1
|
Liu Z, Wolfe S, Yu Z, Laforest R, Mhlanga JC, Fraum TJ, Itani M, Dehdashti F, Siegel BA, Jha AK. Observer-study-based approaches to quantitatively evaluate the realism of synthetic medical images. Phys Med Biol 2023; 68:10.1088/1361-6560/acc0ce. [PMID: 36863028 PMCID: PMC10411234 DOI: 10.1088/1361-6560/acc0ce] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/02/2023] [Indexed: 03/04/2023]
Abstract
Objective.Synthetic images generated by simulation studies have a well-recognized role in developing and evaluating imaging systems and methods. However, for clinically relevant development and evaluation, the synthetic images must be clinically realistic and, ideally, have the same distribution as that of clinical images. Thus, mechanisms that can quantitatively evaluate this clinical realism and, ideally, the similarity in distributions of the real and synthetic images, are much needed.Approach.We investigated two observer-study-based approaches to quantitatively evaluate the clinical realism of synthetic images. In the first approach, we presented a theoretical formalism for the use of an ideal-observer study to quantitatively evaluate the similarity in distributions between the real and synthetic images. This theoretical formalism provides a direct relationship between the area under the receiver operating characteristic curve, AUC, for an ideal observer and the distributions of real and synthetic images. The second approach is based on the use of expert-human-observer studies to quantitatively evaluate the realism of synthetic images. In this approach, we developed a web-based software to conduct two-alternative forced-choice (2-AFC) experiments with expert human observers. The usability of this software was evaluated by conducting a system usability scale (SUS) survey with seven expert human readers and five observer-study designers. Further, we demonstrated the application of this software to evaluate a stochastic and physics-based image-synthesis technique for oncologic positron emission tomography (PET). In this evaluation, the 2-AFC study with our software was performed by six expert human readers, who were highly experienced in reading PET scans, with years of expertise ranging from 7 to 40 years (median: 12 years, average: 20.4 years).Main results.In the ideal-observer-study-based approach, we theoretically demonstrated that the AUC for an ideal observer can be expressed, to an excellent approximation, by the Bhattacharyya distance between the distributions of the real and synthetic images. This relationship shows that a decrease in the ideal-observer AUC indicates a decrease in the distance between the two image distributions. Moreover, a lower bound of ideal-observer AUC = 0.5 implies that the distributions of synthetic and real images exactly match. For the expert-human-observer-study-based approach, our software for performing the 2-AFC experiments is available athttps://apps.mir.wustl.edu/twoafc. Results from the SUS survey demonstrate that the web application is very user friendly and accessible. As a secondary finding, evaluation of a stochastic and physics-based PET image-synthesis technique using our software showed that expert human readers had limited ability to distinguish the real images from the synthetic images.Significance.This work addresses the important need for mechanisms to quantitatively evaluate the clinical realism of synthetic images. The mathematical treatment in this paper shows that quantifying the similarity in the distribution of real and synthetic images is theoretically possible by using an ideal-observer-study-based approach. Our developed software provides a platform for designing and performing 2-AFC experiments with human observers in a highly accessible, efficient, and secure manner. Additionally, our results on the evaluation of the stochastic and physics-based image-synthesis technique motivate the application of this technique to develop and evaluate a wide array of PET imaging methods.
Collapse
Affiliation(s)
- Ziping Liu
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, United States of America
| | - Scott Wolfe
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Zitong Yu
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, United States of America
| | - Richard Laforest
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Joyce C Mhlanga
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Tyler J Fraum
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Malak Itani
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Farrokh Dehdashti
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Barry A Siegel
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Abhinav K Jha
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, United States of America
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| |
Collapse
|
2
|
Marshall NW, Bosmans H. Performance evaluation of digital breast tomosynthesis systems: physical methods and experimental data. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac9a35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022]
Abstract
Abstract
Digital breast tomosynthesis (DBT) has become a well-established breast imaging technique, whose performance has been investigated in many clinical studies, including a number of prospective clinical trials. Results from these studies generally point to non-inferiority in terms of microcalcification detection and superior mass-lesion detection for DBT imaging compared to digital mammography (DM). This modality has become an essential tool in the clinic for assessment and ad-hoc screening but is not yet implemented in most breast screening programmes at a state or national level. While evidence on the clinical utility of DBT has been accumulating, there has also been progress in the development of methods for technical performance assessment and quality control of these imaging systems. DBT is a relatively complicated ‘pseudo-3D’ modality whose technical assessment poses a number of difficulties. This paper reviews methods for the technical performance assessment of DBT devices, starting at the component level in part one and leading up to discussion of system evaluation with physical test objects in part two. We provide some historical and basic theoretical perspective, often starting from methods developed for DM imaging. Data from a multi-vendor comparison are also included, acquired under the medical physics quality control protocol developed by EUREF and currently being consolidated by a European Federation of Organisations for Medical Physics working group. These data and associated methods can serve as a reference for the development of reference data and provide some context for clinical studies.
Collapse
|
3
|
Kainz W, Neufeld E, Bolch WE, Graff CG, Kim CH, Kuster N, Lloyd B, Morrison T, Segars P, Yeom YS, Zankl M, Xu XG, Tsui BMW. Advances in Computational Human Phantoms and Their Applications in Biomedical Engineering - A Topical Review. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2019; 3:1-23. [PMID: 30740582 PMCID: PMC6362464 DOI: 10.1109/trpms.2018.2883437] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Over the past decades, significant improvements have been made in the field of computational human phantoms (CHPs) and their applications in biomedical engineering. Their sophistication has dramatically increased. The very first CHPs were composed of simple geometric volumes, e.g., cylinders and spheres, while current CHPs have a high resolution, cover a substantial range of the patient population, have high anatomical accuracy, are poseable, morphable, and are augmented with various details to perform functionalized computations. Advances in imaging techniques and semi-automated segmentation tools allow fast and personalized development of CHPs. These advances open the door to quickly develop personalized CHPs, inherently including the disease of the patient. Because many of these CHPs are increasingly providing data for regulatory submissions of various medical devices, the validity, anatomical accuracy, and availability to cover the entire patient population is of utmost importance. The article is organized into two main sections: the first section reviews the different modeling techniques used to create CHPs, whereas the second section discusses various applications of CHPs in biomedical engineering. Each topic gives an overview, a brief history, recent developments, and an outlook into the future.
Collapse
Affiliation(s)
- Wolfgang Kainz
- Food and Drug Administration (FDA), Center for Devices and Radiological Health (CDRH), Silver Spring, MD 20993 USA
| | - Esra Neufeld
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland
| | | | - Christian G Graff
- Food and Drug Administration (FDA), Center for Devices and Radiological Health (CDRH), Silver Spring, MD 20993 USA
| | | | - Niels Kuster
- Swiss Federal Institute of Technology, ETH Zürich, and the Foundation for Research on Information Technologies in Society (IT'IS), Zürich, Switzerland
| | - Bryn Lloyd
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland
| | - Tina Morrison
- Food and Drug Administration (FDA), Center for Devices and Radiological Health (CDRH), Silver Spring, MD 20993 USA
| | | | | | - Maria Zankl
- Helmholtz Zentrum München German Research Center for Environmental Health, Munich, Germany
| | - X George Xu
- Rensselaer Polytechnic Institute, Troy, NY, USA
| | | |
Collapse
|
4
|
Giansante L, Martins JC, Nersissian DY, Kiers KC, Kay FU, Sawamura MVY, Lee C, Gebrim EMMS, Costa PR. Organ doses evaluation for chest computed tomography procedures with TL dosimeters: Comparison with Monte Carlo simulations. J Appl Clin Med Phys 2018; 20:308-320. [PMID: 30508315 PMCID: PMC6333138 DOI: 10.1002/acm2.12505] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/22/2018] [Accepted: 10/25/2018] [Indexed: 12/05/2022] Open
Abstract
Purpose To evaluate organ doses in routine and low‐dose chest computed tomography (CT) protocols using an experimental methodology. To compare experimental results with results obtained by the National Cancer Institute dosimetry system for CT (NCICT) organ dose calculator. To address the differences on organ dose measurements using tube current modulation (TCM) and fixed tube current protocols. Methods An experimental approach to evaluate organ doses in pediatric and adult anthropomorphic phantoms using thermoluminescent dosimeters (TLDs) was employed in this study. Several analyses were performed in order to establish the best way to achieve the main results in this investigation. The protocols used in this study were selected after an analysis of patient data collected from the Institute of Radiology of the School of Medicine of the University of São Paulo (InRad). The image quality was evaluated by a radiologist from this institution. Six chest adult protocols and four chest pediatric protocols were evaluated. Lung doses were evaluated for the adult phantom and lung and thyroid doses were evaluated for the pediatric phantom. The irradiations were performed using both a GE and a Philips CT scanner. Finally, organ doses measured with dosimeters were compared with Monte Carlo simulations performed with NCICT. Results After analyzing the data collected from all CT examinations performed during a period of 3 yr, the authors identified that adult and pediatric chest CT are among the most applied protocol in patients in that clinical institution, demonstrating the relevance on evaluating organ doses due to these examinations. With regards to the scan parameters adopted, the authors identified that using 80 kV instead of 120 kV for a pediatric chest routine CT, with TCM in both situations, can lead up to a 28.7% decrease on the absorbed dose. Moreover, in comparison to the standard adult protocol, which is performed with fixed mAs, TCM, and ultra low‐dose protocols resulted in dose reductions of up to 35.0% and 90.0%, respectively. Finally, the percent differences found between experimental and Monte Carlo simulated organ doses were within a 20% interval. Conclusions The results obtained in this study measured the impact on the absorbed dose in routine chest CT by changing several scan parameters while the image quality could be potentially preserved.
Collapse
Affiliation(s)
- Louise Giansante
- Group of Radiation Dosimetry and Medical Physics, Institute of Physics, University of São Paulo (IFUSP), São Paulo, SP, Brazil
| | - Juliana C Martins
- Group of Radiation Dosimetry and Medical Physics, Institute of Physics, University of São Paulo (IFUSP), São Paulo, SP, Brazil.,Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Denise Y Nersissian
- Group of Radiation Dosimetry and Medical Physics, Institute of Physics, University of São Paulo (IFUSP), São Paulo, SP, Brazil
| | - Karen C Kiers
- Group of Radiation Dosimetry and Medical Physics, Institute of Physics, University of São Paulo (IFUSP), São Paulo, SP, Brazil.,Vrije Universiteit Amsterdam (VU), Amsterdam, The Netherlands
| | - Fernando U Kay
- Institute of Radiology, School of Medicine, University of São Paulo (InRad), São Paulo, SP, Brazil
| | - Marcio V Y Sawamura
- Institute of Radiology, School of Medicine, University of São Paulo (InRad), São Paulo, SP, Brazil
| | - Choonsik Lee
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Eloisa M M S Gebrim
- Institute of Radiology, School of Medicine, University of São Paulo (InRad), São Paulo, SP, Brazil
| | - Paulo R Costa
- Group of Radiation Dosimetry and Medical Physics, Institute of Physics, University of São Paulo (IFUSP), São Paulo, SP, Brazil
| |
Collapse
|
5
|
Glick SJ, Ikejimba LC. Advances in digital and physical anthropomorphic breast phantoms for x-ray imaging. Med Phys 2018; 45:e870-e885. [DOI: 10.1002/mp.13110] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 06/05/2018] [Accepted: 06/10/2018] [Indexed: 01/27/2023] Open
Affiliation(s)
- Stephen J. Glick
- Division of Imaging, Diagnostics, and Software Reliability; Office of Science and Engineering Laboratories; Center for Devices and Radiological Health, Food and Drug Administration; Silver Spring MD 20993 USA
| | - Lynda C. Ikejimba
- Division of Imaging, Diagnostics, and Software Reliability; Office of Science and Engineering Laboratories; Center for Devices and Radiological Health, Food and Drug Administration; Silver Spring MD 20993 USA
| |
Collapse
|