1
|
Schafasand M, Resch AF, Nachankar A, Góra J, Martino G, Traneus E, Glimelius L, Georg D, Fossati P, Carlino A, Stock M. Dose averaged linear energy transfer optimization for large sacral chordomas in carbon ion therapy. Med Phys 2024; 51:3950-3960. [PMID: 38696546 DOI: 10.1002/mp.17102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024] Open
Abstract
BACKGROUND Carbon ion beams are well accepted as densely ionizing radiation with a high linear energy transfer (LET). However, the current clinical practice does not fully exploit the highest possible dose-averaged LET (LETd) and, consequently, the biological potential in the target. This aspect becomes worse in larger tumors for which inferior clinical outcomes and corresponding lower LETd was reported. PURPOSE The vicinity to critical organs in general and the inferior overall survival reported for larger sacral chordomas treated with carbon ion radiotherapy (CIRT), makes the treatment of such tumors challenging. In this work it was aimed to increase the LETd in large volume tumors while maintaining the relative biological effectiveness (RBE)-weighted dose, utilizing the LETd optimization functions of a commercial treatment planning system (TPS). METHODS Ten reference sequential boost carbon ion treatment plans, designed to mimic clinical plans for large sacral chordoma tumors, were generated. High dose clinical target volumes (CTV-HD) larger than250 cm 3 $250 \,{\rm cm}^{3}$ were considered as large targets. The total RBE-weighted median dose prescription with the local effect model (LEM) wasD RBE , 50 % = 73.6 Gy $\textrm {D}_{\rm RBE, 50\%}=73.6 \,{\rm Gy}$ in 16 fractions (nine to low dose and seven to high dose planning target volume). No LETd optimization was performed in the reference plans, while LETd optimized plans used the minimum LETd (Lmin) optimization function in RayStation 2023B. Three different Lmin values were investigated and specified for the seven boost fractions:L min = 60 keV / μ m $\textrm {L}_{\rm min}=60 \,{\rm keV}/{\umu }{\rm m}$ ,L min = 80 keV / μ m $\textrm {L}_{\rm min}=80 \,{\rm keV}/{\umu }{\rm m}$ andL min = 100 keV / μ m $\textrm {L}_{\rm min}=100 \,{\rm keV}/{\umu }{\rm m}$ . To compare the LETd optimized against reference plans, LETd and RBE-weighted dose based goals similar to and less strict than clinical ones were specified for the target. The goals for the organs at risk (OAR) remained unchanged. Robustness evaluation was studied for eight scenarios (± 3.5 % $\pm 3.5\%$ range uncertainty and± 3 mm $\pm 3 \,{\rm mm}$ setup uncertainty along the main three axes). RESULTS The optimization method withL min = 60 keV / μ m $\textrm {L}_{\rm min}=60 \,{\rm keV}/{\umu }{\rm m}$ resulted in an optimal LETd distribution with an average increase ofLET d , 98 % ${\rm {LET}}_{{\rm {d,}}98\%}$ (andLET d , 50 % ${\rm {LET}}_{{\rm {d,}}50\%}$ ) in the CTV-HD by8.9 ± 1.5 keV / μ m $8.9\pm 1.5 \,{\rm keV}/{\umu }{\rm m}$ (27 % $27\%$ ) (and6.9 ± 1.3 keV / μ m $6.9\pm 1.3 \,{\rm keV}/{\umu }{\rm m}$ (17 % $17\%$ )), without significant difference in the RBE-weighted dose. By allowing± 5 % $\pm 5\%$ over- and under-dosage in the target, theLET d , 98 % ${\rm {LET}}_{{\rm {d,}}98\%}$ (andLET d , 50 % ${\rm {LET}}_{{\rm {d,}}50\%}$ ) can be increased by11.3 ± 1.2 keV / μ m $11.3\pm 1.2 \,{\rm keV}/{\umu }{\rm m}$ (34 % $34\%$ ) (and11.7 ± 3.4 keV / μ m $11.7\pm 3.4 \,{\rm keV}/{\umu }{\rm m}$ (29 % $29\%$ )), using the optimization parametersL min = 80 keV / μ m $\textrm {L}_{\rm min}=80 \,{\rm keV}/{\umu }{\rm m}$ . The pass rate for the OAR goals in the LETd optimized plans was in the same level as the reference plans. LETd optimization lead to less robust plans compared to reference plans. CONCLUSIONS Compared to conventionally optimized treatment plans, the LETd in the target was increased while maintaining the RBE-weighted dose using TPS LETd optimization functionalities. Regularly assessing RBE-weighted dose robustness and acquiring more in-room images remain crucial and inevitable aspects during treatment.
Collapse
Affiliation(s)
- Mansure Schafasand
- Department of General and Translational Oncology and Hematology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | | | - Ankita Nachankar
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- ACMIT Gmbh, Wiener Neustadt, Austria
| | - Joanna Góra
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | | | | | | | - Dietmar Georg
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Piero Fossati
- Department of General and Translational Oncology and Hematology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | | | - Markus Stock
- Department of General and Translational Oncology and Hematology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| |
Collapse
|
2
|
Rajpurohit YS, Sharma DK, Lal M, Soni I. A perspective on tumor radiation resistance following high-LET radiation treatment. J Cancer Res Clin Oncol 2024; 150:226. [PMID: 38696003 PMCID: PMC11065934 DOI: 10.1007/s00432-024-05757-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
High-linear energy transfer (LET) radiation is a promising alternative to conventional low-LET radiation for therapeutic gain against cancer owing to its ability to induce complex and clustered DNA lesions. However, the development of radiation resistance poses a significant barrier. The potential molecular mechanisms that could confer resistance development are translesion synthesis (TLS), replication gap suppression (RGS) mechanisms, autophagy, epithelial-mesenchymal transition (EMT) activation, release of exosomes, and epigenetic changes. This article will discuss various types of complex clustered DNA damage, their repair mechanisms, mutagenic potential, and the development of radiation resistance strategies. Furthermore, it highlights the importance of careful consideration and patient selection when employing high-LET radiotherapy in clinical settings.
Collapse
Affiliation(s)
- Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, 2-46-S, Modular Lab, A-Block, Mumbai, 400085, India.
- Homi Bhabha National Institute, DAE- Deemed University, Mumbai, 400094, India.
| | - Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, 2-46-S, Modular Lab, A-Block, Mumbai, 400085, India
| | - Mitu Lal
- Molecular Biology Division, Bhabha Atomic Research Centre, 2-46-S, Modular Lab, A-Block, Mumbai, 400085, India
| | - Ishu Soni
- Homi Bhabha National Institute, DAE- Deemed University, Mumbai, 400094, India
| |
Collapse
|
3
|
Chattaraj A, Selvam TP. Calculation of biological effectiveness of SOBP proton beams: a TOPAS Monte Carlo study. Biomed Phys Eng Express 2024; 10:035004. [PMID: 38377599 DOI: 10.1088/2057-1976/ad2b02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/20/2024] [Indexed: 02/22/2024]
Abstract
Objective.This study aims to investigate the biological effectiveness of Spread-Out Bragg-Peak (SOBP) proton beams with initial kinetic energies 50-250 MeV at different depths in water using TOPAS Monte Carlo code.Approach.The study modelled SOBP proton beams using TOPAS time feature. Various LET-based models and Repair-Misrepair-Fixation model were employed to calculate Relative Biological Effectiveness (RBE) for V79 cell lines at different on-axis depths based on TOPAS. Microdosimetric Kinetic Model and biological weighting function-based models, which utilize microdosimetric distributions, were also used to estimate the RBE. A phase-space-based method was adopted for calculating microdosimetric distributions.Main results.The trend of variation of RBE with depth is similar in all the RBE models, but the absolute RBE values vary based on the calculation models. RBE sharply increases at the distal edge of SOBP proton beams. In the entrance region of all the proton beams, RBE values at 4 Gy i.e. RBE(4 Gy) resulting from different models are in the range of 1.04-1.07, comparable to clinically used generic RBE of 1.1. Moving from the proximal to distal end of the SOBP, RBE(4 Gy) is in the range of 1.15-1.33, 1.13-1.21, 1.11-1.17, 1.13-1.18 and 1.17-1.21, respectively for 50, 100, 150, 200 and 250 MeV SOBP beams, whereas at the distal dose fall-off region, these values are 1.68, 1.53, 1.44, 1.42 and 1.40, respectively.Significance.The study emphasises application of depth-, dose- and energy- dependent RBE values in clinical application of proton beams.
Collapse
Affiliation(s)
- Arghya Chattaraj
- Radiological Physics and Advisory Division, Health, Safety and Environment Group, Bhabha Atomic Research Centre, Mumbai-400 085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400 094, India
| | - T Palani Selvam
- Radiological Physics and Advisory Division, Health, Safety and Environment Group, Bhabha Atomic Research Centre, Mumbai-400 085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400 094, India
| |
Collapse
|
4
|
Kubo N, Suefuji H, Nakajima M, Tokumaru S, Okano N, Yoshida D, Suzuki O, Ishikawa H, Satouchi M, Nakayama H, Shimizu K, Shioyama Y. Five-Year Survival Outcomes After Carbon-Ion Radiotherapy for Operable Stage I NSCLC: A Japanese National Registry Study (J-CROS-LUNG). J Thorac Oncol 2024; 19:491-499. [PMID: 37924974 DOI: 10.1016/j.jtho.2023.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/21/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
INTRODUCTION The standard therapy for stage I NSCLC is surgery, but some operable patients refuse this option and instead undergo radiotherapy. Carbon-ion radiotherapy (CIRT) is a type of radiotherapy. The Japanese prospective nationwide registry study on CIRT began in 2016. Here, we analyzed real-world clinical outcomes of CIRT for operable patients with stage I NSCLC. METHODS All patients with operable stage I NSCLC treated with CIRT in Japan between 2016 and 2018 were enrolled. The dose fractionations for CIRT were selected from several options approved by the Japanese Society for Radiation Oncology. CIRT was delivered to the primary tumor, not to lymph nodes. RESULTS The median follow-up period was 56 months. Among 136 patients, 117 (86%) had clinical stage IA NSCLC and 19 (14%) had clinical stage IB NSCLC. There were 50 patients (37%) diagnosed clinically without having been diagnosed histologically. Most tumors (97%) were located in the periphery. The 5-year overall survival, cause-specific survival, progression-free survival, and local control rate were 81.8% (95% confidence interval [CI]: 75.1-89.2), 91.2% (95% CI: 86.0-96.8), 65.9% (95% CI: 58.2-74.6), and 95.8% (95% CI: 92.3-99.5), respectively. Multivariate analysis identified age as a significant factor for overall survival (p = 0.018), whereas age and consolidation/tumor ratio (p = 0.010 and p = 0.004) were significant factors for progression-free survival. There was no grade 4 or higher toxicity. Grade 3 radiation pneumonitis occurred in one patient. CONCLUSIONS This study reports the long-term outcomes of CIRT for operable NSCLC in the real world. CIRT for operable patients has been found to have favorable outcomes, with tolerable toxicity.
Collapse
Affiliation(s)
- Nobuteru Kubo
- Gunma University Heavy Ion Medical Center, Gunma, Japan.
| | | | - Mio Nakajima
- National Institutes for Quantum and Radiological Science and Technology, QST Hospital, Chiba, Japan
| | - Sunao Tokumaru
- Department of Radiology, Hyogo Ion Beam Medical Center, Hyogo, Japan
| | - Naoko Okano
- Gunma University Heavy Ion Medical Center, Gunma, Japan
| | - Daisaku Yoshida
- Department of Radiation Oncology, Kanagawa Cancer Center, Kanagawa, Japan
| | | | - Hitoshi Ishikawa
- National Institutes for Quantum and Radiological Science and Technology, QST Hospital, Chiba, Japan
| | - Miyako Satouchi
- Department of Thoracic Oncology, Hyogo Cancer Center, Hyogo, Japan
| | | | - Kimihiro Shimizu
- Division of General Thoracic Surgery, Department of Surgery, Shinshu University School of Medicine, Nagano, Japan
| | | |
Collapse
|
5
|
Orlandi E, Barcellini A, Vischioni B, Fiore MR, Vitolo V, Iannalfi A, Bonora M, Chalaszczyk A, Ingargiola R, Riva G, Ronchi S, Valvo F, Fossati P, Ciocca M, Mirandola A, Molinelli S, Pella A, Baroni G, Pullia MG, Facoetti A, Orecchia R, Licitra L, Vago G, Rossi S. The Role of Carbon Ion Therapy in the Changing Oncology Landscape-A Narrative Review of the Literature and the Decade of Carbon Ion Experience at the Italian National Center for Oncological Hadrontherapy. Cancers (Basel) 2023; 15:5068. [PMID: 37894434 PMCID: PMC10605728 DOI: 10.3390/cancers15205068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Currently, 13 Asian and European facilities deliver carbon ion radiotherapy (CIRT) for preclinical and clinical activity, and, to date, 55 clinical studies including CIRT for adult and paediatric solid neoplasms have been registered. The National Center for Oncological Hadrontherapy (CNAO) is the only Italian facility able to accelerate both protons and carbon ions for oncological treatment and research. METHODS To summarise and critically evaluate state-of-the-art knowledge on the application of carbon ion radiotherapy in oncological settings, the authors conducted a literature search till December 2022 in the following electronic databases: PubMed, Web of Science, MEDLINE, Google Scholar, and Cochrane. The results of 68 studies are reported using a narrative approach, highlighting CNAO's clinical activity over the last 10 years of CIRT. RESULTS The ballistic and radiobiological hallmarks of CIRT make it an effective option in several rare, radioresistant, and difficult-to-treat tumours. CNAO has made a significant contribution to the advancement of knowledge on CIRT delivery in selected tumour types. CONCLUSIONS After an initial ramp-up period, CNAO has progressively honed its clinical, technical, and dosimetric skills. Growing engagement with national and international networks and research groups for complex cancers has led to increasingly targeted patient selection for CIRT and lowered barriers to facility access.
Collapse
Affiliation(s)
- Ester Orlandi
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Amelia Barcellini
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy
| | - Barbara Vischioni
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Maria Rosaria Fiore
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Viviana Vitolo
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Alberto Iannalfi
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Maria Bonora
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Agnieszka Chalaszczyk
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Rossana Ingargiola
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Giulia Riva
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Sara Ronchi
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Francesca Valvo
- Scientific Directorate, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Piero Fossati
- Department of Radiation Oncology, MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria
- Department for Basic and Translational Oncology and Haematology, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
| | - Mario Ciocca
- Medical Physics Unit, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy
| | - Alfredo Mirandola
- Medical Physics Unit, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy
| | - Silvia Molinelli
- Medical Physics Unit, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy
| | - Andrea Pella
- Bioengineering Unit, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy
| | - Guido Baroni
- Bioengineering Unit, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Marco Giuseppe Pullia
- Radiobiology Unit, Research and Development Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Angelica Facoetti
- Radiobiology Unit, Research and Development Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Roberto Orecchia
- Scientific Directorate, IEO-European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Lisa Licitra
- Scientific Directorate, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
- Department of Head & Neck Medical Oncology 3, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
- Department of Oncology & Haemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Gianluca Vago
- Presidency, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
- School of Pathology, University of Milan, 20122 Milan, Italy
| | - Sandro Rossi
- General Directorate, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| |
Collapse
|
6
|
Byun HK, Kim C, Seong J. Carbon Ion Radiotherapy in the Treatment of Hepatocellular Carcinoma. Clin Mol Hepatol 2023; 29:945-957. [PMID: 37583055 PMCID: PMC10577350 DOI: 10.3350/cmh.2023.0217] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly lethal cancer with limited treatment options and poor prognosis. Carbon ion radiotherapy (CIRT) has emerged as a promising treatment modality for HCC due to its unique physical and biological properties. CIRT uses carbon ions to target and destroy cancer cells with a high precision and efficacy. The Bragg Peak phenomenon allows precise dose delivery to the tumor while minimizing damage to healthy tissues. In addition, the high relative biological effectiveness of carbon ions can be shown against radioresistant and hypoxic tumor areas. CIRT also offers a shorter treatment schedule than conventional radiotherapy, which increases patient convenience and compliance. The clinical outcomes of CIRT for HCC have shown excellent local control rates with minimal side effects. Considering its physical and biological properties, CIRT may be a viable option for complex clinical scenarios such as patients with poor liver function, large tumors, re-irradiation cases, and tumors close to critical organs. Further research and larger studies are needed to establish definitive indications for CIRT and to compare its efficacy with that of other treatment modalities. Nevertheless, CIRT offers a potential breakthrough in HCC management, providing hope for improved therapeutic outcomes and reduced treatment-related toxicities.
Collapse
Affiliation(s)
- Hwa Kyung Byun
- Department of Radiation Oncology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
| | - Changhwan Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Jinsil Seong
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Liang Y, Wu J, Ding Z, Liu C, Fu Q. Evaluation of the Yield of DNA Double-Strand Breaks for Carbon Ions Using Monte Carlo Simulation and DNA Fragment Distribution. Int J Radiat Oncol Biol Phys 2023; 117:252-261. [PMID: 36966847 DOI: 10.1016/j.ijrobp.2023.03.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 04/07/2023]
Abstract
PURPOSE The aim of this work was to provide a method to evaluate the yield of DNA double-strand breaks (DSBs) for carbon ions, overcoming the bias in existing methods due to the nonrandom distribution of DSBs. METHODS AND MATERIALS A previously established biophysical program based on the radiation track structure and a multilevel chromosome model was used to simulate DNA damage induced by x-rays and carbon ions. The fraction of activity retained (FAR) as a function of absorbed dose or particle fluence was obtained by counting the fraction of DNA fragments larger than 6 Mbp. Simulated FAR curves for the 250 kV x-rays and carbon ions at various energies were compared with measurements using constant-field gel electrophoresis. The doses or fluences at the FAR of 0.7 based on linear interpolation were used to estimate the simulation error for the production of DSBs. RESULTS The relative difference of doses at the FAR of 0.7 between simulation and experiment was -8.5% for the 250 kV x-rays. The relative differences of fluences at the FAR of 0.7 between simulations and experiments were -17.5%, -42.2%, -18.2%, -3.1%, 10.8%, and -14.5% for the 34, 65, 130, 217, 2232, and 3132 MeV carbon ions, respectively. In comparison, the measurement uncertainty was about 20%. Carbon ions produced remarkably more DSBs and DSB clusters per unit dose than x-rays. The yield of DSBs for carbon ions, ranging from 10 to 16 Gbp-1Gy-1, increased with linear energy transfer (LET) but plateaued in the high-LET end. The yield of DSB clusters first increased and then decreased with LET. This pattern was similar to the relative biological effectiveness for cell survival for heavy ions. CONCLUSIONS The estimated yields of DSBs for carbon ions increased from 10 Gbp-1Gy-1 in the low-LET end to 16 Gbp-1Gy-1 in the high-LET end with 20% uncertainty.
Collapse
Affiliation(s)
- Ying Liang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.
| | - Jianan Wu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Zhen Ding
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Chenbin Liu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Qibin Fu
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
8
|
Faddegon B, Blakely EA, Burigo L, Censor Y, Dokic I, Kondo ND, Ortiz R, Méndez JR, Rucinski A, Schubert K, Wahl N, Schulte R. Ionization detail parameters and cluster dose: a mathematical model for selection of nanodosimetric quantities for use in treatment planning in charged particle radiotherapy. Phys Med Biol 2023; 68:10.1088/1361-6560/acea16. [PMID: 37489619 PMCID: PMC10565507 DOI: 10.1088/1361-6560/acea16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
Objective. To propose a mathematical model for applying ionization detail (ID), the detailed spatial distribution of ionization along a particle track, to proton and ion beam radiotherapy treatment planning (RTP).Approach. Our model provides for selection of preferred ID parameters (Ip) for RTP, that associate closest to biological effects. Cluster dose is proposed to bridge the large gap between nanoscopicIpand macroscopic RTP. Selection ofIpis demonstrated using published cell survival measurements for protons through argon, comparing results for nineteenIp:Nk,k= 2, 3, …, 10, the number of ionizations in clusters ofkor more per particle, andFk,k= 1, 2, …, 10, the number of clusters ofkor more per particle. We then describe application of the model to ID-based RTP and propose a path to clinical translation.Main results. The preferredIpwereN4andF5for aerobic cells,N5andF7for hypoxic cells. Significant differences were found in cell survival for beams having the same LET or the preferredNk. Conversely, there was no significant difference forF5for aerobic cells andF7for hypoxic cells, regardless of ion beam atomic number or energy. Further, cells irradiated with the same cluster dose for theseIphad the same cell survival. Based on these preliminary results and other compelling results in nanodosimetry, it is reasonable to assert thatIpexist that are more closely associated with biological effects than current LET-based approaches and microdosimetric RBE-based models used in particle RTP. However, more biological variables such as cell line and cycle phase, as well as ion beam pulse structure and rate still need investigation.Significance. Our model provides a practical means to select preferredIpfrom radiobiological data, and to convertIpto the macroscopic cluster dose for particle RTP.
Collapse
Affiliation(s)
- Bruce Faddegon
- University of California San Francisco, Department of Radiation Oncology 1600 Divisadero Street, San Francisco, CA 94143 United States of America
| | - Eleanor A. Blakely
- Loma Linda University School of Medicine, 11175 Campus St, Loma Linda,CA92350, United States of America
| | - Lucas Burigo
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Yair Censor
- Department of Mathematics, University of Haifa, 199 Aba Khoushy Ave. Mount Carmel, Haifa, 3498838, Israel
| | - Ivana Dokic
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University Hospital and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Naoki Domínguez Kondo
- University of California San Francisco, Department of Radiation Oncology 1600 Divisadero Street, San Francisco, CA 94143 United States of America
| | - Ramon Ortiz
- University of California San Francisco, Department of Radiation Oncology 1600 Divisadero Street, San Francisco, CA 94143 United States of America
| | - José Ramos Méndez
- University of California San Francisco, Department of Radiation Oncology 1600 Divisadero Street, San Francisco, CA 94143 United States of America
| | - Antoni Rucinski
- Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland
| | - Keith Schubert
- Baylor University, 1311 S 5th St, Waco, TX 76706, United States of America
| | - Niklas Wahl
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Reinhard Schulte
- Loma Linda University School of Medicine, 11085 Campus St, Loma Linda, CA92350, United States of America
| |
Collapse
|
9
|
Kubo N, Suefuji H, Nakajima M, Tokumaru S, Okano N, Yoshida D, Suzuki O, Ishikawa H, Satouchi M, Nakayama H, Shioyama Y. Clinical results of carbon ion radiotherapy for inoperable stage I non-small cell lung cancer: a Japanese national registry study (J-CROS-LUNG). Radiother Oncol 2023; 183:109640. [PMID: 36990390 DOI: 10.1016/j.radonc.2023.109640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/04/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND AND PURPOSE Radiotherapy is a standard treatment for inoperable stage I non-small cell lung cancer (NSCLC), and carbon-ion radiation therapy (CIRT) may be used for such treatment. Although CIRT for stage I NSCLC has demonstrated favorable outcomes in previous reports, the reports covered only single-institution studies. We conducted a prospective nationwide registry study including all CIRT institutions in Japan. MATERIALS AND METHODS Ninety-five patients with inoperable stage I NSCLC were treated by CIRT between May 2016 and June 2018. The dose fractionations for CIRT were selected from several options approved by the Japanese Society for Radiation Oncology. RESULTS The median patient age was 77 years. Comorbidity rates for chronic obstructive pulmonary disease and interstitial pneumonia were 43% and 26%, respectively. The most common schedule for CIRT was 60 Gy (relative biological effectiveness (RBE)) in four fractions, and the second most common was 50 Gy (RBE) in one fraction. The 3-year overall survival, cause-specific survival, and local control rates were 59.3%, 77.1%, and 87.3%, respectively. Female sex and ECOG performance status of 0-1 were favorable prognostic factors for overall survival in a multivariate analysis. No grade 4 or higher adverse event was observed. The 3-year cumulative incidence of grade 2 or higher radiation pneumonitis was 3.2%. The risk factors for radiation pneumonitis were a forced expiratory volume in 1 second (FEV1) of <0.9L and a total dose[[EQUATION]]67 Gy (RBE). CONCLUSION This study provides real-world treatment outcomes of CIRT for inoperable stage I NSCLC in Japan.
Collapse
|
10
|
Schafasand M, Resch AF, Traneus E, Glimelius L, Fossati P, Stock M, Gora J, Georg D, Carlino A. Technical note: In silico benchmarking of the linear energy transfer-based functionalities for carbon ion beams in a commercial treatment planning system. Med Phys 2023; 50:1871-1878. [PMID: 36534738 DOI: 10.1002/mp.16174] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/04/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The increasing number of studies dealing with linear energy transfer (LET)-based evaluation and optimization in the field of carbon ion radiotherapy (CIRT) indicates the rising demand for LET implementation in commercial treatment planning systems (TPS). Benchmarking studies could play a key role in detecting (and thus preventing) computation errors prior implementing such functionalities in a TPS. PURPOSE This in silico study was conducted to benchmark the following two LET-related functionalities in a commercial TPS against Monte Carlo simulations: (1) dose averaged LET (LETd ) scoring and (2) physical dose filtration based on LET for future LET-based treatment plan evaluation and optimization studies. METHODS The LETd scoring and LET-based dose filtering (in which the deposited dose can be separated into the dose below and above the user specified LET threshold) functionalities for carbon ions in the research version RayStation (RS) 9A-IonPG TPS (RaySearch Laboratories, Sweden) were benchmarked against GATE/Geant4 simulations. Pristine Bragg peaks (BPs) and cuboid targets, positioned at different depths in a homogeneous water phantom and a setup with heterogeneity were used for this study. RESULTS For all setups (homogeneous and heterogeneous), the mean absolute (and relative) LETd difference was less than 1 keV/ μ $\umu$ m (3.5%) in the plateau and target and less than 2 keV/ μ $\umu$ m (8.3%) in the fragmentation tail. The maximum local differences were 4 and 6 keV/ μ $\umu$ m, respectively. The mean absolute (and relative) physical dose differences for both low- and high-LET doses were less than 1 cGy (1.5%) in the plateau, target and tail with a maximum absolute difference of 2 cGy. CONCLUSIONS No computation error was found in the tested functionalities except for LETd in lateral direction outside the target, showing the limitation of the implemented monochrome model in the tested TPS version.
Collapse
Affiliation(s)
- Mansure Schafasand
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Andreas Franz Resch
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | | | | | - Piero Fossati
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Oncology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Markus Stock
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Oncology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Joanna Gora
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Dietmar Georg
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
11
|
Varnava M, Musha A, Tashiro M, Kubo N, Okano N, Kawamura H, Ohno T. Dose-volume constraints for head-and-neck cancer in carbon ion radiotherapy: A literature review. Cancer Med 2023; 12:8267-8277. [PMID: 36799088 PMCID: PMC10134371 DOI: 10.1002/cam4.5641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Carbon ion radiotherapy (CIRT) has been applied in cancer treatment for over 25 years. However, guidelines for dose-volume constraints have not been established yet. The aim of this review is to summarize the dose-volume constraints in CIRT for head-and-neck (HN) cancer that were determined through previous clinical studies based on the Japanese models for relative biological effectiveness (RBE). METHODS A literature review was conducted to identify all constraints determined for HN cancer CIRT that are based on the Japanese RBE models. RESULTS Dose-volume constraints are reported for 17 organs at risk (OARs), including the brainstem, ocular structures, masticatory muscles, and skin. Various treatment planning strategies are also presented for reducing the dose delivered to OARs. CONCLUSIONS The reported constraints will provide assistance during treatment planning to ensure that radiation to OARs is minimized, and thus adverse effects are reduced. Although the constraints are given based on the Japanese RBE models, applying the necessary conversion factors will potentially enable their application by institutions worldwide that use the local effect model for RBE.
Collapse
Affiliation(s)
- Maria Varnava
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| | - Atsushi Musha
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan.,Department of Oral and Maxillofacial Surgery and Plastic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Mutsumi Tashiro
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| | - Nobuteru Kubo
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan.,Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Naoko Okano
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan.,Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hidemasa Kawamura
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan.,Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Tatsuya Ohno
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan.,Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|
12
|
Chattaraj A, Selvam TP. Comparison of 126 MeV antiproton and proton—a FLUKA-based microdosimetric approach. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac88b4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/10/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. This study aims at comparing dosimetric parameters of 126 MeV antiprotons and protons using microdosimetric approach. Approach. Microdosimetric distributions of 126 MeV proton and antiproton beams at 1 μm site size are calculated using the Monte Carlo-based FLUKA code. The distributions are calculated at various depths along the central axis in water phantom as well as at different off-axis locations. The study also includes calculations of secondary radiations produced by antiprotons and protons. Mean quality factor,
Q
¯
is calculated using the ICRP 60 and ICRU 40 recommendations. The Relative Biological Effectiveness (RBE) of HSG tumour cell at 10% survival level is calculated based on Microdosimetric Kinetic Model. Main results.
Q
¯
I
C
R
P
,
Q
¯
ICRU
and RBE for antiprotons are higher by a factor of about 3.60, 3.41 and 1.24, respectively, at Bragg-peak and higher by a factor of about 1.41, 1.76 and 1.05, respectively, at plateau region of depth-dose profile when compared to protons. At 15 cm depth along the central axis,
Q
¯
ICRP
,
Q
¯
ICRU
and RBE for protons are higher by a factor of about 1.42, 1.66 and 1.26, respectively, when compared to antiprotons. At the off-axis distance (Ld
) of 6 cm (at 11.5 cm depth in water),
Q
¯
ICRP
and
Q
¯
ICRU
of protons are higher than that of antiproton whereas the trend is opposite at off-axis distance of 4 cm. At Ld
= 4 cm (at 11.5 cm depth in water), RBE of antiprotons is higher by about 4% than protons whereas at Ld
= 6 cm, RBE of protons is higher by about 13% than antiprotons. Significance. The study shows that antiproton radiotherapy is advantageous as compared to protons considering enhancements in the absorbed dose and RBE-weighed dose values at the Bragg-peak.
Collapse
|
13
|
Kozłowska WS, Carante MP, Aricò G, Embriaco A, Ferrari A, Magro G, Mairani A, Ramos R, Sala P, Georg D, Ballarini F. First application of the BIANCA biophysical model to carbon-ion patient cases. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac702b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/16/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. The main objective of this work consists of applying, for the first time, the BIANCA (BIophysical ANalysis of Cell death and chromosome Aberrations) biophysical model to the RBE calculation for C-ion cancer patients, and comparing the outcomes with those obtained by the LEM I model, which is applied in clinics. Indeed, the continuous development of heavy-ion cancer therapy requires modelling of biological effects of ion beams on tumours and normal tissues. The relative biological effectiveness (RBE) of heavy ions is higher than that of protons, with a significant variation along the beam path. Therefore, it requires a precise modelling, especially for the pencil-beam scanning technique. Currently, two radiobiological models, LEM I and MKM, are in use for heavy ions in scanned pencil-beam facilities. Approach. Utilizing an interface with the FLUKA Particle Therapy Tool, BIANCA was applied to re-calculate the RBE-weighted dose distribution for carbon-ion treatment of three patients (chordoma, head-and-neck and prostate) previously irradiated at CNAO, where radiobiological optimization was based on LEM I. The predictions obtained by BIANCA were based either on chordoma cell survival (RBE
surv
), or on dicentric aberrations in peripheral blood lymphocytes (RBE
ab
), which are indicators of late normal tissue damage, including secondary tumours. The simulation outcomes were then compared with those provided by LEM I. Main results. While in the target and in the entrance channel BIANCA predictions were lower than those obtained by LEM I, the two models provided very similar results in the considered OAR. The observed differences between RBE
surv
and RBE
ab
(which were also dependent on fractional dose and LET) suggest that in normal tissues the information on cell survival should be integrated by information more closely related to the induction of late damage, such as chromosome aberrations. Significance. This work showed that BIANCA is suitable for treatment plan optimization in ion-beam therapy, especially considering that it can predict both cell survival and chromosome aberrations and has previously shown good agreement with carbon-ion experimental data.
Collapse
|
14
|
Li P, Hong Z, Li Y, Fu S, Zhang Q. Two-Year Toxicity and Efficacy of Carbon Ion Radiotherapy in the Treatment of Localized Prostate Cancer: A Single-Centered Study. Front Oncol 2022; 11:808216. [PMID: 35223457 PMCID: PMC8881099 DOI: 10.3389/fonc.2021.808216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/27/2021] [Indexed: 11/25/2022] Open
Abstract
Background We aimed at determining the safety and feasibility of spot-scanning carbon ion radiotherapy (CIRT) for patients with localized prostate cancer. Methods We enrolled 118 patients with localized prostate cancer who underwent treatment with spot-scanning CIRT at the Shanghai Proton and Heavy Ion Center (SPHIC) from January 2016 to December 2020. The dose was gradually increased from relative biological effectiveness (RBE)-weighted dose (DRBE) = 59.2–65.6 Gy in 16 fractions. The primary endpoint was the occurrence of acute and late toxicities, while the secondary endpoints were biochemical relapse-free survival (bRFS), distant metastasis-free survival (DMFS), prostate cancer-specific survival (PCSS), and overall survival (OS). Results The median follow-up time was 30.2 months (4.8–62.7 months). Acute grade 1 and 2 genitourinary (GU) toxicities were 15.3% and 18.6%, while acute grade 1 and 2 gastrointestinal (GI) toxicities were 2.5% and 0%, respectively. Late grade 1 and 2 GU toxicities were 4.2% and 1.7%, respectively. No late GI toxicity was observed. Moreover, there were no cases of severe acute or late toxicity (≥ grade 3). No significant association were observed between the factors and the acute GU toxicities, except for clinical target volume (CTV) (p = 0.031) on multivariate analysis. The 2-year bRFS, DMFS, PCSS, and OS were 100%, 100%, 100%, and 98.8%, respectively. Conclusion The 2-year outcomes were encouraging, providing additional and useful information on the feasibility and safety of spot-scanning CIRT for treating prostate cancer. Thus, we recommend long-term follow-up and prospective multicentered studies to reinforce the role of CIRT in the management of localized prostate cancer.
Collapse
Affiliation(s)
- Ping Li
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Zhengshan Hong
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Yongqiang Li
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Shen Fu
- Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Fudan University, Shanghai, China
- Department of Radiation Oncology, Shanghai Concord Cancer Hospital, Shanghai, China
| | - Qing Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- *Correspondence: Qing Zhang,
| |
Collapse
|
15
|
Rucinski A, Biernacka A, Schulte R. Applications of nanodosimetry in particle therapy planning and beyond. Phys Med Biol 2021; 66. [PMID: 34731854 DOI: 10.1088/1361-6560/ac35f1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/03/2021] [Indexed: 12/28/2022]
Abstract
This topical review summarizes underlying concepts of nanodosimetry. It describes the development and current status of nanodosimetric detector technology. It also gives an overview of Monte Carlo track structure simulations that can provide nanodosimetric parameters for treatment planning of proton and ion therapy. Classical and modern radiobiological assays that can be used to demonstrate the relationship between the frequency and complexity of DNA lesion clusters and nanodosimetric parameters are reviewed. At the end of the review, existing approaches of treatment planning based on relative biological effectiveness (RBE) models or dose-averaged linear energy transfer are contrasted with an RBE-independent approach based on nandosimetric parameters. Beyond treatment planning, nanodosimetry is also expected to have applications and give new insights into radiation protection dosimetry.
Collapse
Affiliation(s)
| | - Anna Biernacka
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | | |
Collapse
|
16
|
Solovev A, Troshina M, Vladimir P, Saburov V, Chernukha A, Moiseev A, Koryakina E, Potetnya V, Koryakin S, Soldatov A, Kaprin A. In vitro modified microdosimetric kinetic model-based predictions for B14-150 cells survival in 450 MeV/u carbon ion beam with aluminum ridge filter for biologically optimized spread-out Bragg peak. Biomed Phys Eng Express 2021; 8. [PMID: 34879364 DOI: 10.1088/2057-1976/ac414f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/08/2021] [Indexed: 11/11/2022]
Abstract
The relative biological efficiency of particle irradiation could be predicted with a wide variety of radiobiological models for various end-points. We validate the forecast of modified Microdosimetric Kinetic Model in vitro using combined data of reference Co-60 radiation and carbon ion plateau data for specific cell line to optimize the survival function in spread-out Bragg Peak obtained with an especially designed ridge filter. We used Geant4 Monte-Carlo software to simulate the fragment contribution along Bragg curve inside water phantom, open-source toolkit Survival to predict the expected linear-quadratic model parameters for each fragment, and in-house software to form the total survival curve in spread-out Bragg Peak. The irradiation was performed at U-70 synchrotron with an especially designed Aluminum ridge filter under the control of PTW and in-house ionization chambers. The cell clonogenic assay was conducted with the B14-150 cell line. The data analysis was accomplished using scipy and CERN ROOT. The clonogenic assay represents the survival in spread-out Bragg Peak at different points and qualitatively follows the modeled survival curve very well. The quantitative difference is within 3σ, and the deviation might be explained by the uncertainties of physical modeling using Monte-Carlo methods. Overall, the obtained results are promising for further usage in radiobiological studies or carbon ion radiotherapy. Shaping the survival curve in the region of interest (i.e., spread-out Bragg Peak) is a comprehensive task that requires high-performance computing approaches. Nevertheless, the method's potential application is related to the development of next-generation treatment planning systems for ion beams. This can open a wide range of improvements in patient treatment outcome, provide new optimized fractionation regimes or optimized dose delivery schemes, and serve as an entrance point to the translational science approach.
Collapse
Affiliation(s)
- Aleksei Solovev
- Radiation Biophysics, A Tsyb Medical Radiological Research Center - Branch of FSBI NMRRC of the Ministry of Health of Russia, Zhukov st., 10, Obninsk, Kaluga region, 249031, RUSSIAN FEDERATION
| | - Marina Troshina
- Radiation Biophysics, A Tsyb Medical Radiological Research Center - Branch of FSBI NMRRC of the Ministry of Health of Russia, 10, Zhukov street, Obninsk, Kaluga region, 249031, RUSSIAN FEDERATION
| | - Pikalov Vladimir
- FSBI Institute of High Energy Physics named after A A Logunov of the National Research Centre Kurchatov Institute, 1, Nuaki sqaure, Protvino, Moskovskaâ, 142281, RUSSIAN FEDERATION
| | - Vyacheslav Saburov
- Radiation Biophysics, A Tsyb Medical Radiological Research Center - Branch of FSBI NMRRC of the Ministry of Health of Russia, 10, Zhukov street, Obninsk, Kaluga region, 249031, RUSSIAN FEDERATION
| | - Aleksandr Chernukha
- Radiation Biophysics, A Tsyb Medical Radiological Research Center - Branch of FSBI NMRRC of the Ministry of Health of Russia, 10, Zhukov street, Obninsk, Kaluga region, 249031, RUSSIAN FEDERATION
| | - Aleksandr Moiseev
- Radiation Biophysics, A Tsyb Medical Radiological Research Center - Branch of FSBI NMRRC of the Ministry of Health of Russia, 10, Zhukov street, Obninsk, Kaluga region, 249031, RUSSIAN FEDERATION
| | - Ekaterina Koryakina
- Radiation Biophysics, A Tsyb Medical Radiological Research Center - Branch of FSBI NMRRC of the Ministry of Health of Russia, 10, Zhukov street, Obninsk, Kaluga region, 249031, RUSSIAN FEDERATION
| | - Vladimir Potetnya
- Radiation Biophysics, A Tsyb Medical Radiological Research Center - Branch of FSBI NMRRC of the Ministry of Health of Russia, 10, Zhukov street, Obninsk, Kaluga region, 249031, RUSSIAN FEDERATION
| | - Sergey Koryakin
- Radiation Biophysics, A Tsyb Medical Radiological Research Center - Branch of FSBI NMRRC of the Ministry of Health of Russia, 10, Zhukov street, Obninsk, Kaluga region, 249031, RUSSIAN FEDERATION
| | - Aleksandr Soldatov
- FSBI Institute of High Energy Physics named after A A Logunov of the National Research Centre Kurchatov Institute, 1. Nauki square, Protvino, Moskovskaâ, 142281, RUSSIAN FEDERATION
| | - Andrey Kaprin
- FSBI NMRRC of the Ministry of Health of the Russian Federation, 4, Korolev street, Obninsk, Kaluga region, 249036, RUSSIAN FEDERATION
| |
Collapse
|
17
|
Durante M, Debus J, Loeffler JS. Physics and biomedical challenges of cancer therapy with accelerated heavy ions. NATURE REVIEWS. PHYSICS 2021; 3:777-790. [PMID: 34870097 PMCID: PMC7612063 DOI: 10.1038/s42254-021-00368-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 05/05/2023]
Abstract
Radiotherapy should have low toxicity in the entrance channel (normal tissue) and be very effective in cell killing in the target region (tumour). In this regard, ions heavier than protons have both physical and radiobiological advantages over conventional X-rays. Carbon ions represent an excellent combination of physical and biological advantages. There are a dozen carbon-ion clinical centres in Europe and Asia, and more under construction or at the planning stage, including the first in the USA. Clinical results from Japan and Germany are promising, but a heated debate on the cost-effectiveness is ongoing in the clinical community, owing to the larger footprint and greater expense of heavy ion facilities compared with proton therapy centres. We review here the physical basis and the clinical data with carbon ions and the use of different ions, such as helium and oxygen. Research towards smaller and cheaper machines with more effective beam delivery is necessary to make particle therapy affordable. The potential of heavy ions has not been fully exploited in clinics and, rather than there being a single 'silver bullet', different particles and their combination can provide a breakthrough in radiotherapy treatments in specific cases.
Collapse
Affiliation(s)
- Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Jürgen Debus
- Department of Radiation Oncology and Heidelberg Ion Beam Therapy Center, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jay S. Loeffler
- Departments of Radiation Oncology and Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Chen G, Han Y, Zhang H, Tu W, Zhang S. Radiotherapy-Induced Digestive Injury: Diagnosis, Treatment and Mechanisms. Front Oncol 2021; 11:757973. [PMID: 34804953 PMCID: PMC8604098 DOI: 10.3389/fonc.2021.757973] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy is one of the main therapeutic methods for treating cancer. The digestive system consists of the gastrointestinal tract and the accessory organs of digestion (the tongue, salivary glands, pancreas, liver and gallbladder). The digestive system is easily impaired during radiotherapy, especially in thoracic and abdominal radiotherapy. In this review, we introduce the physical classification, basic pathogenesis, clinical characteristics, predictive/diagnostic factors, and possible treatment targets of radiotherapy-induced digestive injury. Radiotherapy-induced digestive injury complies with the dose-volume effect and has a radiation-based organ correlation. Computed tomography (CT), MRI (magnetic resonance imaging), ultrasound (US) and endoscopy can help diagnose and evaluate the radiation-induced lesion level. The latest treatment approaches include improvement in radiotherapy (such as shielding, hydrogel spacers and dose distribution), stem cell transplantation and drug administration. Gut microbiota modulation may become a novel approach to relieving radiogenic gastrointestinal syndrome. Finally, we summarized the possible mechanisms involved in treatment, but they remain varied. Radionuclide-labeled targeting molecules (RLTMs) are promising for more precise radiotherapy. These advances contribute to our understanding of the assessment and treatment of radiation-induced digestive injury.
Collapse
Affiliation(s)
- Guangxia Chen
- Department of Gastroenterology, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Yi Han
- Department of Gastroenterology, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Haihan Zhang
- Department of Gastroenterology, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Wenling Tu
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Shuyu Zhang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China.,West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Pietrzak M, Mietelska M, Bancer A, Rucinski A, Brzozowska B. Geant4-DNA modeling of nanodosimetric quantities in the Jet Counter for alpha particles. Phys Med Biol 2021; 66. [PMID: 34706345 DOI: 10.1088/1361-6560/ac33eb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/27/2021] [Indexed: 11/11/2022]
Abstract
The purpose of this work was to validate the calculation accuracy of nanodosimetric quantities in Geant4-DNA track structure simulation code. We implemented the Jet Counter (JC) nanodosimeter geometry in the simulation platform and quantified the impact of the Geant4-DNA physics models and JC detector performance on the ionization cluster size distributions (ICSD). ICSD parameters characterize the quality of radiation field and are supposed to be correlated to the complexity of the initial DNA damage in nanoscale and eventually the response of biological systems to radiation. We compared Monte Carlo simulations of ICSD in JC geometry performed using Geant4-DNA and PTra codes with experimental data collected for alpha particles at 3.8 MeV. We investigated the impact of simulation and experimental settings, i.e., three Geant4-DNA physics models, three sizes of a nanometer sensitive volume, gas to water density scaling procedure, JC ion extraction efficiency and the presence of passive components of the detector on the ICSD and their parameters. We found that ICSD in JC geometry obtained from Geant4-DNA simulations in water correspond well to ICSD measurements in nitrogen gas for all investigated settings, while the best agreement is for Geant4-DNA physics option 4. This work also discusses the accuracy and robustness of ICSD parameters in the context of the application of track structure simulation methods for treatment planning in particle therapy.
Collapse
Affiliation(s)
| | - Monika Mietelska
- National Centre for Nuclear Research, Świerk, Poland.,Biomedical Physics Division, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | | | | | - Beata Brzozowska
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, Warsaw, Poland
| |
Collapse
|
20
|
Park S, Demizu Y, Suga M, Taniguchi S, Tanaka S, Maehata I, Takeda M, Takahashi D, Matsuo Y, Sulaiman NS, Terashima K, Tokumaru S, Furukawa K, Okimoto T. Predicted probabilities of brain injury after carbon ion radiotherapy for head and neck and skull base tumors in long-term survivors. Radiother Oncol 2021; 165:152-158. [PMID: 34718054 DOI: 10.1016/j.radonc.2021.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND PURPOSE We aimed to determine the risk factors for radiation-induced brain injury (RIBI1) after carbon ion radiotherapy (CIRT) to predict their probabilities in long-term survivors. MATERIALS AND METHODS We evaluated 104 patients with head, neck, and skull base tumors who underwent CIRT in a regimen of 32 fractions and were followed up for at least 24 months. RIBI was assessed using the Common Terminology Criteria for Adverse Events. RESULTS The median follow-up period was 45.5 months; 19 (18.3 %) patients developed grade ≥2 RIBI. The maximal absolute dose covering 5 mL of the brain (D5ml) was the only significant risk factor for grade ≥2 RIBI in the multivariate logistic regression analysis (p = 0.001). The tolerance doses of D5ml for the 5% and 50% probabilities of developing grade ≥2 RIBI were estimated to be 55.4 Gy (relative biological effectiveness [RBE]) and 68.4 Gy (RBE) by a logistic model, respectively. CONCLUSION D5ml was most significantly associated with grade ≥2 RIBI and may enable the prediction of its probability.
Collapse
Affiliation(s)
- SungChul Park
- Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Japan.
| | - Yusuke Demizu
- Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Japan; Department of Radiation Oncology, Hyogo Ion Beam Medical Center Kobe Proton Center, Japan
| | - Masaki Suga
- Department of Radiation Physics, Hyogo Ion Beam Medical Center, Tatsuno, Japan
| | - Shingo Taniguchi
- Department of Radiation Technology, Hyogo Ion Beam Medical Center, Tatsuno, Japan
| | - Shinichi Tanaka
- Department of Radiation Technology, Hyogo Ion Beam Medical Center, Tatsuno, Japan
| | - Itsumi Maehata
- Department of Radiation Technology, Hyogo Ion Beam Medical Center, Tatsuno, Japan
| | - Mikuni Takeda
- Department of Radiation Technology, Hyogo Ion Beam Medical Center, Tatsuno, Japan
| | - Daiki Takahashi
- Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Japan
| | - Yoshiro Matsuo
- Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Japan
| | | | - Kazuki Terashima
- Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Japan
| | - Sunao Tokumaru
- Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Japan
| | - Kyoji Furukawa
- Biostatistics Center, Kurume University Graduate School of Medicine, Fukuoka, Japan
| | - Tomoaki Okimoto
- Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Japan
| |
Collapse
|
21
|
Liu W, Chen B, Zheng H, Xing Y, Chen G, Zhou P, Qian L, Min Y. Advances of Nanomedicine in Radiotherapy. Pharmaceutics 2021; 13:pharmaceutics13111757. [PMID: 34834172 PMCID: PMC8622383 DOI: 10.3390/pharmaceutics13111757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy (RT) remains one of the current main treatment strategies for many types of cancer. However, how to improve RT efficiency while reducing its side effects is still a large challenge to be overcome. Advancements in nanomedicine have provided many effective approaches for radiosensitization. Metal nanoparticles (NPs) such as platinum-based or hafnium-based NPs are proved to be ideal radiosensitizers because of their unique physicochemical properties and high X-ray absorption efficiency. With nanoparticles, such as liposomes, bovine serum albumin, and polymers, the radiosensitizing drugs can be promoted to reach the tumor sites, thereby enhancing anti-tumor responses. Nowadays, the combination of some NPs and RT have been applied to clinical treatment for many types of cancer, including breast cancer. Here, as well as reviewing recent studies on radiotherapy combined with inorganic, organic, and biomimetic nanomaterials for oncology, we analyzed the underlying mechanisms of NPs radiosensitization, which may contribute to exploring new directions for the clinical translation of nanoparticle-based radiosensitizers.
Collapse
Affiliation(s)
- Wei Liu
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; (W.L.); (P.Z.)
| | - Bo Chen
- Department of Bio-X Interdisciplinary Science at Hefei National Laboratory (HFNL) for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China; (B.C.); (Y.M.)
| | - Haocheng Zheng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (H.Z.); (Y.X.); (G.C.)
- CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Yun Xing
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (H.Z.); (Y.X.); (G.C.)
- CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Guiyuan Chen
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (H.Z.); (Y.X.); (G.C.)
- CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Peijie Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; (W.L.); (P.Z.)
| | - Liting Qian
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; (W.L.); (P.Z.)
- Correspondence:
| | - Yuanzeng Min
- Department of Bio-X Interdisciplinary Science at Hefei National Laboratory (HFNL) for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China; (B.C.); (Y.M.)
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (H.Z.); (Y.X.); (G.C.)
- CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
22
|
Fukata K, Kawamura H, Kubo N, Kanai T, Torikoshi M, Nakano T, Tashiro M, Ohno T. Retrospective comparison of rectal toxicity between carbon-ion radiotherapy and intensity-modulated radiation therapy based on treatment plan, normal tissue complication probability model, and clinical outcomes in prostate cancer. Phys Med 2021; 90:6-12. [PMID: 34521017 DOI: 10.1016/j.ejmp.2021.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/04/2021] [Accepted: 08/27/2021] [Indexed: 10/20/2022] Open
Abstract
This retrospective study assessed the treatment planning data and clinical outcomes for 152 prostate cancer patients: 76 consecutive patients treated by carbon-ion radiation therapy and 76 consequtive patients treated by moderate hypo-fractionated intensity-modulated photon radiation therapy. These two modalities were compared using linear quadratic model equivalent doses in 2 Gy per fraction for rectal or rectal wall dose-volume histogram, 3.6 Gy per fraction-converted rectal dose-volume histogram, normal tissue complication probability model, and actual clinical outcomes. Carbon-ion radiation therapy was predicted to have a lower probability of rectal adverse events than intensity-modulated photon radiation therapy based on dose-volume histograms and normal tissue complication probability model. There was no difference in the clinical outcome of rectal adverse events between the two modalities compared in this study.
Collapse
Affiliation(s)
- Kyohei Fukata
- Cancer Center, School of Medicine, Keio University, Tokyo, Japan; Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan; Section of Medical Physics and Engineering, Kanagawa Cancer Center, Yokohama, Japan.
| | - Hidemasa Kawamura
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan; Gunma University Heavy Ion Medical Center, Gunma, Japan
| | - Nobuteru Kubo
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Tatsuaki Kanai
- Gunma University Heavy Ion Medical Center, Gunma, Japan; Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Masami Torikoshi
- Gunma University Heavy Ion Medical Center, Gunma, Japan; International Science and Technology Center, Nur-Sultan, Kazakhstan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan; Gunma University Heavy Ion Medical Center, Gunma, Japan; Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | | | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan; Gunma University Heavy Ion Medical Center, Gunma, Japan
| |
Collapse
|
23
|
Colombi S, Rovituso M, Scifoni E, Schuy C, Eichhorn A, Kraemer M, Durante M, La Tessa C. Interaction of therapeutic 12C ions with bone-like targets: physical characterization and dosimetric effect at material interfaces. Phys Med Biol 2021; 66. [PMID: 34438376 DOI: 10.1088/1361-6560/ac215f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/26/2021] [Indexed: 11/11/2022]
Abstract
Carbon therapy is a promising treatment option for cancer. The physical and biological properties of carbon ions can theoretically allow for the delivery of curative doses to the tumor, while simultaneously limiting risks of toxicity to adjacent healthy structures. The treatment effectiveness can be further improved by decreasing the uncertainties stemming from several sources, including the modeling of tissue heterogeneity. Current treatment plans employ density-based conversion methods to translate patient-specific anatomy into a water system, where dose distribution is calculated. This approach neglects differences in nuclear interactions stemming from the elemental composition of each tissue. In this work, we investigated the interaction of therapeutic carbon ions with bone-like materials. The study concentrated on nuclear interactions and included attenuation curves of 200 and 400 AMeV beams in different types of bones, as well as kinetic energy spectra of all charged fragments produced up to 29 degrees from the beam direction. The comparison between measurements and calculations of the treatment planning system TRiP98 indicated that bone tissue causes less fragmentation of carbon ions than water. Overall, hydrogen and helium particles were found to be the most abundant species, while heavier fragments were mostly detected within 5 degrees from the beam direction. We also investigated how the presence of a soft tissue-bone interface could affect the depth-dose profile. The results revealed a dose spike in the transition region, that extended from the entry channel to the target volume. The findings of this work indicated that the tissue-to-water conversion method based only on density considerations can result in dose inaccuracies. Tissue heterogeneity regions containing bones can potentially produce dose spikes, whose magnitude will depend on the patient anatomy. Dose uncertainties can be decreased by modeling nuclear interactions directly in bones, without applying the tissue-to-water conversion.
Collapse
Affiliation(s)
- S Colombi
- University of Trento, Via Sommarive 14, I-38123 Trento, Italy.,Trento Institute of Fundamental Physics and Applications (TIFPA), Via Sommarive 14, I-38123 Trento, Italy
| | - M Rovituso
- HollandPTC Proton Therapy Center, Delft, The Netherlands
| | - E Scifoni
- Trento Institute of Fundamental Physics and Applications (TIFPA), Via Sommarive 14, I-38123 Trento, Italy
| | - C Schuy
- GSI Helmholtzzentrum für Schwerionenforschung, Planckstrasse 1, D-64291 Darmstadt, Germany
| | | | - M Kraemer
- GSI Helmholtzzentrum für Schwerionenforschung, Planckstrasse 1, D-64291 Darmstadt, Germany
| | - M Durante
- GSI Helmholtzzentrum für Schwerionenforschung, Planckstrasse 1, D-64291 Darmstadt, Germany.,Technische Universität Darmstadt, Darmstadt, Germany
| | - C La Tessa
- University of Trento, Via Sommarive 14, I-38123 Trento, Italy.,Trento Institute of Fundamental Physics and Applications (TIFPA), Via Sommarive 14, I-38123 Trento, Italy
| |
Collapse
|
24
|
Sato H, Kasuya G, Ishikawa H, Nomoto A, Ono T, Nakajima M, Isozaki Y, Yamamoto N, Iwai Y, Nemoto K, Ichikawa T, Tsuji H. Long-term clinical outcomes after 12-fractionated carbon-ion radiotherapy for localized prostate cancer. Cancer Sci 2021; 112:3598-3606. [PMID: 34107139 PMCID: PMC8409298 DOI: 10.1111/cas.15019] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/27/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
There are no clinical reports of long-term follow-up after carbon-ion radiotherapy (CIRT) using a dose of 51.6 Gy (relative biological effectiveness [RBE]) in 12 fractions for localized prostate cancer, or of a comparison of clinical outcomes between passive and scanning beam irradiation. A total of 256 patients with localized prostate cancer who received CIRT at a dose of 51.6 Gy (RBE) in 12 fractions using two different beam delivery techniques (passive [n = 45] and scanning [n = 211]), and who were followed for more than 1 year, were analyzed. The biochemical relapse-free (bRF) rate was defined by the Phoenix definition, and the actuarial toxicity rates were evaluated using the Kaplan-Meier method. Of the 256 patients, 41 (16.0%), 111 (43.4%), and 104 (40.6%) were classified as low, intermediate, and high risk, respectively, after a median follow-up of 7.0 (range 1.1-10.4) years. Androgen deprivation therapy was performed in 212 patients (82.8%). The 5-year bRF rates of the low-, intermediate-, and high-risk patients were 95.1%, 90.9%, and 91.1%, respectively. The 5-year rates of grade 2 late gastrointestinal and genitourinary toxicities in all patients were 0.4% and 6.3%, respectively. No grade ≥3 toxicities were observed. There were no significant differences in the rates of bRF or grade 2 toxicities in patients who received passive irradiation versus scanning irradiation. Our long-term follow-up results showed that a CIRT regimen of 51.6 Gy (RBE) in 12 fractions for localized prostate cancer yielded a good therapeutic outcome and low toxicity rates irrespective of the beam delivery technique.
Collapse
Affiliation(s)
- Hiraku Sato
- Department of Radiation OncologyFaculty of MedicineYamagata UniversityYamagataJapan
| | - Goro Kasuya
- Quantum Medical Science DirectorateNational Institutes for Quantum and Radiological Science and Technology (formerly the National Institute of Radiological Science Hospital)QST HospitalChibaJapan
| | - Hitoshi Ishikawa
- Quantum Medical Science DirectorateNational Institutes for Quantum and Radiological Science and Technology (formerly the National Institute of Radiological Science Hospital)QST HospitalChibaJapan
| | - Akihiro Nomoto
- Quantum Medical Science DirectorateNational Institutes for Quantum and Radiological Science and Technology (formerly the National Institute of Radiological Science Hospital)QST HospitalChibaJapan
| | - Takashi Ono
- Department of Radiation OncologyFaculty of MedicineYamagata UniversityYamagataJapan
- Quantum Medical Science DirectorateNational Institutes for Quantum and Radiological Science and Technology (formerly the National Institute of Radiological Science Hospital)QST HospitalChibaJapan
| | - Mio Nakajima
- Quantum Medical Science DirectorateNational Institutes for Quantum and Radiological Science and Technology (formerly the National Institute of Radiological Science Hospital)QST HospitalChibaJapan
| | - Yuka Isozaki
- Quantum Medical Science DirectorateNational Institutes for Quantum and Radiological Science and Technology (formerly the National Institute of Radiological Science Hospital)QST HospitalChibaJapan
| | - Naoyoshi Yamamoto
- Quantum Medical Science DirectorateNational Institutes for Quantum and Radiological Science and Technology (formerly the National Institute of Radiological Science Hospital)QST HospitalChibaJapan
| | - Yuma Iwai
- Quantum Medical Science DirectorateNational Institutes for Quantum and Radiological Science and Technology (formerly the National Institute of Radiological Science Hospital)QST HospitalChibaJapan
- Department of RadiologyGraduate School of MedicineChiba UniversityChibaJapan
| | - Kenji Nemoto
- Department of Radiation OncologyFaculty of MedicineYamagata UniversityYamagataJapan
| | - Tomohiko Ichikawa
- Department of UrologyGraduate School of MedicineChiba UniversityChibaJapan
| | - Hiroshi Tsuji
- Quantum Medical Science DirectorateNational Institutes for Quantum and Radiological Science and Technology (formerly the National Institute of Radiological Science Hospital)QST HospitalChibaJapan
| | | |
Collapse
|
25
|
Bey A, Ma J, Furutani KM, Herman MG, Johnson JE, Foote RL, Beltran CJ. Nuclear Fragmentation Imaging for Carbon-Ion Radiation Therapy Monitoring: an In Silico Study. Int J Part Ther 2021; 8:25-36. [PMID: 35530183 PMCID: PMC9009459 DOI: 10.14338/ijpt-20-00040.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 07/08/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose This article presents an in vivo imaging technique based on nuclear fragmentation of carbon ions in irradiated tissues for potential real-time monitoring of carbon-ion radiation therapy (CIRT) treatment delivery and quality assurance purposes in clinical settings. Materials and Methods A proof-of-concept imaging and monitoring system (IMS) was devised to implement the technique. Monte Carlo simulations were performed for a prospective pencil-beam scanning CIRT nozzle. The development IMS benchmark considered a 5×5-cm2 pixelated charged-particle detector stack positioned downstream from a target phantom and list-mode data acquisition. The abundance and production origins, that is, vertices, of the detected fragments were studied. Fragment trajectories were approximated by straight lines and a beam back-projection algorithm was built to reconstruct the vertices. The spatial distribution of the vertices was then used to determine plan relevant markers. Results The IMS technique was applied for a simulated CIRT case, a primary brain tumor. Four treatment plan monitoring markers were conclusively recovered: a depth dose distribution correlated profile, ion beam range, treatment target boundaries, and the beam spot position. Promising millimeter-scale (3-mm, ≤10% uncertainty) beam range and submillimeter (≤0.6-mm precision for shifts <3 cm) beam spot position verification accuracies were obtained for typical therapeutic energies between 150 and 290 MeV/u. Conclusions This work demonstrated a viable online monitoring technique for CIRT treatment delivery. The method's strong advantage is that it requires few signal inputs (position and timing), which can be simultaneously acquired with readily available technology. Future investigations will probe the technique's applicability to motion-sensitive organ sites and patient tissue heterogeneities. In-beam measurements with candidate detector-acquisition systems are ultimately essential to validate the IMS benchmark performance and subsequent deployment in the clinic.
Collapse
Affiliation(s)
- Anissa Bey
- Department of Radiation Oncology, Mayo Clinic, Rochester MN, USA
| | - Jiasen Ma
- Department of Radiation Oncology, Mayo Clinic, Rochester MN, USA
| | - Keith M. Furutani
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Robert L. Foote
- Department of Radiation Oncology, Mayo Clinic, Rochester MN, USA
| | - Chris J. Beltran
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
26
|
Wang X, Chen X, Li G, Han X, Gao T, Liu W, Tang X. Application of Carbon Ion and Its Sensitizing Agent in Cancer Therapy: A Systematic Review. Front Oncol 2021; 11:708724. [PMID: 34290989 PMCID: PMC8287631 DOI: 10.3389/fonc.2021.708724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
Carbon ion radiation therapy (CIRT) is the most advanced radiation therapy (RT) available and offers new opportunities to improve cancer treatment and research. CIRT has a unique physical and biological advantage that allow them to kill tumor cells more accurately and intensively. So far, CIRT has been used in almost all types of malignant tumors, and showed good feasibility, safety and acceptable toxicity, indicating that CIRT has a wide range of development and application prospects. In addition, in order to improve the biological effect of CIRT, scientists are also trying to investigate related sensitizing agents to enhance the killing ability of tumor cells, which has attracted extensive attention. In this review, we tried to systematically review the rationale, advantages and problems, the clinical applications and the sensitizing agents of the CIRT. At the same time, the prospects of the CIRT in were prospected. We hope that this review will help researchers interested in CIRT, sensitizing agents, and radiotherapy to understand their magic more systematically and faster, and provide data reference and support for bioanalysis, clinical medicine, radiotherapy, heavy ion therapy, and nanoparticle diagnostics.
Collapse
Affiliation(s)
- Xiaolin Wang
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Xiaojun Chen
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Guangfei Li
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Xiao Han
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Tianxin Gao
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Weifeng Liu
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Xiaoying Tang
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
27
|
Ebner DK, Frank SJ, Inaniwa T, Yamada S, Shirai T. The Emerging Potential of Multi-Ion Radiotherapy. Front Oncol 2021; 11:624786. [PMID: 33692957 PMCID: PMC7937868 DOI: 10.3389/fonc.2021.624786] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/04/2021] [Indexed: 12/26/2022] Open
Abstract
Research into high linear energy transfer (LET) radiotherapy now spans over half a century, beginning with helium and deuteron treatment in 1952 and today ranging from fast neutrons to carbon-ions. Owing to pioneering work initially in the United States and thereafter in Germany and Japan, increasing focus is on the carbon-ion beam: 12 centers are in operation, with five under construction and three in planning. While the carbon-ion beam has demonstrated unique and promising suitability in laboratory and clinical trials toward the hypofractionated treatment of hypoxic and/or radioresistant cancer, substantial developmental potential remains. Perhaps most notable is the ability to paint LET in a tumor, theoretically better focusing damage delivery within the most resistant areas. However, the technique may be limited in practice by the physical properties of the beams themselves. A heavy-ion synchrotron may provide irradiation with multiple heavy-ions: carbon, helium, and oxygen are prime candidates. Each ion varies in LET distribution, and so a methodology combining the use of multiple ions into a uniform LET distribution within a tumor may allow for even greater treatment potential in radioresistant cancer.
Collapse
Affiliation(s)
- Daniel K Ebner
- National Institute of Radiological Science (NIRS), National Institutes of Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Steven J Frank
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Taku Inaniwa
- National Institute of Radiological Science (NIRS), National Institutes of Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Shigeru Yamada
- National Institute of Radiological Science (NIRS), National Institutes of Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Toshiyuki Shirai
- National Institute of Radiological Science (NIRS), National Institutes of Quantum and Radiological Science and Technology (QST), Chiba, Japan
| |
Collapse
|
28
|
Glowa C, Peschke P, Brons S, Debus J, Karger CP. Effectiveness of fractionated carbon ion treatments in three rat prostate tumors differing in growth rate, differentiation and hypoxia. Radiother Oncol 2021; 158:131-137. [PMID: 33587966 DOI: 10.1016/j.radonc.2021.01.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE To quantify the fractionation dependence of carbon (12C) ions and photons in three rat prostate carcinomas differing in growth rate, differentiation and hypoxia. MATERIAL AND METHODS Three sublines (AT1, HI, H) of syngeneic rat prostate tumors (R3327) were treated with six fractions of either 12C-ions or 6 MV photons. Dose-response curves were determined for the endpoint local tumor control within 300 days. The doses at 50% control probability (TCD50) and the relative biological effectiveness (RBE) of 12C-ions were calculated and compared with the values from single and split dose studies. RESULTS Experimental findings for the three tumor sublines revealed (i) a comparably increased RBE (2.47-2.67), (ii) a much smaller variation of the radiation response for 12C-ions (TCD50: 35.8-43.7 Gy) than for photons (TCD50: 91.3-116.6 Gy), (iii) similarly steep (AT1) or steeper (HI, H) dose-response curves for 12C-ions than for photons, (iv) a larger fractionation effect for photons than for 12C-ions, and (v) a steeper increase of the RBE with decreasing fractional dose for the well-differentiated H- than for the less-differentiated HI- and AT1-tumors, reflected by (vi) the smallest α/β-value for H-tumors after photon irradiation. CONCLUSION 12C-ions reduce the radiation response heterogeneity between the three tumor sublines as well as within each subline relative to photon treatments, independently of fractionation. The dose dependence of the RBE varies between tumors of different histology. The results support the use of hypofractionated carbon ion treatments in radioresistant tumors.
Collapse
Affiliation(s)
- Christin Glowa
- Department of Radiation Oncology and Radiotherapy, University Hospital Heidelberg, Germany; Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Peter Peschke
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Stephan Brons
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology and Radiotherapy, University Hospital Heidelberg, Germany; Clinical Cooperation Unit Radiation Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Christian P Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| |
Collapse
|
29
|
The RBE in ion beam radiotherapy: In vivo studies and clinical application. Z Med Phys 2021; 31:105-121. [PMID: 33568337 DOI: 10.1016/j.zemedi.2020.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022]
Abstract
Ion beams used for radiotherapy exhibit an increased relative biological effectiveness (RBE), which depends on several physical treatment parameters as well as on biological factors of the irradiated tissues. While the RBE is an experimentally well-defined quantity, translation to patients is complex and requires radiobiological studies, dedicated models to calculate the RBE in treatment planning as well as strategies for dose prescription. Preclinical in vivo studies and analysis of clinical outcome are important to validate and refine RBE-models. This review describes the concept of the experimental and clinical RBE and explains the fundamental dependencies of the RBE based on in vitro experiments. The available preclinical in vivo studies on normal tissue and tumor RBE for ions heavier than protons are reviewed in the context of the historical and present development of ion beam radiotherapy. In addition, the role of in vivo RBE-values in the development and benchmarking of RBE-models as well as the transition of these models to clinical application are described. Finally, limitations in the translation of experimental RBE-values into clinical application and the direction of future research are discussed.
Collapse
|
30
|
Buizza G, Paganelli C, D’Ippolito E, Fontana G, Molinelli S, Preda L, Riva G, Iannalfi A, Valvo F, Orlandi E, Baroni G. Radiomics and Dosiomics for Predicting Local Control after Carbon-Ion Radiotherapy in Skull-Base Chordoma. Cancers (Basel) 2021; 13:339. [PMID: 33477723 PMCID: PMC7832399 DOI: 10.3390/cancers13020339] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 02/08/2023] Open
Abstract
Skull-base chordoma (SBC) can be treated with carbon ion radiotherapy (CIRT) to improve local control (LC). The study aimed to explore the role of multi-parametric radiomic, dosiomic and clinical features as prognostic factors for LC in SBC patients undergoing CIRT. Before CIRT, 57 patients underwent MR and CT imaging, from which tumour contours and dose maps were obtained. MRI and CT-based radiomic, and dosiomic features were selected and fed to two survival models, singularly or by combining them with clinical factors. Adverse LC was given by in-field recurrence or tumour progression. The dataset was split in development and test sets and the models' performance evaluated using the concordance index (C-index). Patients were then assigned a low- or high-risk score. Survival curves were estimated, and risk groups compared through log-rank tests (after Bonferroni correction α = 0.0083). The best performing models were built on features describing tumour shape and dosiomic heterogeneity (median/interquartile range validation C-index: 0.80/024 and 0.79/0.26), followed by combined (0.73/0.30 and 0.75/0.27) and CT-based models (0.77/0.24 and 0.64/0.28). Dosiomic and combined models could consistently stratify patients in two significantly different groups. Dosiomic and multi-parametric radiomic features showed to be promising prognostic factors for LC in SBC treated with CIRT.
Collapse
Affiliation(s)
- Giulia Buizza
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; (C.P.); (G.B.)
| | - Chiara Paganelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; (C.P.); (G.B.)
| | - Emma D’Ippolito
- Radiotherapists Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy; (E.D.); (G.R.); (A.I.); (F.V.); (E.O.)
| | - Giulia Fontana
- Clinical Bioengineering Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy;
| | - Silvia Molinelli
- Medical Physics Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy;
| | - Lorenzo Preda
- Radiology Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy;
- Unit of Radiology, Department of Intensive Medicine, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giulia Riva
- Radiotherapists Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy; (E.D.); (G.R.); (A.I.); (F.V.); (E.O.)
| | - Alberto Iannalfi
- Radiotherapists Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy; (E.D.); (G.R.); (A.I.); (F.V.); (E.O.)
| | - Francesca Valvo
- Radiotherapists Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy; (E.D.); (G.R.); (A.I.); (F.V.); (E.O.)
| | - Ester Orlandi
- Radiotherapists Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy; (E.D.); (G.R.); (A.I.); (F.V.); (E.O.)
| | - Guido Baroni
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; (C.P.); (G.B.)
- Clinical Bioengineering Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy;
| |
Collapse
|
31
|
Malouff TD, Vallow LA, Seneviratne D, Mahajan A, Foote RL, Hoppe B, Beltran C, Buskirk SJ, Krishnan S, Trifiletti DM. Estimating the Number of Patients Eligible for Carbon Ion Radiotherapy in the United States. Int J Part Ther 2020; 7:31-41. [PMID: 33274255 PMCID: PMC7707324 DOI: 10.14338/ijpt-19-00079.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 07/23/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose Carbon ion radiotherapy (CIRT) is an emerging radiotherapy modality with potential advantages over conventional photon-based therapy, including exhibiting a Bragg peak and greater relative biological effectiveness, leading to a higher degree of cell kill. Currently, 13 centers are treating with CIRT, although there are no centers in the United States. We aimed to estimate the number of patients eligible for a CIRT center in the United States. Materials and Methods Using the National Cancer Database, we analyzed the incidence of cancers frequently treated with CIRT internationally (glioblastoma, hepatocellular carcinoma, cholangiocarcinoma, locally advanced pancreatic cancer, non-small cell lung cancer, localized prostate cancer, soft tissue sarcomas, and specific head and neck cancers) diagnosed in the United States in 2015. The percentage and number of patients likely benefiting from CIRT was estimated with inclusion criteria from clinical trials and retrospective studies, and that ratio was applied to 2019 cancer statistics. An adaption correction rate was applied to estimate the potential number of patients treated with CIRT. Given the high dependency on prostate and lung cancers and the uncertain adoption of CIRT in those diseases, the data were then reanalyzed excluding those diagnoses. Results Of the 1 127 455 new cases of cancer diagnosed in the United States in 2015, there were 213 073 patients (18.9%) eligible for treatment with CIRT based on inclusion criteria. When applying this rate and the adaption correction rate to the 2019 incidence data, an estimated 89 946 patients (42.2% of those fitting inclusion criteria) are eligible for CIRT. Excluding prostate and lung cancers, there were an estimated 8922 patients (10% of those eligible for CIRT) eligible for CIRT. The number of patients eligible for CIRT is estimated to increase by 25% to 27.7% by 2025. Conclusion Our analysis suggests a need for CIRT in the United States in 2019, with the number of patients possibly eligible to receive CIRT expected to increase during the coming 5 to 10 years.
Collapse
Affiliation(s)
- Timothy D Malouff
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Laura A Vallow
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Robert L Foote
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Bradford Hoppe
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Chris Beltran
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Steven J Buskirk
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA
| | | |
Collapse
|
32
|
Kirkby KJ, Kirkby NF, Burnet NG, Owen H, Mackay RI, Crellin A, Green S. Heavy charged particle beam therapy and related new radiotherapy technologies: The clinical potential, physics and technical developments required to deliver benefit for patients with cancer. Br J Radiol 2020; 93:20200247. [PMID: 33021102 PMCID: PMC7715999 DOI: 10.1259/bjr.20200247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 11/05/2022] Open
Abstract
In the UK, one in two people will develop cancer during their lifetimes and radiotherapy (RT) plays a key role in effective treatment. High energy proton beam therapy commenced in the UK National Health Service in 2018. Heavier charged particles have potential advantages over protons by delivering more dose in the Bragg peak, with a sharper penumbra, lower oxygen dependence and increased biological effectiveness. However, they also require more costly equipment including larger gantries to deliver the treatment. There are significant uncertainties in the modelling of relative biological effectiveness and the effects of the fragmentation tail which can deliver dose beyond the Bragg peak. These effects need to be carefully considered especially in relation to long-term outcomes.In 2019, a group of clinicians, clinical scientists, engineers, physical and life scientists from academia and industry, together with funding agency stakeholders, met to consider how the UK should address new technologies for RT, especially the use of heavier charged particles such as helium and carbon and new modes of delivery such as FLASH and spatially fractionated radiotherapy (SFRT).There was unanimous agreement that the UK should develop a facility for heavier charged particle therapy, perhaps constituting a new National Ion Research Centre to enable research using protons and heavier charged particles. Discussion followed on the scale and features, including which ions should be included, from protons through helium, boron, and lithium to carbon, and even oxygen. The consensus view was that any facility intended to treat patients must be located in a hospital setting while providing dedicated research space for physics, preclinical biology and clinical research with beam lines designed for both in vitro and in vivo research. The facility should to be able to investigate and deliver both ultra-high dose rate FLASH RT and SFRT (GRID, minibeams etc.). Discussion included a number of accelerator design options and whether gantries were required. Other potential collaborations might be exploited, including with space agencies, electronics and global communications industries and the nuclear industry.In preparation for clinical delivery, there may be opportunities to send patients overseas (for 12C or 4He ion therapy) using the model of the National Health Service (NHS) Proton Overseas Programme and to look at potential national clinical trials which include heavier ions, FLASH or SFRT. This could be accomplished under the auspices of NCRI CTRad (National Cancer Research Institute, Clinical and Translational Radiotherapy Research Working Group).The initiative should be a community approach, involving all interested parties with a vision that combines discovery science, a translational research capability and a clinical treatment facility. Barriers to the project and ways to overcome them were discussed. Finally, a set of different scenarios of features with different costs and timelines was constructed, with consideration given to the funding environment (prer-Covid-19) and need for cross-funder collaboration.
Collapse
Affiliation(s)
| | | | | | - Hywel Owen
- University of Manchester/Cockcroft Institute, Manchester, United Kingdom
| | | | | | - Stuart Green
- Department of Medical Physics, University Hospital Birmingham, Birmingham, Edgbaston, UK
| |
Collapse
|
33
|
Kumari S, Mukherjee S, Sinha D, Abdisalaam S, Krishnan S, Asaithamby A. Immunomodulatory Effects of Radiotherapy. Int J Mol Sci 2020; 21:E8151. [PMID: 33142765 PMCID: PMC7663574 DOI: 10.3390/ijms21218151] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Radiation therapy (RT), an integral component of curative treatment for many malignancies, can be administered via an increasing array of techniques. In this review, we summarize the properties and application of different types of RT, specifically, conventional therapy with x-rays, stereotactic body RT, and proton and carbon particle therapies. We highlight how low-linear energy transfer (LET) radiation induces simple DNA lesions that are efficiently repaired by cells, whereas high-LET radiation causes complex DNA lesions that are difficult to repair and that ultimately enhance cancer cell killing. Additionally, we discuss the immunogenicity of radiation-induced tumor death, elucidate the molecular mechanisms by which radiation mounts innate and adaptive immune responses and explore strategies by which we can increase the efficacy of these mechanisms. Understanding the mechanisms by which RT modulates immune signaling and the key players involved in modulating the RT-mediated immune response will help to improve therapeutic efficacy and to identify novel immunomodulatory drugs that will benefit cancer patients undergoing targeted RT.
Collapse
Affiliation(s)
- Sharda Kumari
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (S.K.); (D.S.); (S.A.)
| | - Shibani Mukherjee
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (S.K.); (D.S.); (S.A.)
| | - Debapriya Sinha
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (S.K.); (D.S.); (S.A.)
| | - Salim Abdisalaam
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (S.K.); (D.S.); (S.A.)
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA;
| | - Aroumougame Asaithamby
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (S.K.); (D.S.); (S.A.)
| |
Collapse
|
34
|
Petrović IM, Ristić Fira AM, Keta OD, Petković VD, Petringa G, Cirrone P, Cuttone G. A radiobiological study of carbon ions of different linear energy transfer in resistant human malignant cell lines. Int J Radiat Biol 2020; 96:1400-1412. [DOI: 10.1080/09553002.2020.1820609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ivan M. Petrović
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | | | - Otilija D. Keta
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Vladana D. Petković
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Giada Petringa
- Istituto Nazionale di Fisica Nucleare, LNS, Catania, Italy
| | - Pablo Cirrone
- Istituto Nazionale di Fisica Nucleare, LNS, Catania, Italy
| | | |
Collapse
|
35
|
Bertolet A, Carabe-Fernandez A. Clinical implications of variable relative biological effectiveness in proton therapy for prostate cancer. Acta Oncol 2020; 59:1171-1177. [PMID: 32427011 DOI: 10.1080/0284186x.2020.1762928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE To study the potential consequences of differences in the evaluation of variable versus uniform relative biological effectiveness calculations in proton radiotherapy for prostate cancer. METHODS AND MATERIAL Experimental data with proton beams suggest that relative biological effectiveness increases with linear energy transfer. This relation also depends on the α / β ratio, characteristic of a tissue and a considered endpoint. Three phenomenological models (Carabe et al., Wedenberg et al. and McNamara et al.) are compared to a mechanistic model based on microdosimetry (microdosimetric kinetic model) and to the current assumption of uniform relative biological effectiveness equal to 1.1 in a prostate case. RESULTS AND CONCLUSIONS Phenomenological models clearly predict higher relative biological effectiveness values compared to microdosimetric kinetic model, that seems to approach to the constant value of 1.1 adopted in the clinics, at least for low linear energy transfer values achieved in typical prostate proton plans. All models predict a higher increase of the relative biological effectiveness-weighted dose for the prostate tumor than for the rest of structures involved due to its lower α / β ratio, even when linear energy transfer is, in general, lower in the tumor than on the surroundings tissues. Prostate cancer is, therefore, a good candidate to take advantage of variable relative biological effectiveness, especially if linear energy transfer is enhanced within the tumor. However, the discrepancies among models hinder the clinical implementation of variable relative biological effectiveness.
Collapse
Affiliation(s)
- A. Bertolet
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - A. Carabe-Fernandez
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
36
|
Schaub L, Harrabi SB, Debus J. Particle therapy in the future of precision therapy. Br J Radiol 2020; 93:20200183. [PMID: 32795176 DOI: 10.1259/bjr.20200183] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The first hospital-based treatment facilities for particle therapy started operation about thirty years ago. Since then, the clinical experience with protons and carbon ions has grown continuously and more than 200,000 patients have been treated to date. The promising clinical results led to a rapidly increasing number of treatment facilities and many new facilities are planned or under construction all over the world. An inverted depth-dose profile combined with potential radiobiological advantages make charged particles a precious tool for the treatment of tumours that are particularly radioresistant or located nearby sensitive structures. A rising number of trials have already confirmed the benefits of particle therapy in selected clinical situations and further improvements in beam delivery, image guidance and treatment planning are expected. This review summarises some physical and biological characteristics of accelerated charged particles and gives some examples of their clinical application. Furthermore, challenges and future perspectives of particle therapy will be discussed.
Collapse
Affiliation(s)
- Lukas Schaub
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Semi Ben Harrabi
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
| | - Juergen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), partner site Heidelberg, Heidelberg, Germany
| |
Collapse
|
37
|
Mixed-beam approach for high-risk prostate cancer: Carbon-ion boost followed by photon intensity-modulated radiotherapy. Dosimetric and geometric evaluations (AIRC IG-14300). Phys Med 2020; 76:327-336. [PMID: 32750548 DOI: 10.1016/j.ejmp.2020.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE The aim was to evaluate dosimetric uncertainties of a mixed beam approach for patients with high-risk prostate cancer (PCa). The treatment consists of a carbon ion radiotherapy (CIRT) boost followed by whole-pelvis intensity-modulated RT (IMRT). MATERIALS AND METHODS Patients were treated with a CIRT boost of 16.6 Gy/4 fractions followed by whole-pelvis IMRT of 50 Gy/25 fractions, with consequent long term androgen deprivation therapy. Deformable computed tomography image registration (DIR) was performed and corresponding doses were used for plan sum. A comparative IMRT photon plan was obtained as whole-pelvis IMRT of 50 Gy/25 fractions followed by a boost of 28 Gy/14 fractions. DIR performances were evaluated through structure-related and image characteristics parameters. RESULTS Until now, five patients out of ten total enrolled ended the treatment. Dosimetric parameters were lower in CIRT + IMRT than IMRT-only plans for all organs at risk (OARs) except femoral heads. Regarding DIR evaluation, femoral heads were the less deformed OAR. Penile bulb, bladder and anal canal showed intermediate deformation. Rectum was the most deformed. DIR algorithms were patient (P)-dependent, as performances were the highest for P3 and P4, intermediate for P2 and P5, and the lowest for P1. CONCLUSIONS CIRT allows better OARs sparing while increasing the efficacy due to the higher radio-biological effect of carbon ions. However, a mixed beam approach could introduce DIR problems in multi-centric treatments with different operative protocols. The development of this prospective trial will lead to more mature data concerning the clinical impact of implementing DIR procedures in dose accumulation applications for high-risk PCa treatments.
Collapse
|
38
|
Liermann J, Shinoto M, Syed M, Debus J, Herfarth K, Naumann P. Carbon ion radiotherapy in pancreatic cancer: A review of clinical data. Radiother Oncol 2020; 147:145-150. [PMID: 32416281 DOI: 10.1016/j.radonc.2020.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/15/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022]
Abstract
Despite all efforts, pancreatic cancer remains a highly lethal disease. Only surgical resection offers a realistic chance of survival. But at diagnosis the majority of patients suffer from unresectable disease. Whereas guidelines clearly recommend systemic treatments in metastatic disease, data is limited to support a specific treatment option for locally advanced or borderline resectable pancreatic cancer. Therefore, there is an urgent need to improve treatment schemes addressing patients that suffer from unresectable pancreatic cancer. Chemotherapy, photon radiotherapy and combinations of both have shown improved local control rates but there is still a lack of evidence demonstrating an overall survival benefit of photon radiotherapy if no surgical resection is achieved. Impressive results of Japanese Phase I/II-trials investigating carbon ion radiotherapy in pancreatic cancer attracted global attention. Several studies have been initiated to validate and intensify this promising issue. This review gives an overview of the evidence and current use of carbon ion radiotherapy in pancreatic cancer.
Collapse
Affiliation(s)
- Jakob Liermann
- Heidelberg University Hospital, Department of Radiation Oncology, 69120 Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), 69120 Heidelberg, Germany.
| | - Makoto Shinoto
- Ion Beam Therapy Center, SAGA HIMAT Foundation, Saga, Japan.
| | - Mustafa Syed
- Heidelberg University Hospital, Department of Radiation Oncology, 69120 Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany.
| | - Jürgen Debus
- Heidelberg University Hospital, Department of Radiation Oncology, 69120 Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site Heidelberg, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Klaus Herfarth
- Heidelberg University Hospital, Department of Radiation Oncology, 69120 Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site Heidelberg, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Patrick Naumann
- Heidelberg University Hospital, Department of Radiation Oncology, 69120 Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), 69120 Heidelberg, Germany.
| |
Collapse
|
39
|
Giaj-Levra N, Borghetti P, Bruni A, Ciammella P, Cuccia F, Fozza A, Franceschini D, Scotti V, Vagge S, Alongi F. Current radiotherapy techniques in NSCLC: challenges and potential solutions. Expert Rev Anticancer Ther 2020; 20:387-402. [PMID: 32321330 DOI: 10.1080/14737140.2020.1760094] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Radiotherapy is an important therapeutic strategy in the management of non-small cell lung cancer (NSCLC). In recent decades, technological implementations and the introduction of image guided radiotherapy (IGRT) have significantly increased the accuracy and tolerability of radiation therapy.Area covered: In this review, we provide an overview of technological opportunities and future prospects in NSCLC management.Expert opinion: Stereotactic body radiotherapy (SBRT) is now considered the standard approach in patients ineligible for surgery, while in operable cases, it is still under debate. Additionally, in combination with systemic treatment, SBRT is an innovative option for managing oligometastatic patients and features encouraging initial results in clinical outcomes. To date, in inoperable locally advanced NSCLC, the radical dose prescription has not changed (60 Gy in 30 fractions), despite the median overall survival progressively increasing. These results arise from technological improvements in precisely hitting target treatment volumes and organ at risk sparing, which are associated with better treatment qualities. Finally, for the management of NSCLC, proton and carbon ion therapies and the recent development of MR-Linac are new, intriguing technological approaches under investigation.
Collapse
Affiliation(s)
- Niccolò Giaj-Levra
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Paolo Borghetti
- Dipartimento di Radioterapia Oncologica, Università e ASST Spedali Civili di Brescia, Brescia, Italy
| | - Alessio Bruni
- Radiotherapy Unit, Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Patrizia Ciammella
- Radiation Therapy Unit, Department of Oncology and Advanced Technology, AUSL-IRCCS, Reggio, Emilia, Italy
| | - Francesco Cuccia
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Alessandra Fozza
- Department of Radiation Oncology, SS.Antonio e Biagio e C.Arrigo Hospital Alessandria, Alessandria, Italy
| | - Davide Franceschini
- Department of Radiotherapy and Radiosurgery, Humanitas Clinical and Research Center- IRCCS - Rozzano (MI), Milano, Italy
| | - Vieri Scotti
- Radiation Therapy Unit, Department of Oncology, Careggi University Hospital, Firenze, Italy
| | - Stefano Vagge
- Radiation oncology Department, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Filippo Alongi
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Italy.,University of Brescia, Italy
| |
Collapse
|
40
|
Reirradiation of salivary gland tumors with carbon ion radiotherapy at CNAO. Radiother Oncol 2020; 145:172-177. [PMID: 32044529 DOI: 10.1016/j.radonc.2020.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 11/21/2022]
Abstract
AIMS To report oncologic and functional outcomes in terms of tumor control and toxicity of carbon ion radiotherapy (CIRT) in reirradiation setting for recurrent salivary gland tumors at CNAO. METHODS From November 2013 to September 2016, 51 consecutive patients with inoperable recurrent salivary gland tumors were retreated with CIRT in the frame of the phase II protocol CNAO S14/2012C for recurrent head and neck tumors. RESULTS Majority of pts (74.5%) had adenoid cystic carcinoma, mainly rcT4a (51%) and rcT4b (37%). Median dose of prior photon based radiotherapy was 60 Gy. Median dose of CIRT was 60 Gy [RBE] at a mean of 3 Gy [RBE] per fraction. During reirradiation, 19 patients (37.3%) experienced grade G1 toxicity, 19 pts (37.3%) had G2 and 2 pts (3.9%) had G3. Median follow up time was 19 months. Twenty one (41.2%) patients had stable disease and 30 (58.8%) tumor progression at the time of last follow up. Furthermore, 9 (18%) patients had G1 late toxicity, 19 (37%) had G2 and 9 (17. 5%) had G3. Using the Kaplan Meier method, progression free survival (actuarial) at one and two years were 71.7% and 52.2% respectively. Estimated overall survival (actuarial) at one and two years were 90.2% and 64%, respectively. CONCLUSIONS CIRT is a good option for retreatment of inoperable recurrent salivary gland tumors with acceptable rates of acute and late toxicity. Longer follow up time is needed to assess the effectiveness of CIRT in reirradiation setting of salivary gland tumors.
Collapse
|
41
|
Malouff TD, Mahajan A, Krishnan S, Beltran C, Seneviratne DS, Trifiletti DM. Carbon Ion Therapy: A Modern Review of an Emerging Technology. Front Oncol 2020; 10:82. [PMID: 32117737 PMCID: PMC7010911 DOI: 10.3389/fonc.2020.00082] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
Radiation therapy is one of the most widely used therapies for malignancies. The therapeutic use of heavy ions, such as carbon, has gained significant interest due to advantageous physical and radiobiologic properties compared to photon based therapy. By taking advantage of these unique properties, carbon ion radiotherapy may allow dose escalation to tumors while reducing radiation dose to adjacent normal tissues. There are currently 13 centers treating with carbon ion radiotherapy, with many of these centers publishing promising safety and efficacy data from the first cohorts of patients treated. To date, carbon ion radiotherapy has been studied for almost every type of malignancy, including intracranial malignancies, head and neck malignancies, primary and metastatic lung cancers, tumors of the gastrointestinal tract, prostate and genitourinary cancers, sarcomas, cutaneous malignancies, breast cancer, gynecologic malignancies, and pediatric cancers. Additionally, carbon ion radiotherapy has been studied extensively in the setting of recurrent disease. We aim to provide a comprehensive review of the studies of each of these disease sites, with a focus on the current trials using carbon ion radiotherapy.
Collapse
|
42
|
Dell’Oro M, Short M, Wilson P, Bezak E. Clinical Limitations of Photon, Proton and Carbon Ion Therapy for Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12010163. [PMID: 31936565 PMCID: PMC7017270 DOI: 10.3390/cancers12010163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 02/08/2023] Open
Abstract
Introduction: Despite improvements in radiation therapy, chemotherapy and surgical procedures over the last 30 years, pancreatic cancer 5-year survival rate remains at 9%. Reduced stroma permeability and heterogeneous blood supply to the tumour prevent chemoradiation from making a meaningful impact on overall survival. Hypoxia-activated prodrugs are the latest strategy to reintroduce oxygenation to radioresistant cells harbouring in pancreatic cancer. This paper reviews the current status of photon and particle radiation therapy for pancreatic cancer in combination with systemic therapies and hypoxia activators. Methods: The current effectiveness of management of pancreatic cancer was systematically evaluated from MEDLINE® database search in April 2019. Results: Limited published data suggest pancreatic cancer patients undergoing carbon ion therapy and proton therapy achieve a comparable median survival time (25.1 months and 25.6 months, respectively) and 1-year overall survival rate (84% and 77.8%). Inconsistencies in methodology, recording parameters and protocols have prevented the safety and technical aspects of particle therapy to be fully defined yet. Conclusion: There is an increasing requirement to tackle unmet clinical demands of pancreatic cancer, particularly the lack of synergistic therapies in the advancing space of radiation oncology.
Collapse
Affiliation(s)
- Mikaela Dell’Oro
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide SA 5001, Australia; (M.S.); (E.B.)
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide SA 5000, Australia;
- Correspondence: ; Tel.: +61-435214264
| | - Michala Short
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide SA 5001, Australia; (M.S.); (E.B.)
| | - Puthenparampil Wilson
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide SA 5000, Australia;
- School of Engineering, University of South Australia, Adelaide SA 5001, Australia
| | - Eva Bezak
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide SA 5001, Australia; (M.S.); (E.B.)
- Department of Physics, University of Adelaide, Adelaide SA 5005, Australia
| |
Collapse
|
43
|
Fractionated carbon ion irradiations of the rat spinal cord: comparison of the relative biological effectiveness with predictions of the local effect model. Radiat Oncol 2020; 15:6. [PMID: 31900185 PMCID: PMC6942289 DOI: 10.1186/s13014-019-1439-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/06/2019] [Indexed: 11/10/2022] Open
Abstract
Background To determine the relative biological effectiveness (RBE) and α/β-values after fractionated carbon ion irradiations of the rat spinal cord with varying linear energy transfer (LET) to benchmark RBE-model calculations. Material and methods The rat spinal cord was irradiated with 6 fractions of carbon ions at 6 positions within a 6 cm spread-out Bragg-peak (SOBP, LET: 16–99 keV/μm). TD50-values (dose at 50% complication probability) were determined from dose-response curves for the endpoint radiation induced myelopathy (paresis grade II) within 300 days after irradiation. Based on TD50-values of 15 MV photons, RBE-values were calculated and adding previously published data, the LET and fractional dose-dependence of the RBE was used to benchmark the local effect model (LEM I and IV). Results At six fractions, TD50-values decreased from 39.1 ± 0.4 Gy at 16 keV/μm to 17.5 ± 0.3 Gy at 99 keV/μm and the RBE increased accordingly from 1.46 ± 0.05 to 3.26 ± 0.13. Experimental α/β-ratios ranged from 6.9 ± 1.1 Gy to 44.3 ± 7.2 Gy and increased strongly with LET. Including all available data, comparison with model-predictions revealed that (i) LEM IV agrees better in the SOBP, while LEM I fits better in the entrance region, (ii) LEM IV describes the slope of the RBE within the SOBP better than LEM I, and (iii) in contrast to the strong LET-dependence, the RBE-deviations depend only weakly on fractionation within the measured range. Conclusions This study extends the available RBE data base to significantly lower fractional doses and performes detailed tests of the RBE-models LEM I and IV. In this comparison, LEM IV agrees better with the experimental data in the SOBP than LEM I. While this could support a model replacement in treatment planning, careful dosimetric analysis is required for the individual patient to evaluate potential clinical consequences.
Collapse
|
44
|
Rectum Dose Constraints for Carbon Ion Therapy: Relative Biological Effectiveness Model Dependence in Relation to Clinical Outcomes. Cancers (Basel) 2019; 12:cancers12010046. [PMID: 31877802 PMCID: PMC7016830 DOI: 10.3390/cancers12010046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
The clinical application of different relative biological effectiveness (RBE) models for carbon ion RBE-weighted dose calculation hinders a global consensus in defining normal tissue constraints. This work aims to update the local effect model (LEM)-based constraints for the rectum using microdosimetric kinetic model (mMKM)-defined values, relying on RBE translation and the analysis of long-term clinical outcomes. LEM-optimized plans of treated patients, having suffered from prostate adenocarcinoma (n = 22) and sacral chordoma (n = 41), were recalculated with the mMKM using an in-house developed tool. The relation between rectum dose-volume points in the two RBE systems (DLEM|v and DMKM|v) was fitted to translate new LEM-based constraints. Normal tissue complication probability (NTCP) values, predicting late rectal toxicity, were obtained by applying published parameters. No late rectal toxicity events were reported within the patient cohort. The rectal toxicity outcome was confirmed using dosimetric analysis: DMKMVHs lay largely below original constraints; the translated DLEM|v values were 4.5%, 8.3%, 18.5%, and 35.4% higher than the nominal DMKM|v of the rectum volume, v-1%, 5%, 10% and 20%. The average NTCP value ranged from 5% for the prostate adenocarcinoma, to 0% for the sacral chordoma group. The redefined constraints, to be confirmed prospectively with clinical data, are DLEM|5cc ≤ 61 Gy(RBE) and DLEM|1cc ≤ 66 Gy(RBE).
Collapse
|
45
|
Friedrich T. Proton RBE dependence on dose in the setting of hypofractionation. Br J Radiol 2019; 93:20190291. [PMID: 31437004 DOI: 10.1259/bjr.20190291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hypofractionated radiotherapy is attractive concerning patient burden and therapy costs, but many aspects play a role when it comes to assess its safety. While exploited for conventional photon therapy and carbon ion therapy, hypofractionation with protons is only rarely applied. One reason for this is uncertainty in the described dose, mainly due to the relative biological effectiveness (RBE), which is small for protons, but not negligible. RBE is generally dose-dependent, and for higher doses as used in hypofractionation, a thorough RBE evaluation is needed. This review article focuses on the RBE variability in protons and associated issues or implications for hypofractionation.
Collapse
Affiliation(s)
- Thomas Friedrich
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| |
Collapse
|
46
|
Hsu CY, Wang CW, Cheng AL, Kuo SH. Hypofractionated particle beam therapy for hepatocellular carcinoma-a brief review of clinical effectiveness. World J Gastrointest Oncol 2019; 11:579-588. [PMID: 31435460 PMCID: PMC6700034 DOI: 10.4251/wjgo.v11.i8.579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/22/2019] [Accepted: 07/16/2019] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common malignancy and the second leading cause of cancer mortality worldwide. The cornerstone to improving the prognosis of HCC patients has been the control of loco-regional disease progression and the lesser toxicities of local treatment. Although radiotherapy has not been considered a preferred treatment modality for HCC, charged particle therapy (CPT), including proton beam therapy (PBT) and carbon ion radiotherapy (CIRT), possesses advantages (for example, it allows ablative radiation doses to be applied to tumors but simultaneously spares the normal liver parenchyma from radiation) and has emerged as an alternative treatment option for HCC. With the technological advancements in CPT, various radiation dosages of CPT have been used for HCC treatment via CPT. However, the efficacy and safety of the evolving dosages remain uncertain. To assess the association between locoregional control of HCC and the dose and regimen of CPT, we provide a brief overview of selected literature on dose regimens from conventional to hypofractionated short-course CPT in the treatment of HCC and the subsequent determinants of clinical outcomes. Overall, CPT provides a better local control rate compared with photon beam therapy, ranging from 80% to 96%, and a 3-year overall survival ranging from 50% to 75%, and it results in rare grade 3 toxicities of the late gastrointestinal tract (including radiation-induced liver disease). Regarding CPT for the treatment of locoregional HCC, conventional CPT is preferred to treat central tumors of HCC to avoid late toxicities of the biliary tract. In contrast, the hypo-fractionation regimen of CPT is suggested for treatment of larger-sized tumors of HCC to overcome potential radio-resistance.
Collapse
Affiliation(s)
- Che-Yu Hsu
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan
- National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Cancer Research Center, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Chun-Wei Wang
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan
- National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Cancer Research Center, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Ann-Lii Cheng
- National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Department of Internal Medicine and Department of Oncology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Sung-Hsin Kuo
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan
- National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Cancer Research Center, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| |
Collapse
|
47
|
Buizza G, Molinelli S, D'Ippolito E, Fontana G, Pella A, Valvo F, Preda L, Orecchia R, Baroni G, Paganelli C. MRI-based tumour control probability in skull-base chordomas treated with carbon-ion therapy. Radiother Oncol 2019; 137:32-37. [PMID: 31051372 DOI: 10.1016/j.radonc.2019.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/30/2019] [Accepted: 04/18/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE To derive personalized tumour control probability (TCP) models, using diffusion-weighted (DW-) MRI for defining initial tumour cellular density in skull-base chordoma patients undergoing carbon-ion radiotherapy (CIRT). MATERIALS AND METHODS 67 patients affected by skull-base chordoma were enrolled for a standardized CIRT treatment (70.4 Gy (RBE) prescription dose). Local control information was clinically assessed. For 20 of them, apparent diffusion coefficient (ADC) maps were computed from DW-MRI and then converted into cellular density. Radiosensitivity parameters (α, β) were estimated from the available data through an optimization procedure, taking advantage of a relationship observed between local control and the dose received by at least the 98% of the gross tumour volume. These parameters were fed into two poissonian TCP models, based on the LQ model, being the first (TCPLIT) computed from literature parameters and the second (TCPADC) enriched by a personalized initial cellular density derived from ADC maps. RESULTS The inclusion of the cellular density derived from ADC into TCPADC yielded slightly higher dose values at which TCP = 0.5 (D50 = 38.91 Gy (RBE)) with respect to TCPLIT (D5034.16 Gy (RBE)). This suggested a more conservative approach, even if the prognostic power of TCPADC and TCPLIT, tested with respect to local control, was equivalent in terms of sensitivity (0.867) and specificity (0.600). CONCLUSIONS Both TCPADC and TCPLIT exhibited good agreement with a clinically validated information of local control, the former providing more conservative predictions.
Collapse
Affiliation(s)
- Giulia Buizza
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy.
| | - Silvia Molinelli
- National Center of Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Emma D'Ippolito
- National Center of Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Giulia Fontana
- National Center of Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Andrea Pella
- National Center of Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Francesca Valvo
- National Center of Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Lorenzo Preda
- National Center of Oncological Hadrontherapy (CNAO), Pavia, Italy; Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Italy
| | - Roberto Orecchia
- National Center of Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Guido Baroni
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy; National Center of Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Chiara Paganelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy
| |
Collapse
|