inhibited P38 MAPK/NFκB-mediated inflammatory responses in both P407-treated mice and PA-treated HAEC cells. The AMPK inhibitor Compound C treatment completely abrogated the regulation of Rh4 on the above pathways and weakened the lowering effect of Rh4 on endothelial impairment markers, suggesting that the beneficial effects of Rh4 are AMPK dependent. CONCLUSION AND IMPLICATIONS Rh4 may serve as a novel AMPK activator to protect against hyperlipidaemia-induced endothelial dysfunction, providing new insights into the prevention and treatment of endothelial injury-associated CVD.
Collapse
Affiliation(s)
- Jiawei Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Weiqiang Lv
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xuyun Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhenyu Sun
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Mengqi Zeng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Jiahao Kang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qi Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fuying Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shaozhou Ma
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiacan Su
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ke Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| |
Collapse
|
2
|
Wang W, Long P, He M, Luo T, Li Y, Yang L, Zhang Y, Wen X. Pomegranate polyphenol punicalagin as a nutraceutical for mitigating mild cognitive impairment: An overview of beneficial properties. Eur J Pharmacol 2024; 977:176750. [PMID: 38897439 DOI: 10.1016/j.ejphar.2024.176750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/25/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Dementia treatment has become a global research priority, driven by the increase in the aging population. Punicalagin, the primary polyphenol found in pomegranate fruit, exhibits a variety of benefits. Today, a growing body of research is showing that punicalagin is a nutraceutical for the prevention of mild cognitive impairment (MCI). However, a comprehensive review is still lacking. The aim of this paper is to provide a comprehensive review of the physicochemical properties, origin and pharmacokinetics of punicalagin, while emphasizing the significance and mechanisms of its potential role in the prevention and treatment of MCI. Preclinical and clinical studies have demonstrated that Punicalagin possesses the potential to effectively target and enhance the treatment of MCI. Potential mechanisms by which punicalagin alleviates MCI include antioxidative damage, anti-neuroinflammation, promotion of neurogenesis, and modulation of neurotransmitter interactions. Overall, punicalagin is safer and shows potential as a therapeutic compound for the prevention and treatment of MCI, although more rigorous randomized controlled trials involving large populations are required.
Collapse
Affiliation(s)
- Wenjun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Pan Long
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Mengshan He
- The Academy of Chinese Health Risks, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Luo
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Yubo Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Traditional Chinese Medicine, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Ling Yang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Traditional Chinese Medicine, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xudong Wen
- Department of Gastroenterology, Chengdu Integrated TCM&Western Medicine Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610059, China.
| |
Collapse
|
3
|
Siddiqui N, Saifi A, Chaudhary A, Tripathi PN, Chaudhary A, Sharma A. Multifaceted Neuroprotective Role of Punicalagin: A Review. Neurochem Res 2024; 49:1427-1436. [PMID: 38085406 DOI: 10.1007/s11064-023-04081-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 05/21/2024]
Abstract
Millions of people worldwide are currently afflicted with neurologic conditions like a seizure, depression, stress, Alzheimer's disease, Parkinson's disease, and Huntington's disease. However, the precise etiopathology of these diseases is still unknown. Substantial studies are being conducted to discover more treatments against these disorders because many patients do not experience the therapeutic benefits that would be expected from using existing pharmaceutical strategies. Herbal medicines which have been used in traditional medicine for millennia to treat various neurological problems are also being investigated and scientifically assessed. Punicalagin is a known polyphenol that has significant antioxidant, anti-inflammatory, anti-viral, anti-proliferative, and anti-cancer properties. Around the world, traditional use of herbal drugs is gaining wider acceptance as a part of complementary and alternative medicine. The scientific community should pay attention to these many neuroprotective pharmacodynamic activities of Punicalagin to create effective pharmacotherapeutic plans, as evidenced by mounting data in pre-clinical research investigations. The current review describes the recent studies on the pharmacological effects of Punicalagin in a variety of neurological illnesses and paves the way for further study in this field.
Collapse
Affiliation(s)
- Nazia Siddiqui
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India.
| | - Alimuddin Saifi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| | - Anurag Chaudhary
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| | - Prabhash Nath Tripathi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| | - Ankit Chaudhary
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| | - Alok Sharma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| |
Collapse
|
4
|
Wang Y, Han D, Huang Y, Dai Y, Wang Y, Liu M, Wang N, Yin T, Du W, He K, Zheng Y. Oral administration of punicalagin attenuates imiquimod-induced psoriasis by reducing ROS generation and inflammation via MAPK/ERK and NF-κB signaling pathways. Phytother Res 2024; 38:713-726. [PMID: 38009260 DOI: 10.1002/ptr.8071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/28/2023]
Abstract
Psoriasis, an immune-mediated chronic inflammatory skin disease, imposes a huge mental and physical burden on patients and severely affects their quality of life. Punicalagin (PU), the most abundant ellagitannin in pomegranates, has become a research hotspot owing to its diverse biological activities. However, its effects on psoriasis remain unclear. We explored the impact and molecular mechanism of PU on M5-stimulated keratinocyte cell lines and imiquimod (IMQ)-induced psoriasis-like skin inflammation in BABL/c mice using western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), hematoxylin and eosin (H&E) stain, immunohistochemistry, and immunofluorescent. Administration of PU-enriched pomegranate extract at dosages of 150 and 250 mg/kg/day markedly attenuated psoriatic severity, abrogated splenomegaly, and reduced IMQ-induced abnormal epidermal proliferation, CD4+ T-cell infiltration, and inflammatory factor expression. Moreover, PU could decrease expression levels of pro-inflammatory cytokines, such as IL-1β, IL-1α, IL-6, IL-8, TNF-α, IL-17A, IL-22, IL-23A, and reactive oxygen species (ROS), followed by keratinocyte proliferation inhibition in the M5-stimulated cell line model of inflammation through inhibition of mitogen-activated protein kinases/extracellular regulated protein kinases (MAPK/ERK) and nuclear factor kappaB (NF-κB) signaling pathways. Our results indicate that PU may serve as a promising nutritional intervention for psoriasis by ameliorating cellular oxidative stress and inflammation.
Collapse
Affiliation(s)
- Yuqian Wang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dan Han
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yingjian Huang
- Department of Dermatology, Qilu Hospital of Shandong University, Jinan, China
| | - Yilin Dai
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Meng Liu
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ning Wang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tingyi Yin
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wenqian Du
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ke He
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Zheng
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
5
|
Wang W, Ige OO, Ding Y, He M, Long P, Wang S, Zhang Y, Wen X. Insights into the potential benefits of triphala polyphenols toward the promotion of resilience against stress-induced depression and cognitive impairment. Curr Res Food Sci 2023; 6:100527. [PMID: 37377497 PMCID: PMC10291000 DOI: 10.1016/j.crfs.2023.100527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/09/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
In response to environmental challenges, stress is a common reaction, but dysregulation of the stress response can lead to neuropsychiatric disorders, including depression and cognitive impairment. Particularly, there is ample evidence that overexposure to mental stress can have lasting detrimental consequences for psychological health, cognitive function, and ultimately well-being. In fact, some individuals are resilient to the same stressor. A major benefit of enhancing stress resilience in at-risk groups is that it may help prevent the onset of stress-induced mental health problems. A potential therapeutic strategy for maintaining a healthy life is to address stress-induced health problems with botanicals or dietary supplements such as polyphenols. Triphala, also known as Zhe Busong decoction in Tibetan, is a well-recognized Ayurvedic polyherbal medicine comprising dried fruits from three different plant species. As a promising food-sourced phytotherapy, triphala polyphenols have been used throughout history to treat a variety of medical conditions, including brain health maintenance. Nevertheless, a comprehensive review is still lacking. Here, the primary objective of this review article is to provide an overview of the classification, safety, and pharmacokinetics of triphala polyphenols, as well as recommendations for the development of triphala polyphenols as a novel therapeutic strategy for promoting resilience in susceptible individuals. Additionally, we summarize recent advances demonstrating that triphala polyphenols are beneficial to cognitive and psychological resilience by regulating 5-hydroxytryptamine (5-HT) and brain-derived neurotrophic factor (BDNF) receptors, gut microbiota, and antioxidant-related signaling pathways. Overall, scientific exploration of triphala polyphenols is warranted to understand their therapeutic efficacy. In addition to providing novel insights into the mechanisms of triphala polyphenols for promoting stress resilience, blood brain barrier (BBB) permeability and systemic bioavailability of triphala polyphenols also need to be improved by the research community. Moreover, well-designed clinical trials are needed to increase the scientific validity of triphala polyphenols' beneficial effects for preventing and treating cognitive impairment and psychological dysfunction.
Collapse
Affiliation(s)
- Wenjun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Olufola Oladoyin Ige
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Mengshan He
- The Academy of Chinese Health Risks, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pan Long
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xudong Wen
- Department of Gastroenterology and Hepatology, Chengdu First People's Hospital, Chengdu, 610021, China
| |
Collapse
|
6
|
Deng X, Wu Y, Hu Z, Wang S, Zhou S, Zhou C, Gao X, Huang Y. The mechanism of ferroptosis in early brain injury after subarachnoid hemorrhage. Front Immunol 2023; 14:1191826. [PMID: 37266433 PMCID: PMC10229825 DOI: 10.3389/fimmu.2023.1191826] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) is a cerebrovascular accident with an acute onset, severe disease characteristics, and poor prognosis. Within 72 hours after the occurrence of SAH, a sequence of pathological changes occur in the body including blood-brain barrier breakdown, cerebral edema, and reduced cerebrovascular flow that are defined as early brain injury (EBI), and it has been demonstrated that EBI exhibits an obvious correlation with poor prognosis. Ferroptosis is a novel programmed cell death mode. Ferroptosis is induced by the iron-dependent accumulation of lipid peroxides and reactive oxygen species (ROS). Ferroptosis involves abnormal iron metabolism, glutathione depletion, and lipid peroxidation. Recent study revealed that ferroptosis is involved in EBI and is significantly correlated with poor prognosis. With the gradual realization of the importance of ferroptosis, an increasing number of studies have been conducted to examine this process. This review summarizes the latest work in this field and tracks current research progress. We focused on iron metabolism, lipid metabolism, reduction systems centered on the GSH/GPX4 system, other newly discovered GSH/GPX4-independent antioxidant systems, and their related targets in the context of early brain injury. Additionally, we examined certain ferroptosis regulatory mechanisms that have been studied in other fields but not in SAH. A link between death and oxidative stress has been described. Additionally, we highlight the future research direction of ferroptosis in EBI of SAH, and this provides new ideas for follow-up research.
Collapse
Affiliation(s)
- Xinpeng Deng
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yiwen Wu
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Ziliang Hu
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, Zhejiang, China
| | - Shiyi Wang
- Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Shengjun Zhou
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Chenhui Zhou
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiang Gao
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yi Huang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
| |
Collapse
|
7
|
Meng X, Tian C, Xie C, Zhang H, Wang H, Zhang M, Lu Z, Li D, Chen L, Gao T. Punicalagin protects against impaired skeletal muscle function in high-fat-diet-induced obese mice by regulating TET2. Food Funct 2023; 14:3126-3138. [PMID: 36929898 DOI: 10.1039/d2fo03926e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The function of skeletal muscles can be markedly hampered by obesity. Ten-eleven translocation 2 (TET2) is an important therapeutic target for ameliorating skeletal muscle dysfunction. Our previous study revealed that punicalagin (PUN) regulated TET2 in obese mice; however, whether PUN can prevent obesity-induced skeletal muscle dysfunction by regulating TET2 remains unclear. In the present study, 40 male C57BL/6J mice were divided into four groups (n = 10 per group): the control (CON) group, the high-fat-diet (HFD, negative control) group, the resveratrol (positive control) group, and the PUN group. The ratio of gastrocnemius weight to body weight (0.0097 ± 0.0016 vs. 0.0080 ± 0.0011), the grip strength (120.04 g ± 11.10 vs. 98.89 g ± 2.79), and the muscle fiber count (314.56 per visual field ± 92.73 vs. 236.44 per visual field ± 50.58) in the PUN group were higher than those in the HFD group. Moreover, the levels of the TET2 protein, 5-hydroxymethylcytosine (5hmC), and 5-formylcytosine (5fC) in skeletal muscles were significantly lower in the HFD group than those in the CON group; these levels increased after PUN treatment. Compared with the HFD group, the phosphorylation level of AMP-activated protein kinase (AMPK) α in the PUN group was higher, which effectively enhanced the stability of the TET2 protein. Besides, the ratio of (succinic acid + fumaric acid)/α-ketoglutarate in the PUN group was lower than that in the HFD group (43.21 ± 12.42 vs. 99.19 ± 37.07), and a lower ratio led to a higher demethylase activity of TET2 in the PUN group than in the HFD group. This study highlights that PUN supplementation protects against obesity-induced impairment of the skeletal muscle function via regulating the protein stability of TET2 and the enzymatic activity of TET2 demethylation.
Collapse
Affiliation(s)
- Xiangyuan Meng
- School of Public Health, Qingdao University, Qingdao 266071, China.
- Institute of Nutrition & Health, Qingdao University, Qingdao 266021, China
| | - Chunyan Tian
- School of Public Health, Qingdao University, Qingdao 266071, China.
- Institute of Nutrition & Health, Qingdao University, Qingdao 266021, China
| | - Chenqi Xie
- School of Public Health, Qingdao University, Qingdao 266071, China.
- Institute of Nutrition & Health, Qingdao University, Qingdao 266021, China
| | - Hao Zhang
- School of Public Health, Qingdao University, Qingdao 266071, China.
| | - Haoyu Wang
- School of Public Health, Qingdao University, Qingdao 266071, China.
| | - Mai Zhang
- School of Public Health, Qingdao University, Qingdao 266071, China.
| | - Zhenquan Lu
- School of Public Health, Qingdao University, Qingdao 266071, China.
| | - Duo Li
- School of Public Health, Qingdao University, Qingdao 266071, China.
- Institute of Nutrition & Health, Qingdao University, Qingdao 266021, China
| | - Lei Chen
- School of Public Health, Qingdao University, Qingdao 266071, China.
- Institute of Nutrition & Health, Qingdao University, Qingdao 266021, China
| | - Tianlin Gao
- School of Public Health, Qingdao University, Qingdao 266071, China.
- Institute of Nutrition & Health, Qingdao University, Qingdao 266021, China
| |
Collapse
|
8
|
Zhong J, Zhao L, Wu W, Chen J, Yuan S, Zhang X, Wang Z. Transcranial near-infrared laser improves postoperative neurocognitive disorder in aged mice via SIRT3/AMPK/Nrf2 pathway. Front Neurosci 2023; 16:1100915. [PMID: 36760797 PMCID: PMC9904281 DOI: 10.3389/fnins.2022.1100915] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/29/2022] [Indexed: 01/26/2023] Open
Abstract
Background Postoperative neurocognitive disorder (PND) is a common central nervous system (CNS) complication that might increase the morbidity and mortality of elderly patients after anesthesia/surgery. Neuroinflammation, oxidative stress, and synaptic dysfunction are closely related to cognitive dysfunction, an important clinical feature of PND. Transcranial near-infrared laser (TNIL) is regarded as an effective treatment for cognitive-related diseases by improving mitochondrial function and alleviating neuroinflammation and oxidative stress damage. Materials and methods Aged male C57BL/6 mice underwent a carotid artery exposure procedure under isoflurane anesthesia. We treated PND-aged mice for three consecutive days (4 h post-operation, 1-laser) with 810 nm continuous wave (CW) laser 18 J/cm2 at 120 mW/cm2. The post-treatment evaluation included behavioral tests, RTq-PCR, immunofluorescence, and Western blot. Results The results demonstrated that TNIL improved PND and the levels of synaptic function-associated proteins such as post-synaptic density protein 95 (PSD95), synaptophysin (SYP), and brain-derived neurotrophic factor (BDNF). Besides, neuroinflammatory cytokine levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1β as well as microglia activation and oxidative stress damage were attenuated after TNIL treatment in aged mice with PND. Further investigation suggested that TNIL relieved oxidative stress response by activating the SIRT3/AMPK/Nrf2 pathway. Conclusion Transcranial near-infrared laser improved cognitive impairment in aged mice with PND, which may be a promising therapeutic for PND.
Collapse
Affiliation(s)
- Junying Zhong
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Le Zhao
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wensi Wu
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jiawei Chen
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shangyan Yuan
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaojun Zhang
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,*Correspondence: Xiaojun Zhang,
| | - Zhi Wang
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Zhi Wang,
| |
Collapse
|
9
|
Wu T, Zhou K, Hua Y, Zhang W, Li Y. The molecular mechanisms in prenatal drug exposure-induced fetal programmed adult cardiovascular disease. Front Pharmacol 2023; 14:1164487. [PMID: 37153765 PMCID: PMC10157035 DOI: 10.3389/fphar.2023.1164487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/03/2023] [Indexed: 05/10/2023] Open
Abstract
The "developmental origins of health and disease" (DOHaD) hypothesis posits that early-life environmental exposures have a lasting impact on individual's health and permanently shape growth, structure, and metabolism. This reprogramming, which results from fetal stress, is believed to contribute to the development of adulthood cardiovascular diseases such as hypertension, coronary artery disease, heart failure, and increased susceptibility to ischemic injuries. Recent studies have shown that prenatal exposure to drugs, such as glucocorticoids, antibiotics, antidepressants, antiepileptics, and other toxins, increases the risk of adult-onset cardiovascular diseases. In addition, observational and animal experimental studies have demonstrated the association between prenatal drug exposure and the programming of cardiovascular disease in the offspring. The molecular mechanisms underlying these effects are still being explored but are thought to involve metabolism dysregulation. This review summarizes the current evidence on the relationship between prenatal drug exposure and the risk of adult cardiovascular disorders. Additionally, we present the latest insights into the molecular mechanisms that lead to programmed cardiovascular phenotypes after prenatal drug exposure.
Collapse
Affiliation(s)
- Ting Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Ultrasonic Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Ultrasonic Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Ultrasonic Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wen Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Ultrasonic Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- *Correspondence: Wen Zhang, ; Yifei Li,
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- *Correspondence: Wen Zhang, ; Yifei Li,
| |
Collapse
|
10
|
Zhang H, Zhao C, Hou J, Su P, Yang Y, Xia B, Zhao X, He R, Wang L, Cao C, Liu T, Tian J. Red ginseng extract improves skeletal muscle energy metabolism and mitochondrial function in chronic fatigue mice. Front Pharmacol 2022; 13:1077249. [PMID: 36618917 PMCID: PMC9816794 DOI: 10.3389/fphar.2022.1077249] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Skeletal muscles are organs with high energy requirements, especially during vigorous exercise. Adequate mitochondrial function is essential to meet the high energy needs of skeletal muscle cells. Recent studies have reported that red ginseng can significantly improve chronic fatigue; however, the specific mechanism of action is still not clear. Methods: A chronic fatigue syndrome mouse model was developed using C57BL/6J mice through long-term compound stimulation of stress factors. Following this, the animals were orally administered 200, 400, or 600 mg/kg red ginseng extracts for 28 days. Skeletal muscle lactate acid, serum lactate dehydrogenase, urea concentrations, ATP level, mitochondrial membrane potential, activities of Na+-K+-ATPase and cytochrome c oxidase were determined using assay kits or an automatic biochemical analyser detection system. Skeletal muscle mitochondria morphology was observed using electron microscopy and the expression of p-AMPK, PGC-1α, ACO2 and complex I in skeletal muscle protein was determined by western blotting. Results: Oral administration of 400 or 600 mg/kg red ginseng extract in mice with chronic fatigue reduced lactic acid, lactate dehydrogenase and urea, rescued the density and morphology of skeletal muscle mitochondria, increased the activities of Na+-K+-ATPase and cytochrome c oxidase, and activated the AMPK/PGC-1α cascade pathway, resulting in improved skeletal muscle mitochondrial function by restoring ATP level, mitochondrial membrane potential, complex I and mitochondrial biogenesis. Conclusion: The anti-fatigue effects of red ginseng are partly related to its potent mitochondrial improving activity, including decreasing mitochondrial swelling and mitochondrial membrane permeability, increasing mitochondrial biogenesis, thus ameliorating mitochondrial dysfunction.
Collapse
Affiliation(s)
- Haijing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunhui Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinli Hou
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yifei Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bing Xia
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoang Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rong He
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lifang Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunyu Cao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ting Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China,*Correspondence: Ting Liu, ; Jixiang Tian,
| | - Jixiang Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China,*Correspondence: Ting Liu, ; Jixiang Tian,
| |
Collapse
|
11
|
Cui L, Weiyao J, Chenghong S, Limei L, Xinghua Z, Bo Y, Xiaozheng D, Haidong W. Rheumatoid arthritis and mitochondrial homeostasis: The crossroads of metabolism and immunity. Front Med (Lausanne) 2022; 9:1017650. [PMID: 36213670 PMCID: PMC9542797 DOI: 10.3389/fmed.2022.1017650] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Rheumatoid arthritis is an autoimmune disease characterized by chronic symmetric synovial inflammation and erosive bone destruction. Mitochondria are the main site of cellular energy supply and play a key role in the process of energy metabolism. They possess certain self-regulatory and repair capabilities. Mitochondria maintain relative stability in number, morphology, and spatial structure through biological processes, such as biogenesis, fission, fusion, and autophagy, which are collectively called mitochondrial homeostasis. An imbalance in the mitochondrial homeostatic environment will affect immune cell energy metabolism, synovial cell proliferation, apoptosis, and inflammatory signaling. These biological processes are involved in the onset and development of rheumatoid arthritis. In this review, we found that in rheumatoid arthritis, abnormal mitochondrial homeostasis can mediate various immune cell metabolic disorders, and the reprogramming of immune cell metabolism is closely related to their inflammatory activation. In turn, mitochondrial damage and homeostatic imbalance can lead to mtDNA leakage and increased mtROS production. mtDNA and mtROS are active substances mediating multiple inflammatory pathways. Several rheumatoid arthritis therapeutic agents regulate mitochondrial homeostasis and repair mitochondrial damage. Therefore, modulation of mitochondrial homeostasis would be one of the most attractive targets for the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Liu Cui
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jing Weiyao
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Su Chenghong
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Liu Limei
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhang Xinghua
- Acupuncture and Moxibustion Department, Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Yuan Bo
- Acupuncture and Pain Department, Affiliated Hospital of Gansu University of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Du Xiaozheng
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
- *Correspondence: Du Xiaozheng
| | - Wang Haidong
- Rheumatoid Bone Disease Center, Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
- Wang Haidong
| |
Collapse
|
12
|
Wang W, Wang S, Liu Y, Wang X, Nie J, Meng X, Zhang Y. Ellagic Acid: A Dietary-Derived Phenolic Compound for Drug Discovery in Mild Cognitive Impairment. Front Aging Neurosci 2022; 14:925855. [PMID: 35860668 PMCID: PMC9289475 DOI: 10.3389/fnagi.2022.925855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Ellagic acid (EA), a naturally occurring polyphenolic compound, is detected in free form or linked to polyols or sugars, constituting hydrolyzable tannins or ellagitannins in distinct fruits, nuts, and herbs. Today, a considerable number of botanicals and enriched foods containing EA are commercially available as nutraceuticals and used to prevent mild cognitive impairment (MCI) due to the excellent neuroprotective capacity of EA. Here, this study aims to provide an overview of the physicochemical properties, source, and pharmacokinetics of EA and to emphasize the importance and mechanisms of EA in the prevention and management of MCI. To date, preclinical studies of EA and its derivatives in various cell lines and animal models have advanced the idea of dietary EA as a feasible agent capable of specifically targeting and improving MCI. The molecular mechanisms of EA and its derivatives to prevent or reduce MCI are mainly through reducing neuroinflammation, oxidative stress, neuronal apoptosis, synaptic dysfunction and loss, and defective mitochondrial functions. Nevertheless, well-designed and correctly large randomized controlled trials in the human population need to be performed to reinforce the scientific facticity of the beneficial effects of EA against MCI. Synchronously, the mechanism of EA against MCI is least provided cynosure and expects more attention from the emerging research community.
Collapse
Affiliation(s)
- Wenjun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Shaohui Wang,
| | - Yue Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaobo Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Nie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Yi Zhang,
| |
Collapse
|
13
|
Huang Y, Wu H, Hu Y, Zhou C, Wu J, Wu Y, Wang H, Lenahan C, Huang L, Nie S, Gao X, Sun J. Puerarin Attenuates Oxidative Stress and Ferroptosis via AMPK/PGC1α/Nrf2 Pathway after Subarachnoid Hemorrhage in Rats. Antioxidants (Basel) 2022; 11:antiox11071259. [PMID: 35883750 PMCID: PMC9312059 DOI: 10.3390/antiox11071259] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 12/20/2022] Open
Abstract
Puerarin was shown to exert anti-oxidative and anti-ferroptosis effects in multiple diseases. The goal of this study was to explore the neuroprotective effect of puerarin on early brain injury (EBI) after subarachnoid hemorrhage (SAH) in rats. A total of 177 adult male Sprague Dawley rats were used. SAH was included via endovascular perforation. Intranasal puerarin or intracerebroventricular dorsomorphin (AMPK inhibitor) and SR18292 (PGC1α inhibitor) were administered. The protein levels of pAMPK, PGC1α, Nrf2, 4HNE, HO1, MDA, ACSL4, GSSG, and iron concentration in the ipsilateral hemisphere were significantly increased, whereas SOD, GPX4, and GSH were decreased at 24 h after SAH. Moreover, puerarin treatment significantly increased the protein levels of pAMPK, PGC1α, Nrf2, HO1, SOD, GPX4, and GSH, but decreased the levels of 4HNE, MDA, ACSL4, GSSG, and iron concentration in the ipsilateral hemisphere at 24 h after SAH. Dorsomorphin or SR18292 partially abolished the beneficial effects of puerarin exerted on neurological dysfunction, oxidative stress injury, and ferroptosis. In conclusion, puerarin improved neurobehavioral impairments and attenuated oxidative-stress-induced brain ferroptosis after SAH in rats. The neuroprotection acted through the activation of the AMPK/PGC1α/Nrf2-signaling pathway. Thus, puerarin may serve as new therapeutics against EBI in SAH patients.
Collapse
Affiliation(s)
- Yi Huang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo 315010, China; (Y.H.); (C.Z.); (J.W.); (Y.W.); (H.W.); (S.N.)
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA; (H.W.); (Y.H.); (L.H.)
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315010, China
| | - Honggang Wu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA; (H.W.); (Y.H.); (L.H.)
- Department of Neurosurgery, People’s Hospital of Leshan, Leshan 614099, China
| | - Yongmei Hu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA; (H.W.); (Y.H.); (L.H.)
- Department of Nursing, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Chenhui Zhou
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo 315010, China; (Y.H.); (C.Z.); (J.W.); (Y.W.); (H.W.); (S.N.)
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315010, China
| | - Jiawei Wu
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo 315010, China; (Y.H.); (C.Z.); (J.W.); (Y.W.); (H.W.); (S.N.)
| | - Yiwen Wu
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo 315010, China; (Y.H.); (C.Z.); (J.W.); (Y.W.); (H.W.); (S.N.)
| | - Haifeng Wang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo 315010, China; (Y.H.); (C.Z.); (J.W.); (Y.W.); (H.W.); (S.N.)
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM 88001, USA;
| | - Lei Huang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA; (H.W.); (Y.H.); (L.H.)
| | - Sheng Nie
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo 315010, China; (Y.H.); (C.Z.); (J.W.); (Y.W.); (H.W.); (S.N.)
| | - Xiang Gao
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo 315010, China; (Y.H.); (C.Z.); (J.W.); (Y.W.); (H.W.); (S.N.)
- Correspondence: (X.G.); (J.S.)
| | - Jie Sun
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo 315010, China; (Y.H.); (C.Z.); (J.W.); (Y.W.); (H.W.); (S.N.)
- Correspondence: (X.G.); (J.S.)
| |
Collapse
|
14
|
He X, Pei S, Meng X, Hua Q, Zhang T, Wang Y, Zhang Z, Zhu X, Liu R, Guo Y, Chen L, Li D. Punicalagin Attenuates Neuronal Apoptosis by Upregulating 5-Hydroxymethylcytosine in the Diabetic Mouse Brain. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4995-5004. [PMID: 35412829 DOI: 10.1021/acs.jafc.2c00863] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Punicalagin exerts neuroprotective activity by improving AMP-activated kinase (AMPK) and mitochondrial Krebs cycle. AMPK and Krebs cycle metabolites regulate 5-hydroxymethylcytosine (5hmC) via acting on ten-eleven translocation (TET) enzymes. Therefore, we hypothesized that punicalagin inhibits diabetes-related neuronal apoptosis by upregulating 5hmC in the diabetic mouse brain. C57BL/6J mice aged 8 weeks were randomly separated into five groups (n = 10), normal control (NC), diabetes mellitus (DM), resveratrol (RES), low-dose punicalagin (LPU), and high-dose punicalagin (HPU). Compared with other groups, the neuronal apoptosis rate was significantly higher and the 5hmC level of the cerebral cortex was significantly lower in the DM group. The levels of TET2 and P-AMPKα/AMPKα were significantly lower in the DM group than in both LPU and HPU groups. The ratio of (succinic acid + fumaric acid)/α-ketoglutarate was significantly higher in the DM group than in other groups. The present results suggest that punicalagin upregulates 5hmC via activating AMPK and maintaining Krebs cycle homeostasis, thus inhibiting neuronal apoptosis in the diabetic mouse brain.
Collapse
Affiliation(s)
- Xin He
- School of Public Health, Qingdao University, Qingdao 266000, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266000, China
| | - Shengjie Pei
- School of Public Health, Qingdao University, Qingdao 266000, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266000, China
| | - Xiangyuan Meng
- School of Public Health, Qingdao University, Qingdao 266000, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266000, China
| | - Qinglian Hua
- School of Public Health, Qingdao University, Qingdao 266000, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266000, China
| | - Tianyu Zhang
- School of Public Health, Qingdao University, Qingdao 266000, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266000, China
| | - Yan Wang
- School of Public Health, Qingdao University, Qingdao 266000, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266000, China
| | - Zhizhao Zhang
- School of Public Health, Qingdao University, Qingdao 266000, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266000, China
| | - Xinyu Zhu
- School of Public Health, Qingdao University, Qingdao 266000, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266000, China
| | - Run Liu
- School of Public Health, Qingdao University, Qingdao 266000, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266000, China
| | - Yurong Guo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Lei Chen
- School of Public Health, Qingdao University, Qingdao 266000, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266000, China
| | - Duo Li
- School of Public Health, Qingdao University, Qingdao 266000, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266000, China
| |
Collapse
|
15
|
The Activation of AMPK/NRF2 Pathway in Lung Epithelial Cells Is Involved in the Protective Effects of Kinsenoside on Lipopolysaccharide-Induced Acute Lung Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3589277. [PMID: 35340214 PMCID: PMC8956386 DOI: 10.1155/2022/3589277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/06/2022] [Accepted: 01/28/2022] [Indexed: 12/19/2022]
Abstract
The disorder of mitochondrial dynamic equilibrium of lung epithelial cell is one of the critical causes of acute lung injury (ALI). Kinsenoside (Kin) serves as an active small-molecule component derived from traditional medicinal herb displaying multiple pharmacological actions in cancers, hyperglycemia, and liver disease. The objective of this study was to investigate the effects of Kin on lipopolysaccharide- (LPS-) induced ALI and further explore possible molecular mechanisms. Kin was administered orally (100 mg/kg/day) for 7 consecutive days before LPS instillation (5 mg/kg). After 12 hours, pathological injury, inflammatory response, and oxidative stress were detected. The results demonstrated that Kin significantly alleviated lung pathological injury and decreased the infiltration of inflammatory cells and the release of inflammatory mediators in bronchoalveolar lavage fluid (BALF), apart from inhibiting the production of reactive oxygen species (ROS) and lipid peroxidation. Meanwhile, Kin also promoted mitochondrial fusion and restrained mitochondrial fission in mice with ALI. In terms of mechanism, Kin pretreatment increased the phosphorylation of AMP-activated protein kinase (AMPK) and the protein level of nuclear factor erythroid 2-related factor 2 (NRF2). In Ampk-α knockout mice challenged with LPS, Kin lost its pulmonary protective effects, accompanied by lower NRF2 level. In vitro experiments further unveiled that either AMPK inhibition by Compound C or NRF2 knockdown by siRNA abolished the protective roles of Kin in LPS-treated A549 lung epithelial cells. And NRF2 activator TAT-14 could reverse the effects of Ampk-α deficiency. In conclusion, Kin possesses the ability to prevent LPS-induced ALI by modulating mitochondrial dynamic equilibrium in lung epithelial cell in an AMPK/NRF2-dependent manner.
Collapse
|
16
|
Zhang Z, Zeng M, Han X, Hou Z, Wang Z, Su T, Zhao W, Liu J, Liu H. A nascent protein labeling strategy disclosed mitochondrial proteomic responses in punicalagin intervened insulin resistance of HepG2 cells. Food Funct 2022; 13:1180-1191. [PMID: 35018929 DOI: 10.1039/d1fo02749b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Insulin resistance (IR), as a common pathophysiological basis, is closely related to a variety of metabolic diseases, such as obesity and diabetes. IR is often accompanied by mitochondrial dysfunction which could be induced by a high fat diet. Punicalagin (PU), a natural compound extracted from pomegranate, could ameliorate palmitate-induced IR. However, the underlying mechanisms are not well known. We propose that understanding the proteomic response of mitochondria may help define the mechanisms of PU in the prevention of IR. Most of the mitochondrial proteins are encoded by nuclear genes and transported from cytoplasm. To distinguish newly incorporated proteins responding to stimuli from pre-existing mitochondrial proteome, nascent proteins in HepG2 cells were pulse labeled by an amino acid analog L-azidohomoalanine. Nascent nuclear encoded mitochondrial proteins were enriched by click reaction followed by mass detection. Our data showed that PU increased nuclear encoded protein incorporation to mitochondria in general though the total protein levels remained immobile. To decipher this phenomenon, we tested the protein and mRNA levels of genes related to mitophagy and mitochondrial biogenesis and found that the mitochondrial turnover was accelerated by PU treatment. By the nascent protein labeling strategy and pathway analysis, we enriched the newly incorporated proteins of mitochondria for responding to PU treatment and found that PU induced nascent protein incorporation into mitochondria and enhanced mitochondrial turnover. These findings demonstrate that PU prevents IR by targeting mitochondria, and thus, is an effective natural nutrient beneficial for mitochondrial turnover.
Collapse
Affiliation(s)
- Zhengyi Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Mengqi Zeng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Xiao Han
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Zhanwu Hou
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Zhen Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Tian Su
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Wei Zhao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Huadong Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| |
Collapse
|
17
|
Xu J, Cao K, Liu X, Zhao L, Feng Z, Liu J. Punicalagin Regulates Signaling Pathways in Inflammation-Associated Chronic Diseases. Antioxidants (Basel) 2021; 11:29. [PMID: 35052533 PMCID: PMC8773334 DOI: 10.3390/antiox11010029] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 01/04/2023] Open
Abstract
Inflammation is a complex biological defense system associated with a series of chronic diseases such as cancer, arthritis, diabetes, cardiovascular and neurodegenerative diseases. The extracts of pomegranate fruit and peel have been reported to possess health-beneficial properties in inflammation-associated chronic diseases. Punicalagin is considered to be the major active component of pomegranate extracts. In this review we have focused on recent studies into the therapeutic effects of punicalagin on inflammation-associated chronic diseases and the regulatory roles in NF-κB, MAPK, IL-6/JAK/STAT3 and PI3K/Akt/mTOR signaling pathways. We have concluded that punicalagin may be a promising therapeutic compound in preventing and treating inflammation-associated chronic diseases, although further clinical studies are required.
Collapse
Affiliation(s)
- Jie Xu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (K.C.); (X.L.); (L.Z.)
| | - Ke Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (K.C.); (X.L.); (L.Z.)
| | - Xuyun Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (K.C.); (X.L.); (L.Z.)
| | - Lin Zhao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (K.C.); (X.L.); (L.Z.)
| | - Zhihui Feng
- Center for Mitochondrial Biology and Medicine, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (K.C.); (X.L.); (L.Z.)
- University of Health and Rehabilitation Sciences, Qingdao 266071, China
| |
Collapse
|
18
|
Cao K, Wang K, Yang M, Liu X, Lv W, Liu J. Punicalagin improves hepatic lipid metabolism via modulation of oxidative stress and mitochondrial biogenesis in hyperlipidemic mice. Food Funct 2021; 11:9624-9633. [PMID: 32975274 DOI: 10.1039/d0fo01545h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hyperlipidemia is closely associated with various liver diseases, and effective intervention for prevention and treatment is in great need. Here, we aim to explore the protective effects of punicalagin (PU), a major ellagitannin in pomegranate, on acute hyperlipidemia-induced hepatic lipid metabolic disorders. Male C57bl/6J mice were pretreated with 50 or 200 mg kg-1 day-1 PU for 9 days before the injection of poloxamer 407 to induce acute hyperlipidemia. PU significantly lowered lipids and liver damage markers in serum, reduced excessive lipid accumulation in the liver, attenuated hepatic oxidative stress by activating the NF-E2 related factor 2 (Nrf2)-mediated antioxidant pathway, and enhanced hepatic mitochondrial complex activities and mitochondrial DNA copy number by promoting the peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α)-mediated mitochondrial biogenesis pathway. Moreover, the decreased mitochondrial fusion-related proteins were also restored by PU treatment. In vitro, PU effectively decreased triglycerides and total cholesterol levels, up-regulated Nrf2 and mitochondrial biogenesis pathways and partially restored the mitochondrial morphology in palmitic acid-treated HepG2 cells. These results suggest that PU could improve acute hyperlipidemia-induced hepatic lipid metabolic abnormalities via decreasing oxidative stress and improving mitochondrial function both in vivo and in vitro, indicating that PU might be a potential intervention for hyperlipidemia-related liver diseases.
Collapse
Affiliation(s)
- Ke Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| | | | | | | | | | | |
Collapse
|