1
|
Zhang T, Chen L, Kueth G, Shao E, Wang X, Ha T, Williams DL, Li C, Fan M, Yang K. Lactate's impact on immune cells in sepsis: unraveling the complex interplay. Front Immunol 2024; 15:1483400. [PMID: 39372401 PMCID: PMC11449721 DOI: 10.3389/fimmu.2024.1483400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Lactate significantly impacts immune cell function in sepsis and septic shock, transcending its traditional view as just a metabolic byproduct. This review summarizes the role of lactate as a biomarker and its influence on immune cell dynamics, emphasizing its critical role in modulating immune responses during sepsis. Mechanistically, key lactate transporters like MCT1, MCT4, and the receptor GPR81 are crucial in mediating these effects. HIF-1α also plays a significant role in lactate-driven immune modulation. Additionally, lactate affects immune cell function through post-translational modifications such as lactylation, acetylation, and phosphorylation, which alter enzyme activities and protein functions. These interactions between lactate and immune cells are central to understanding sepsis-associated immune dysregulation, offering insights that can guide future research and improve therapeutic strategies to enhance patient outcomes.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Linjian Chen
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Gatkek Kueth
- James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Emily Shao
- Program in Neuroscience, College of Arts and Science, Vanderbilt University, Nashville, TN, United States
| | - Xiaohui Wang
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Tuanzhu Ha
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - David L. Williams
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Chuanfu Li
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Min Fan
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Kun Yang
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
2
|
Liu S, Zhou S. Lactate: A New Target for Brain Disorders. Neuroscience 2024; 552:100-111. [PMID: 38936457 DOI: 10.1016/j.neuroscience.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
Lactate in the brain is produced endogenously and exogenously. The primary functional cells that produce lactate in the brain are astrocytes. Astrocytes release lactate to act on neurons, thereby affecting neuronal function, through a process known as the astrocyte-neuron shuttle. Lactate affects microglial function as well and inhibits microglia-mediated neuroinflammation. Lactate also provides energy, acts as a signaling molecule, and promotes neurogenesis. This article summarizes the role of lactate in cells, animals, and humans. Lactate is a protective molecule against stress in healthy organisms and in the early stages of brain disorders. Thus, lactate may be a potential therapeutic target for brain disorders. Further research on the role of lactate in microglia may have great prospects. This article provides a new perspective and research direction for the study of lacate in brain disorders.
Collapse
Affiliation(s)
- Shunfeng Liu
- College of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China; Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Shouhong Zhou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China; Basic Medical College, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
3
|
Xu B, Liu Y, Li N, Geng Q. Lactate and lactylation in macrophage metabolic reprogramming: current progress and outstanding issues. Front Immunol 2024; 15:1395786. [PMID: 38835758 PMCID: PMC11148263 DOI: 10.3389/fimmu.2024.1395786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
It is commonly known that different macrophage phenotypes play specific roles in different pathophysiological processes. In recent years, many studies have linked the phenotypes of macrophages to their characteristics in different metabolic pathways, suggesting that macrophages can perform different functions through metabolic reprogramming. It is now gradually recognized that lactate, previously overlooked as a byproduct of glycolytic metabolism, acts as a signaling molecule in regulating multiple biological processes, including immunological responses and metabolism. Recently, lactate has been found to mediate epigenetic changes in macrophages through a newfound lactylation modification, thereby regulating their phenotypic transformation. This novel finding highlights the significant role of lactate metabolism in macrophage function. In this review, we summarize the features of relevant metabolic reprogramming in macrophages and the role of lactate metabolism therein. We also review the progress of research on the regulation of macrophage metabolic reprogramming by lactylation through epigenetic mechanisms.
Collapse
Affiliation(s)
- Bangjun Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Du X, Yan Y, Dai Y, Xu R. Yogurt Alleviates Cyclophosphamide-Induced Immunosuppression in Mice through D-Lactate. Nutrients 2024; 16:1395. [PMID: 38732641 PMCID: PMC11085661 DOI: 10.3390/nu16091395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Numerous studies have investigated the immunomodulatory effects of yogurt, but the underlying mechanism remained elusive. This study aimed to elucidate the alleviating properties of yogurt on immunosuppression and proposed the underlying mechanism was related to the metabolite D-lactate. In the healthy mice, we validated the safety of daily yogurt consumption (600 μL) or D-lactate (300 mg/kg). In immunosuppressed mice induced by cyclophosphamide (CTX), we evaluated the immune regulation of yogurt and D-lactate. The result showed that yogurt restored body weight, boosted immune organ index, repaired splenic tissue, recovered the severity of delayed-type hypersensitivity reactions and increased serum cytokines (IgA, IgG, IL-6, IFN-γ). Additionally, yogurt enhanced intestinal immune function by restoring the intestinal barrier and upregulating the abundance of Bifidobacterium and Lactobacillus. Further studies showed that D-lactate alleviated immunosuppression in mice mainly by promoting cellular immunity. D-lactate recovered body weight and organ development, elevated serum cytokines (IgA, IgG, IL-6, IFN-γ), enhanced splenic lymphocyte proliferation and increased the mRNA level of T-bet in splenic lymphocyte to bolster Th1 differentiation. Finally, CTX is a chemotherapeutic drug, thus, the application of yogurt and D-lactate in the tumor-bearing mouse model was initially explored. The results showed that both yogurt (600 μL) and D-lactate (300 mg/kg) reduced cyclophosphamide-induced immunosuppression without promoting tumor growth. Overall, this study evaluated the safety, immune efficacy and applicability of yogurt and D-lactate in regulating immunosuppression. It emphasized the potential of yogurt as a functional food for immune regulation, with D-lactate playing a crucial role in its immunomodulatory effects.
Collapse
Affiliation(s)
- Xinru Du
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China;
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yongheng Yan
- School of Public Health, Shandong First Medical University, Jinan 271016, China
| | - Yufeng Dai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China;
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ruijie Xu
- Global Health Institute, School of Public Health, Xi’an Jiaotong University, Xi’an 710061, China;
| |
Collapse
|
5
|
Li X, Qian J, Liu Q, Guo M, Zhang H, Li H, Chen W. Yogurt Prevents Colorectal Tumorigenesis in Apc Min/+ Mice. Mol Nutr Food Res 2024; 68:e2300737. [PMID: 38700077 DOI: 10.1002/mnfr.202300737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/01/2024] [Indexed: 05/05/2024]
Abstract
SCOPE Yogurt consumption is related to a decreased risk of colorectal cancer (CRC), but whether such association is causal remains unclear. Patients with familial adenomatous polyposis (FAP) are at increased risk of CRC development. Here, the study investigates the efficacy of yogurt for intestinal polyposis chemoprevention in ApcMin/+ mice, a preclinical model for human FAP. METHODS AND RESULTS A 10-week yogurt supplementation (15 g kg-1) in ApcMin/+ mice significantly reduces the intestinal polyp number (6.50 ± 0.97 versus 1.80 ± 0.49; p < 0.001) compared to controls. 16S rRNA gene-based microbiota analysis suggests that yogurt supplementation may greatly modulate the gut microbiome composition, especially in the relative abundance of Lactobacillus and Bifidobacterium. Importantly, the fecal concentration of d-lactate (d-Lac, 0.39 ± 0.04 µmol g-1 versus 8.14 ± 0.62 µmol g-1; p < 0.001) is boosted by yogurt, while oral administration with d-Lac (125 or 250 mg kg-1) reduces the polyp number by 71.43% or 77.14% (p < 0.001), respectively. The study also observes that d-Lac does not affect cell viability and anchorage-independence in CRC cells, but it greatly suppresses epidermal growth factor (EGF) or 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cell transformation in preneoplastic cells. Mechanistically, it demonstrates that d-Lac may attenuate epithelial cell transformation by targeting PI3K/AKT/β-catenin axis. CONCLUSION Yogurt protects against intestinal polyposis in ApcMin/+ mice, and d-Lac may partially account for the chemopreventive effects above.
Collapse
Affiliation(s)
- Xiaojing Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jin Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Qinglong Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Min Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Haitao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
6
|
Shi W, Cassmann TJ, Bhagwate AV, Hitosugi T, Ip WKE. Lactic acid induces transcriptional repression of macrophage inflammatory response via histone acetylation. Cell Rep 2024; 43:113746. [PMID: 38329873 PMCID: PMC10957222 DOI: 10.1016/j.celrep.2024.113746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/09/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Lactic acid has emerged as an important modulator of immune cell function. It can be produced by both gut microbiota and the host metabolism at homeostasis and during disease states. The production of lactic acid in the gut microenvironment is vital for tissue homeostasis. In the present study, we examined how lactic acid integrates cellular metabolism to shape the epigenome of macrophages during pro-inflammatory response. We found that lactic acid serves as a primary fuel source to promote histone H3K27 acetylation, which allows the expression of immunosuppressive gene program including Nr4a1. Consequently, macrophage pro-inflammatory function was transcriptionally repressed. Furthermore, the histone acetylation induced by lactic acid promotes a form of long-term immunosuppression ("trained immunosuppression"). Pre-exposure to lactic acid induces lipopolysaccharide tolerance. These findings thus indicate that lactic acid sensing and its effect on chromatin remodeling in macrophages represent a key homeostatic mechanism that can provide a tolerogenic tissue microenvironment.
Collapse
Affiliation(s)
- Weiwei Shi
- Department of Immunology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Tiffany J Cassmann
- Department of Immunology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Aditya Vijay Bhagwate
- Departments of Health Science Research, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Taro Hitosugi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - W K Eddie Ip
- Department of Immunology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA; Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
7
|
Qian J, Li X, Yin Z, Dai Y, Zhang H, Li H, Peng C, Chen W. Yogurt Alleviates Imiquimod-Induced Psoriasis by Activating the Lactate/GPR81 Signaling Axis in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1055-1066. [PMID: 38170675 DOI: 10.1021/acs.jafc.3c05049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In addition to colorectal cancer and metabolic syndrome, regular yogurt consumption has shown promise in improving skin inflammation. In this study, we investigated the effects and possible mechanisms of yogurt on imiquimod-induced psoriasis-like inflammation in mice. After oral administration with yogurt (18 or 36 g/kg) and/or its main metabolite lactate (250 or 500 mg/kg) for 3 days, the mice were treated with a topical dose of 62.5 mg of imiquimod (IMQ) cream for seven consecutive days. Data showed that yogurt and lactate treatment significantly reduced the severity of psoriasis-like skin lesions, excessive keratinocyte proliferation, and immune cell infiltration. Mechanistically, we found that the genetic deficiency of the lactate receptor GPR81 aggravated psoriasis-like features in mice. Activation of the lactate/GPR81 axis inhibited the degradation of IκBα, prevented the nuclear translocation of histone deacetylase 3 (HDAC3) in macrophages, and thus constrained skin inflammation. Overall, these findings suggest that yogurt consumption effectively protects against experimental psoriasis and targeting the lactate/GPR81 signaling axis could be a promising approach for psoriasis inflammation management.
Collapse
Affiliation(s)
- Jin Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaojing Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zihao Yin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yufeng Dai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haitao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410012, Hunan China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Mohammad Nezhady MA, Modaresinejad M, Zia A, Chemtob S. Versatile lactate signaling via HCAR1: a multifaceted GPCR involved in many biological processes. Am J Physiol Cell Physiol 2023; 325:C1502-C1515. [PMID: 37899751 DOI: 10.1152/ajpcell.00346.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/31/2023]
Abstract
G-coupled protein receptors (GPCRs) are the ultimate refuge of pharmacology and medicine as more than 40% of all marketed drugs are directly targeting these receptors. Through cell surface expression, they are at the forefront of cellular communication with the outside world. Metabolites among the conveyors of this communication are becoming more prominent with the recognition of them as ligands for GPCRs. HCAR1 is a GPCR conveyor of lactate. It is a class A GPCR coupled to Gαi which reduces cellular cAMP along with the downstream Gβγ signaling. It was first found to inhibit lipolysis, and lately has been implicated in diverse cellular processes, including neural activities, angiogenesis, inflammation, vision, cardiovascular function, stem cell proliferation, and involved in promoting pathogenesis for different conditions, such as cancer. Other than signaling from the plasma membrane, HCAR1 shows nuclear localization with different location-biased activities therein. Although different functions for HCAR1 are being discovered, its cell and molecular mechanisms are yet ill understood. Here, we provide a comprehensive review on HCAR1, which covers the literature on the subject, and discusses its importance and relevance in various biological phenomena.
Collapse
Affiliation(s)
- Mohammad Ali Mohammad Nezhady
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Research Center of Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
| | - Monir Modaresinejad
- Research Center of Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
- Biomedical Sciences Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Aliabbas Zia
- Research Center of Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
- Department of Pharmacology, Université de Montréal, Montreal, Quebec, Canada
| | - Sylvain Chemtob
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Research Center of Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
- Department of Pharmacology, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Li X, Yan Y, Du X, Zhang H, Li H, Chen W. Yogurt Prevents Colitis-Associated Colorectal Cancer in Mice. Mol Nutr Food Res 2023; 67:e2300444. [PMID: 37897323 DOI: 10.1002/mnfr.202300444] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/15/2023] [Indexed: 10/30/2023]
Abstract
SCOPE Epidemiological studies indicate an inverse correlation between yogurt consumption and colorectal cancer (CRC), but whether there is a cause-and-effect relationship has not yet been validated. This study aims to investigate the effects and possible mechanisms of yogurt on colitis-associated colorectal cancer (CAC) in mice. METHODS AND RESULTS Experimental CAC is induced by azoxymethane (AOM, 10 mg kg-1 , ip) followed by three cycles of dextran sulfate sodium (DSS, 3%) treatment. Colitis is induced by adding DSS (3%) in drinking water for 5 days. Primary mouse macrophages are isolated for mechanistic studies. Data clearly show that yogurt (15 g kg-1 body weight) significantly reduces the multiplicity of colonic neoplasms by 38.83% in mice. Yogurt protects mice from colitis dependent on lactate receptor GPR81. The deficiency of Gpr81 exacerbates colitis and CAC in mice. Further investigation reveals that GPR81 may be dispensable for gut barrier function but essential for colonic mucosal repair. d-lactate in yogurt can activate GPR81 to suppress proinflammatory macrophage polarization, thereby facilitating inflammatory resolution after colonic injury and consequently suppressing CAC progression. CONCLUSION Yogurt effectively protects against colitis-associated colorectal tumorigenesis in mice, and this study provides a rationale for introducing yogurt supplementation to patients with chronic inflammatory bowel diseases.
Collapse
Affiliation(s)
- Xiaojing Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yongheng Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xinru Du
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Haitao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
10
|
Effects of Fulvic Acids on Gut Barrier, Microbial Composition, Fecal Ammonia Emission and Growth Performance in Broiler Chickens. J APPL POULTRY RES 2022. [DOI: 10.1016/j.japr.2022.100322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|