1
|
Yin Y, Zhang W, Zou L, Liu X, Yu L, Wang M. Segmentation methods and dosimetric evaluation of 3D-printed immobilization devices in head and neck radiotherapy. BMC Cancer 2025; 25:289. [PMID: 39966735 DOI: 10.1186/s12885-025-13669-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Treatment planning systems (TPS) often exclude immobilization devices from optimization and calculation, potentially leading to inaccurate dose estimates. This study employed deep learning methods to automatically segment 3D-printed head and neck immobilization devices and evaluate their dosimetric impact in head and neck VMAT. METHODS Computed tomography (CT) positioning images from 49 patients were used to train the Mask2Former model to segment 3D-printed headrests and MFIFs. Based on the results, four body structure sets were generated for each patient to evaluate the impact on dose distribution in volumetric modulated arc therapy (VMAT) plans: S (without immobilization devices), S_MF (with MFIFs), S_3D (with 3D-printed headrests), and S_3D+MF (with both). VMAT plans (P, P_MF, P_3D, and P_3D+MF) were created for each structure set. Dose-volume histogram (DVH) data and dose distribution of the four plans were compared to assess the impact of the 3D-printed headrests and MFIFs on target and normal tissue doses. Gafchromic EBT3 film measurements were used for patient-specific verification to validate dose calculation accuracy. RESULTS The Mask2Former model achieved a mean average precision (mAP) of 0.898 and 0.895, with a Dice index of 0.956 and 0.939 for the 3D-printed headrest on the validation and test sets, respectively. For the MFIF, the Dice index was 0.980 and 0.981 on the validation and test sets, respectively. Compared to P, P_MF reduced the V100% for PGTVnx, PGTVnd, PGTVrpn, PTV1, and PTV2 by 5.99%, 6.51%, 5.93%, 2.24%, and 1.86%, respectively(P ≤ 0.004). P_3D reduced the same targets by 1.78%, 2.56%, 1.75%, 1.16%, and 1.48%(P < 0.001), with a 31.3% increase in skin dose (P < 0.001). P_3D+MF reduced the V100% by 9.15%, 10.18%, 9.16%, 3.36%, and 3.28% (P < 0.001), respectively, while increasing the skin dose by 31.6% (P < 0.001). EBT3 film measurements showed that the P_3D+MF dose distribution was more aligned with actual measurements, achieving a mean gamma pass rate of 92.14% under the 3%/3 mm criteria. CONCLUSIONS This study highlights the potential of Mask2Former in 3D-printed headrest and MFIF segmentation automation, providing a novel approach to enhance personalized radiation therapy plan accuracy. The attenuation effects of 3D-printed headrests and MFIFs reduce V100% and Dmean for PTVs in head and neck cancer patients, while the buildup effects of 3D-printed headrests increases the skin dose (31.3%). Challenges such as segmentation inaccuracies for small targets and artifacts from metal fasteners in MFIFs highlight the need for model optimization and validation on larger, more diverse datasets.
Collapse
Affiliation(s)
- Yunpeng Yin
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, 610059, China
- Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Weisha Zhang
- Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lian Zou
- Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Xiangxiang Liu
- Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Luxin Yu
- Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Ming Wang
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, 610059, China.
| |
Collapse
|
2
|
McGarry CK, Tonino Baldion A, Burnley J, Byrne N, Doolan PJ, Jenkins R, Jones E, Jones MR, Marshall HL, Milliken F, Sands G, Woolliams P, Wright T, Clark CH. IPEM topical report: guidance on 3D printing in radiotherapy. Phys Med Biol 2025; 70:04TR01. [PMID: 39746307 DOI: 10.1088/1361-6560/ada518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 01/02/2025] [Indexed: 01/04/2025]
Abstract
There has been an increase in the availability and utilization of commercially available 3D printers in radiotherapy, with applications in phantoms, brachytherapy applicators, bolus, compensators, and immobilization devices. Additive manufacturing in the form of 3D printing has the advantage of rapid production of personalized patient specific prints or customized phantoms within a short timeframe. One of the barriers to uptake has been the lack of guidance. The aim of this topical review is to present the radiotherapy applications and provide guidance on important areas for establishing a 3D printing service in a radiotherapy department including procurement, commissioning, material selection, establishment of relevant quality assurance, multidisciplinary team creation and training.
Collapse
Affiliation(s)
- Conor K McGarry
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 1NN, United Kingdom
- Radiotherapy Physics, Belfast Health and Social Care Trust, Belfast, BT9 7AB, United Kingdom
| | | | - James Burnley
- Mount Vernon Cancer Centre, Northwood, Middlesex HA6 2RN, United Kingdom
| | - Nicholas Byrne
- Medical Physics and Clinical Engineering, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, United Kingdom
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, United Kingdom
| | - Paul James Doolan
- Department of Radiation Oncology, German Oncology Center, Limassol 4108, Cyprus
| | - Rhys Jenkins
- NHS Wales Swansea Bay University Health Board, Port Talbot SA12 7BR, United Kingdom
| | - Emma Jones
- Medical Physics and Clinical Engineering, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, United Kingdom
| | - Matthew R Jones
- Department of Medical Physics, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, United Kingdom
| | - Hannah L Marshall
- Radiotherapy Physics, Belfast Health and Social Care Trust, Belfast, BT9 7AB, United Kingdom
| | | | - Gordon Sands
- Saolta University Health Care Group Galway, H91 YR71, Ireland
| | - Peter Woolliams
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, United Kingdom
| | - Tristan Wright
- Oncology Physics Department, Edinburgh Cancer Centre, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Catharine H Clark
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, United Kingdom
- Department of Radiotherapy Physics, UCLH NHS Foundation Trust, London, NW1 2PG, United Kingdom
- Department of Medical Physics and Biomedical Engineering, University College London, London NW1 2PG, United Kingdom
| |
Collapse
|
3
|
Bustillo JPO, Mata JL, Posadas JRD, Inocencio ET, Rosenfeld AB, Lerch MLF. Characterization and evaluation methods of fused deposition modeling and stereolithography additive manufacturing for clinical linear accelerator photon and electron radiotherapy applications. Phys Med 2025; 130:104904. [PMID: 39842323 DOI: 10.1016/j.ejmp.2025.104904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 12/03/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025] Open
Abstract
PURPOSE To propose comprehensive characterization methods of additive manufacturing (AM) materials for MV photon and MeV electron radiotherapy. METHODOLOGY This study investigated 15 AM materials using CT machines. Geometrical accuracy, tissue-equivalence, uniformity, and fabrication parameters were considered. Selected soft tissue equivalent filaments were used to fabricate slab phantoms and compared with water equivalent RW3 phantom by delivering planar 6 & 10 MV photons and 6, 9, 12, 15, & 18 MeV electrons. Finally, a 3D printed CT-Electron Density characterization phantom was fabricated. RESULTS Materials used to print test objects can simulate tissues from adipose (relative electron density, ρe=0.72) up to near inner bone-equivalent (ρe=1.08). Lower densities such as breast and lung can be simulated using infills from 90 % down to 30 %, respectively. The gyroid infill pattern shows the lowest CT number variation and is recommended for low infill percentage printing. CT number uniformity can be observed from 40 % up to 100 % infill, while printing orientation does not significantly affect the CT number. The measured doses using the 3D printed phantoms show to have good agreement with TPS calculated dose for photon (< 1 % difference) and electron (< 5 % difference). Varying the printed slab thicknesses shows very similar response (< 3 % difference) compared with RW3 slabs except for 6 MeV electrons. Lastly, the fabricated CT-ED phantom generally matches the lung- up to the soft tissue- equivalence. CONCLUSION The proposed methods give the outline for characterization of AM materials as tissue-equivalent substitute. Printing parameters affect the radiological quality of 3D-printed object.
Collapse
Affiliation(s)
- John Paul O Bustillo
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia; Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, 1000 Metro Manila, Philippines.
| | - Jacob L Mata
- Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, 1000 Metro Manila, Philippines; Department of Radiology, University of the Philippines- Philippine General Hospital, 1000 Metro Manila, Philippines
| | - Julia Rebecca D Posadas
- Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, 1000 Metro Manila, Philippines; Department of Radiology, University of the Philippines- Philippine General Hospital, 1000 Metro Manila, Philippines
| | - Elrick T Inocencio
- Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, 1000 Metro Manila, Philippines; Department of Radiology, University of the Philippines- Philippine General Hospital, 1000 Metro Manila, Philippines
| | - Anatoly B Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
| | - Michael L F Lerch
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
| |
Collapse
|
4
|
Yang T, Jin Y, Smith LM, Dahotre NB, Neogi A. Real-time in-situ ultrasound monitoring of soft hydrogel 3D printing with subwavelength resolution. COMMUNICATIONS ENGINEERING 2024; 3:162. [PMID: 39521874 PMCID: PMC11550851 DOI: 10.1038/s44172-024-00318-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
3D bioprinting has excellent potential in tissue engineering, regenerative medicine, and drug delivery systems due to the ability to fabricate intricate structures that are challenging to make with conventional manufacturing methods. However, the complexity of parametric combinations and lack of product quality control have restricted soft hydrogel bioprinting from practical applications. Here we show an in-situ ultrasound monitoring system that reveals the alginate-gelatin hydrogel's additive manufacturing process. We use this technique to understand the parameters that influenced transient printing behaviors and material properties in approximately real-time. This unique monitoring process can facilitate the detection of minor errors/flaws during the printing. By analyzing the ultrasonic reflected signals in both time and frequency domains, transient printing information can be obtained from 3D printed soft hydrogels during the processes with a depth subwavelength resolution approaching 0.78 λ . This in-situ technique monitors the printing behaviors regarding the constructed film, interlayer bonding, transient effective elastic constant, layer-wise surface roughness (elastic or plastic), nozzle indentation/scratching, and gravitational spreading. The simulation-verified experimental methods monitored fully infilled printing and gridded pattern printing conditions. Furthermore, the proposed ultrasound system also experimentally monitored the post-crosslinking process of alginate-gelatin hydrogel in CaCl2 solution. The results can optimize crosslinking time by balancing the hydrogel's stiffness enhancement and geometrical distortion.
Collapse
Affiliation(s)
- Teng Yang
- Department of Materials Science and Engineering, University of North Texas, Denton, TX, USA
- Department of Physics, University of North Texas, Denton, TX, USA
| | - Yuqi Jin
- Department of Physics, University of North Texas, Denton, TX, USA.
- Department of Mechanical Engineering, University of North Texas, Denton, TX, USA.
| | - Lee Miller Smith
- Department of Mechanical Engineering, University of North Texas, Denton, TX, USA
| | - Narendra B Dahotre
- Department of Materials Science and Engineering, University of North Texas, Denton, TX, USA
| | - Arup Neogi
- Department of Physics, University of North Texas, Denton, TX, USA.
| |
Collapse
|
5
|
Ashraf MR, Melemenidis S, Liu K, Grilj V, Jansen J, Velasquez B, Connell L, Schulz JB, Bailat C, Libed A, Manjappa R, Dutt S, Soto L, Lau B, Garza A, Larsen W, Skinner L, Yu AS, Surucu M, Graves EE, Maxim PG, Kry SF, Vozenin MC, Schüler E, Loo BW. Multi-Institutional Audit of FLASH and Conventional Dosimetry With a 3D Printed Anatomically Realistic Mouse Phantom. Int J Radiat Oncol Biol Phys 2024; 120:287-300. [PMID: 38493902 DOI: 10.1016/j.ijrobp.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/03/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
PURPOSE We conducted a multi-institutional dosimetric audit between FLASH and conventional dose rate (CONV) electron irradiations by using an anatomically realistic 3-dimensional (3D) printed mouse phantom. METHODS AND MATERIALS A computed tomography (CT) scan of a live mouse was used to create a 3D model of bony anatomy, lungs, and soft tissue. A dual-nozzle 3D printer was used to print the mouse phantom using acrylonitrile butadiene styrene (∼1.02 g/cm3) and polylactic acid (∼1.24 g/cm3) simultaneously to simulate soft tissue and bone densities, respectively. The lungs were printed separately using lightweight polylactic acid (∼0.64 g/cm3). Hounsfield units (HU), densities, and print-to-print stability of the phantoms were assessed. Three institutions were each provided a phantom and each institution performed 2 replicates of irradiations at selected anatomic regions. The average dose difference between FLASH and CONV dose distributions and deviation from the prescribed dose were measured with radiochromic film. RESULTS Compared with the reference CT scan, CT scans of the phantom demonstrated mass density differences of 0.10 g/cm3 for bone, 0.12 g/cm3 for lung, and 0.03 g/cm3 for soft tissue regions. Differences in HU between phantoms were <10 HU for soft tissue and bone, with lung showing the most variation (54 HU), but with minimal effect on dose distribution (<0.5%). Mean differences between FLASH and CONV decreased from the first to the second replicate (4.3%-1.2%), and differences from the prescribed dose decreased for both CONV (3.6%-2.5%) and FLASH (6.4%-2.7%). Total dose accuracy suggests consistent pulse dose and pulse number, although these were not specifically assessed. Positioning variability was observed, likely due to the absence of robust positioning aids or image guidance. CONCLUSIONS This study marks the first dosimetric audit for FLASH using a nonhomogeneous phantom, challenging conventional calibration practices reliant on homogeneous phantoms. The comparison protocol offers a framework for credentialing multi-institutional studies in FLASH preclinical research to enhance reproducibility of biologic findings.
Collapse
Affiliation(s)
- M Ramish Ashraf
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Stavros Melemenidis
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Kevin Liu
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Veljko Grilj
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Jeannette Jansen
- Radiation Oncology Laboratory, Department of Radiation Oncology, Lausanne, University Hospital and University of Lausanne, Switzerland
| | - Brett Velasquez
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luke Connell
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joseph B Schulz
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Claude Bailat
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Aaron Libed
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Rakesh Manjappa
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Suparna Dutt
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Luis Soto
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Brianna Lau
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Aaron Garza
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - William Larsen
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Lawrie Skinner
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Amy S Yu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Murat Surucu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Edward E Graves
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Peter G Maxim
- Department of Radiation Oncology, University of California, Irvine, California
| | - Stephen F Kry
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Imaging and Radiation Oncology Core, MD Anderson Cancer Center, Houston, USA
| | - Marie-Catherine Vozenin
- Radiation Oncology Laboratory, Department of Radiation Oncology, Lausanne, University Hospital and University of Lausanne, Switzerland; Radiotherapy and Radiobiology Sector, Radiation Therapy Service, University Hospital of Geneva, Geneva, Switzerland.
| | - Emil Schüler
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
6
|
Quiñones LÁ, Sánchez A, Pérez J, Seguro Á, Castro I, Castanedo M, Vicent D, Iborra MA. Thermoplastic polymers as water substitutes. Biomed Phys Eng Express 2024; 10:045009. [PMID: 38670074 DOI: 10.1088/2057-1976/ad43ee] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/26/2024] [Indexed: 04/28/2024]
Abstract
Background. New applications of 3D printing have recently appeared in the fields of radiotherapy and radiology, but the knowledge of many radiological characteristics of the compounds involved is still limited. Therefore, studies are needed to improve our understanding about the transport and interaction of ionizing radiation in these materials.Purpose. The purpose of this study is to perform an analysis of the most important radiation interaction parameters in thermoplastic materials used in Fused Deposition Modeling 3D printing. Additionally, we propose improvements to bring their characteristics closer to those of water and use them as water substitutes in applications such as radiodiagnosis, external radiotherapy, and brachytherapy.Methods. We have calculated different magnitudes as mass linear attenuation, mass energy absorption coefficients, as well as stopping power and electronic density of several thermoplastic materials along with various compounds that have been used as water substitutes and in a new proposed blend. To perform these computations, we have used the XCOM and ESTAR databases from NIST and the EGSnrc code for Montecarlo simulations.Results. From the representation of the calculated interaction parameters, we have been able to establish relationships between their properties and the proportion of certain chemical elements. In addition, studying these same characteristics in different commercial solutions used as substitutes for water phantoms allows us to extrapolate improvements for these polymers.Conclusion. The radiological characteristics of the analyzed thermoplastic materials can be improved by adding some chemical elements with atomic numbers higher than oxygen and by using polyethylene in new blends.
Collapse
Affiliation(s)
- Luis Ángel Quiñones
- Medical Physics Service, Hospital Universitario Puerta del Mar, Avda. Ana de Viya, No 21. 11009, Cádiz, Spain
| | - Andrea Sánchez
- Medical Physics Service, Hospital Universitario Puerta del Mar, Avda. Ana de Viya, No 21. 11009, Cádiz, Spain
| | - Joaquín Pérez
- Medical Physics Service, Hospital Universitario Puerta del Mar, Avda. Ana de Viya, No 21. 11009, Cádiz, Spain
| | - Álvaro Seguro
- Medical Physics Service, Hospital Universitario Puerta del Mar, Avda. Ana de Viya, No 21. 11009, Cádiz, Spain
| | - Ignacio Castro
- Medical Physics Service, Hospital Universitario Puerta del Mar, Avda. Ana de Viya, No 21. 11009, Cádiz, Spain
| | - Miguel Castanedo
- Medical Physics Service, Hospital Universitario Puerta del Mar, Avda. Ana de Viya, No 21. 11009, Cádiz, Spain
| | - Diana Vicent
- Medical Physics Service, Hospital Universitario Puerta del Mar, Avda. Ana de Viya, No 21. 11009, Cádiz, Spain
| | - María Amparo Iborra
- Medical Physics Service, Hospital Universitario Puerta del Mar, Avda. Ana de Viya, No 21. 11009, Cádiz, Spain
| |
Collapse
|
7
|
Herchko SM, Rutenberg MS, Beltran CJ, Yaddanapudi S. Technical note: A comparison of in-house 3D-printed and commercially available patient-specific skin collimators for use with electron beam therapy. J Appl Clin Med Phys 2024; 25:e14366. [PMID: 38669190 PMCID: PMC11087155 DOI: 10.1002/acm2.14366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/14/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
PURPOSE Skin collimation is a useful tool in electron beam therapy (EBT) to decrease the penumbra at the field edge and minimize dose to nearby superficial organs at risk (OARs), but manually fabricating these collimation devices in the clinic to conform to the patient's anatomy can be a difficult and time intensive process. This work compares two types of patient-specific skin collimation (in-house 3D printed and vendor-provided machined brass) using clinically relevant metrics. METHODS Attenuation measurements were performed to determine the thickness of each material needed to adequately shield both 6 and 9 MeV electron beams. Relative and absolute dose planes at various depths were measured using radiochromic film to compare the surface dose, flatness, and penumbra of the different skin collimation materials. RESULTS Clinically acceptable thicknesses of each material were determined for both 6 and 9 MeV electron beams. Field width, flatness, and penumbra results between the two systems were very similar and significantly improved compared to measurements performed with no surface collimation. CONCLUSION Both skin collimation methods investigated in this work generate sharp penumbras at the field edge and can minimize dose to superficial OARs compared to treatment fields with no surface collimation. The benefits of skin collimation are greatest for lower energy electron beams, and the benefits decrease as the measurement depth increases. Using bolus with skin collimation is recommended to avoid surface dose enhancement seen with collimators placed on the skin surface. Ultimately, the appropriate choice of material will depend on the desire to create these devices in-house or outsource the fabrication to a vendor.
Collapse
Affiliation(s)
| | | | - Chris J. Beltran
- Department of Radiation OncologyMayo ClinicJacksonvilleFloridaUSA
| | | |
Collapse
|
8
|
Ahmed AMM, Buschmann M, Breyer L, Kuntner C, Homolka P. Tailoring the Mass Density of 3D Printing Materials for Accurate X-ray Imaging Simulation by Controlled Underfilling for Radiographic Phantoms. Polymers (Basel) 2024; 16:1116. [PMID: 38675035 PMCID: PMC11053449 DOI: 10.3390/polym16081116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Additive manufacturing and 3D printing allow for the design and rapid production of radiographic phantoms for X-ray imaging, including CT. These are used for numerous purposes, such as patient simulation, optimization of imaging procedures and dose levels, system evaluation and quality assurance. However, standard 3D printing polymers do not mimic X-ray attenuation properties of tissues like soft, adipose, lung or bone tissue, and standard materials like liquid water. The mass density of printing polymers-especially important in CT-is often inappropriate, i.e., mostly too high. Different methods can be applied to reduce mass density. This work examines reducing density by controlled underfilling either realized by using 3D printing materials expanded through foaming during heating in the printing process, or reducing polymer flow to introduce microscopic air-filled voids. The achievable density reduction depends on the base polymer used. When using foaming materials, density is controlled by the extrusion temperature, and ranges from 33 to 47% of the base polymer used, corresponding to a range of -650 to -394 HU in CT with 120 kV. Standard filaments (Nylon, modified PLA and modified ABS) allowed density reductions by 20 to 25%, covering HU values in CT from -260 to 77 (Nylon), -230 to -20 (ABS) and -81 to 143 (PLA). A standard chalk-filled PLA filament allowed reproduction of bone tissue in a wide range of bone mineral content resulting in CT numbers from 57 to 460 HU. Controlled underfilling allowed the production of radiographic phantom materials with continuously adjustable attenuation in a limited but appropriate range, allowing for the reproduction of X-ray attenuation properties of water, adipose, soft, lung, and bone tissue in an accurate, predictable and reproducible manner.
Collapse
Affiliation(s)
| | - Martin Buschmann
- Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna, and University Hospital Vienna, 1090 Vienna, Austria;
| | - Lara Breyer
- Department of Biomedical Imaging and Image-Guided Therapy, Medical Imaging Cluster (MIC), Medical University of Vienna, 1090 Vienna, Austria; (L.B.); (C.K.)
| | - Claudia Kuntner
- Department of Biomedical Imaging and Image-Guided Therapy, Medical Imaging Cluster (MIC), Medical University of Vienna, 1090 Vienna, Austria; (L.B.); (C.K.)
| | - Peter Homolka
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
9
|
Chen XM, Xu CD, Zeng LP, Huang XT, Chen AQ, Liu L, Lin LW, Jia LC, Li H, Jiang XB. Analysis of Individualized Silicone Rubber Bolus Using Fan Beam Computed Tomography in Postmastectomy Radiotherapy: A Dosimetric Evaluation and Skin Acute Radiation Dermatitis Survey. Technol Cancer Res Treat 2024; 23:15330338241229367. [PMID: 38297814 PMCID: PMC10832424 DOI: 10.1177/15330338241229367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/28/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
Objective: To investigate the dosimetric effects of using individualized silicone rubber (SR) bolus on the target area and organs at risk (OARs) during postmastectomy radiotherapy (PMRT), as well as evaluate skin acute radiation dermatitis (ARD). Methods: A retrospective study was performed on 30 patients with breast cancer. Each patient was prepared with an individualized SR bolus of 3 mm thickness. Fan-beam computed tomography (FBCT) was performed at the first and second fractions, and then once a week for a total of 5 times. Dosimetric metrics such as homogeneity index (HI), conformity index (CI), skin dose (SD), and OARs including the heart, lungs, and spinal cord were compared between the original plan and the FBCTs. The acute side effects were recorded. Results: In targets' dosimetric metrics, there were no significant differences in Dmean and V105% between planning computed tomography (CT) and actual treatments (P > .05), while the differences in D95%, V95%, HI, and CI were statistically significant (P < .05). In OARs, there were no significant differences between the Dmean, V5, and V20 of the affected lung, V5 of the heart and Dmax of the spinal cord (P > .05) except the V30 of affected lung, which was slightly lower than the planning CT (P < .05). In SD, both Dmax and Dmean in actual treatments were increased than plan A, and the difference was statistically significant (P < .05), while the skin-V20 and skin-V30 has no difference. Among the 30 patients, only one patient had no skin ARD, and 5 patients developed ARD of grade 2, while the remaining 24 patients were grade 1. Conclusion: The OR bolus showed good anastomoses and high interfraction reproducibility with the chest wall, and did not cause deformation during irradiation. It ensured accurate dose delivery of the target and OARs during the treatment, which may increase SD by over 101%. In this study, no cases of grade 3 skin ARD were observed. However, the potential of using OR bolus to reduce grade 1 and 2 skin ARD warrants further investigation with a larger sample size.
Collapse
Affiliation(s)
- Xue-mei Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Chen-di Xu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Li-ping Zeng
- Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong Province, P.R. China
| | - Xiao-tong Huang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Ao-qiang Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Lu Liu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Liu-wen Lin
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Le-cheng Jia
- Shenzhen United Imaging Research Institute of Innovative Medical Equipment, Shenzhen, Guangdong Province, P.R. China
| | - Hua Li
- Shenzhen United Imaging Research Institute of Innovative Medical Equipment, Shenzhen, Guangdong Province, P.R. China
| | - Xiao-bo Jiang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| |
Collapse
|
10
|
Baltz GC, Kirsner SM. Technical note: Commissioning of a low-cost system for directly 3D printed flexible bolus. J Appl Clin Med Phys 2023; 24:e14206. [PMID: 37962024 PMCID: PMC10691640 DOI: 10.1002/acm2.14206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/12/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
PURPOSE To present the commissioning process of a low-cost solution for directly 3D printed flexible patient specific bolus. METHODS The 3D printing solution used in this study consisted of a resin stereolithography 3D printer and a flexible curing resin. To test the dimensional accuracy of the 3D printer, rectangular cuboids with varying dimensions were 3D printed and their measured dimensions were compared to the designed dimensions. Percent Depth Dose (PDD) profiles were measured by irradiating film embedded in a 3D printed phantom made of the flexible material. A CT of the phantom was acquired and used to replicate the irradiation setup in the treatment planning system. PDDs were calculated for both the native HU of the phantom, and with the phantom HU overridden to 300 HU to match its physical density. Dosimetric agreement was characterized by comparing calculated to measured depths of R90, R80, and R50. Upon completion of the commissioning process, a bolus was 3D printed for a clinical case study for treatment of the nose. RESULTS Dimensional accuracy of the printer and material combination was found to be good, with all measured dimensions of test cuboids within 0.5 mm of designed. PDD measurements demonstrated the best dosimetric agreement when the material was overridden to 300 HU, corresponding to the measured physical density of the material of 1.18 g/cc. Calculated and measured depths of R90, R80, and R50 all agreed within 1 mm. The bolus printed for the clinical case was free from defects, highly conformal, and led to a clinically acceptable plan. CONCLUSION The results of the commissioning measurements performed indicate that the 3D printer and material solution are suitable for clinical use. The 3D printer and material combination can provide a low-cost solution a clinic can implement in-house to directly 3D print flexible bolus.
Collapse
|
11
|
Karl AS, Steel JG, Warr GB. Regression fitting megavoltage depth dose curves to determine material relative electron density in radiotherapy. Phys Eng Sci Med 2023; 46:1387-1397. [PMID: 37733264 DOI: 10.1007/s13246-023-01306-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 07/19/2023] [Indexed: 09/22/2023]
Abstract
The relative electron density (RED) parameter is ubiquitous throughout radiotherapy for clinical dosimetry and treatment planning purposes as it provides a more accurate description of the relevant radiological properties over mass density alone. RED is in practice determined indirectly from calibrated CT Hounsfield Units (HU). While CT images provide useful 3D information, the spectral differences between CT and clinical LINAC beams may impact the validity of the CT-ED calibration, especially in the context of novel tissue-mimicking materials where deviations from biologically typical atomic number to atomic weight ratios 〈Z/A〉 occur and/or high-Z materials are present. A theoretical basis for determining material properties directly in a clinical beam spectrum via an electron-density equivalent pathlength (eEPL) method has been previously established. An experimental implementation of this approach is introduced whereby material-specific measured percentage depth dose curves (PDDs) are regressed to a PDD measured in a reference material (water), providing an inference of 〈Z/A〉, which when combined with the physical density provides a determination of RED. This method is validated over a range of tissue-mimicking materials and compared against the standard CT output, as well as compositional information obtained from the manufacturer's specifications. The measured PDD regression method shows consistent results against both manufacturer-provided and CT-derived values between 0.9 and 1.15 RED. Outside of this soft-tissue range a trend was observed whereby the 〈Z/A〉 determined becomes unrealistic indicating the method is no longer reporting RED alone and the assumptions around the eEPL model are constrained. Within the soft-tissue RED range of validity, the regression method provides a practical and robust characterisation for unknown materials in the clinical setting and may be used to improve on the CT derived RED where high Z material components are suspected.
Collapse
Affiliation(s)
- Anthony S Karl
- Mid North Coast Cancer Institute Coffs Harbour, Mid North Local Health District, Coffs Harbour Health Campus, Coffs Harbour, NSW, 2450, Australia.
| | - Jared G Steel
- Mid North Coast Cancer Institute Coffs Harbour, Mid North Local Health District, Coffs Harbour Health Campus, Coffs Harbour, NSW, 2450, Australia
| | - George B Warr
- Western Cancer Centre Dubbo, Dubbo Base Hospital, Western NSW Local Health District, Dubbo, NSW, 2830, Australia
| |
Collapse
|
12
|
Crowe S, Maxwell S, Brar H, Yu L, Kairn T. Use of light-weight foaming polylactic acid as a lung-equivalent material in 3D printed phantoms. Phys Eng Sci Med 2023; 46:1811-1817. [PMID: 37672196 DOI: 10.1007/s13246-023-01318-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/04/2023] [Indexed: 09/07/2023]
Abstract
The 3D printing of lung-equivalent phantoms using conventional polylactic acid (PLA) filaments requires the use of low in-fill printing densities, which can produce substantial density heterogeneities from the air gaps within the resulting prints. Light-weight foaming PLA filaments produce microscopic air bubbles when heated to 3D printing temperatures. In this study, the expansion of foaming PLA filament was characterised for two 3D printers with different nozzle diameters, in order to optimise the printing flow rates required to achieve a low density print when printed at 100% in-fill printing density, without noticeable internal air gaps. Effective densities as low as 0.28 g cm- 3 were shown to be achievable with only microscopic air gaps. Light-weight foaming PLA filaments are a cost-effective method for achieving homogeneous lung-equivalency in 3D printed phantoms for use in radiotherapy imaging and dosimetry, featuring smaller air gaps than required to achieve low densities with conventional PLA filaments.
Collapse
Affiliation(s)
- Scott Crowe
- Cancer Care Services, Royal Brisbane & Women's Hospital, Brisbane, QLD, Australia.
- Herston Biofabrication Institute, Brisbane, QLD, Australia.
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, QLD, Australia.
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, Australia.
| | - Sarah Maxwell
- Cancer Care Services, Royal Brisbane & Women's Hospital, Brisbane, QLD, Australia
| | - Harsimran Brar
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, Australia
| | - Liting Yu
- Cancer Care Services, Royal Brisbane & Women's Hospital, Brisbane, QLD, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, Australia
| | - Tanya Kairn
- Cancer Care Services, Royal Brisbane & Women's Hospital, Brisbane, QLD, Australia
- Herston Biofabrication Institute, Brisbane, QLD, Australia
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
13
|
Ashenafi M, Jeong S, Wancura JN, Gou L, Webster MJ, Zheng D. A quick guide on implementing and quality assuring 3D printing in radiation oncology. J Appl Clin Med Phys 2023; 24:e14102. [PMID: 37501315 PMCID: PMC10647979 DOI: 10.1002/acm2.14102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/23/2023] [Accepted: 07/08/2023] [Indexed: 07/29/2023] Open
Abstract
As three-dimensional (3D) printing becomes increasingly common in radiation oncology, proper implementation, usage, and ongoing quality assurance (QA) are essential. While there have been many reports on various clinical investigations and several review articles, there is a lack of literature on the general considerations of implementing 3D printing in radiation oncology departments, including comprehensive process establishment and proper ongoing QA. This review aims to guide radiation oncology departments in effectively using 3D printing technology for routine clinical applications and future developments. We attempt to provide recommendations on 3D printing equipment, software, workflow, and QA, based on existing literature and our experience. Specifically, we focus on three main applications: patient-specific bolus, high-dose-rate (HDR) surface brachytherapy applicators, and phantoms. Additionally, cost considerations are briefly discussed. This review focuses on point-of-care (POC) printing in house, and briefly touches on outsourcing printing via mail-order services.
Collapse
Affiliation(s)
- Michael Ashenafi
- Department of Radiation OncologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Seungkyo Jeong
- Department of Applied MathematicsUniversity of RochesterRochesterNew YorkUSA
| | - Joshua N. Wancura
- Department of Radiation OncologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Lang Gou
- Department of Radiation OncologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Matthew J. Webster
- Department of Radiation OncologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Dandan Zheng
- Department of Radiation OncologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| |
Collapse
|
14
|
Ehler ED. Clinical experience in the use of 3D printing as a rapid replacement of traditional radiation therapy immobilization materials. J Appl Clin Med Phys 2023:e14008. [PMID: 37128743 PMCID: PMC10402670 DOI: 10.1002/acm2.14008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/10/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023] Open
Abstract
PURPOSE Patient positioning and immobilization devices are commonly employed in radiation therapy. Unfortunately, cases can arise where the devices need to be reconstructed or improved. This work describes clinical processes to use a planning CT, to design and 3D print immobilization devices for reproducible patient positioning within a clinically feasible time frame when traditional methods can no longer be used or are insufficient. MATERIALS/METHODS Three clinical cases required rapid 3D printing of an immobilization device mid-treatment due to the following: (1) a lost headrest cushion, (2) needed improvement in lumbar spine positioning, and (3) a partially deflated vacuum immobilization mattress. RESULTS In the three cases, the 3D printed immobilization devices were clinically implemented successfully; two of the devices were fully designed and printed in 1 day. The 3D printed immobilization devices achieved a positioning accuracy sufficient to avoid the necessity to repeat the simulation and planning process. CONCLUSION If traditional immobilization devices fail or are misplaced, it is feasible to have a 3D printed replacement within the time span of 1 day. The design and fabrication methods, as well as the experiences gained, are described in detail to assist clinicians to implement 3D printing for similar situations.
Collapse
Affiliation(s)
- Eric D Ehler
- Department of Radiation Oncology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
15
|
Fonseca GP, Rezaeifar B, Lackner N, Haanen B, Reniers B, Verhaegen F. Dual-energy CT evaluation of 3D printed materials for radiotherapy applications. Phys Med Biol 2023; 68. [PMID: 36584391 DOI: 10.1088/1361-6560/acaf4a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/30/2022] [Indexed: 12/31/2022]
Abstract
Objective. There is a continuous increase in 3D printing applications in several fields including medical imaging and radiotherapy. Although there are numerous advantages of using 3D printing for the development of customized phantoms, bolus, quality assurance devices and other clinical applications, material properties are not well known and printer settings can affect considerably the properties (e.g. density, isotropy and homogeneity) of the printed parts. This study aims to evaluate several materials and printer properties to identify a range of tissue-mimicking materials.Approach. Dual-energy CT was used to obtain the effective atomic number (Zeff) and relative electron density (RED) for thirty-one different materials including different colours of the same filament from the same manufacturer and the same type of filament from different manufacturers. In addition, a custom bone equivalent filament was developed and evaluated since a high-density filament with a composition similar to bone is not commercially available. Printing settings such as infill density, infill pattern, layer height and nozzle size were also evaluated.Main results. Large differences were observed for HU (288), RED (>10%) andZeff(>50%) for different colours of the same filament due to the colour pigment. Results show a wide HU variation (-714 to 1104), RED (0.277 to 1.480) andZeff(5.22 to 12.39) between the printed samples with some materials being comparable to commercial tissue-mimicking materials and good substitutes to a range of materials from lung to bone. Printer settings can result in directional dependency and significantly affect the homogeneity of the samples.Significance. The use of DECT to extract RED, andZeffallows for quantitative imaging and dosimetry using 3D printed materials equivalent to certified tissue-mimicking tissues.
Collapse
Affiliation(s)
- Gabriel P Fonseca
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Behzad Rezaeifar
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Niklas Lackner
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Britt Haanen
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Brigitte Reniers
- Research group NuTeC, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Frank Verhaegen
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
16
|
Albantow CE, Brown SJ. Three-dimensional printer use in the Australian and New Zealand radiation therapy setting. J Med Radiat Sci 2022; 69:492-501. [PMID: 36097141 DOI: 10.1002/jmrs.613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 07/10/2022] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION This cross-sectional survey aimed to collect data from radiation therapy departments around Australia and New Zealand to establish a baseline of 3D printer and product use. METHODS Each department in Australia and New Zealand was contacted to determine the most appropriate person to answer the survey. A Microsoft Forms link to the survey was sent to the individual. The survey contained 47 questions in relation to what 3D printing device departments had (if any), how it was being utilised, and what 3D printed products were in use. RESULTS A total of 112 departments completed the survey (100% response rate), with 22.3% reporting 3D printer ownership, and thirty-four departments (30.4%) outsourcing 3D printed products. The primary use of 3D printers was bolus production (60.9%). Public departments represented 84% of printer ownership, while private departments were the greatest users of outsourced 3D printed products (91.4%). 3D Slicer was the most common software used for Digital Imaging and Communications in Medicine (DICOM) file conversion (42.3%), while polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) were the most common filaments in use, 46% and 14%, respectively. CONCLUSION This research established a baseline for 3D printer and product use within the Australian and New Zealand radiotherapy setting.
Collapse
Affiliation(s)
- Christine E Albantow
- Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, New South Wales, Australia
| | | |
Collapse
|
17
|
Development of a customisable 3D-printed intra-oral stent for head-and-neck radiotherapy. Tech Innov Patient Support Radiat Oncol 2022; 23:1-7. [PMID: 35813156 PMCID: PMC9260300 DOI: 10.1016/j.tipsro.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
Advanced radiotherapy techniques have improved head-and-neck treatments. More improvements are possible with intra-oral stents stabilising sensitive anatomy. MRI imaging shows new modular 3D printed stents provide stable displacement. Modular stents achieve positive outcomes within standard treatment workflow.
Intra-oral stents (including mouth-pieces and bite blocks) can be used to displace adjacent non-involved oral tissue and reduce radiation side effects from radiotherapy treatments for head-and-neck cancer. In this study, a modular and customisable 3D printed intra-oral stent was designed, fabricated and evaluated, to utilise the advantages of the 3D printing process without the interruption of clinical workflow associated with printing time. The stent design used a central mouth-opening and tongue-depressing main piece, with optional cheek displacement pieces in three different sizes, plus an anchor point for moulding silicone to fit individual patients’ teeth. A magnetic resonance imaging (MRI) study of one healthy participant demonstrated the tissue displacement effects of the stent, while providing a best-case indication of its comfort.
Collapse
|
18
|
X-ray attenuation of bone, soft and adipose tissue in CT from 70 to 140 kV and comparison with 3D printable additive manufacturing materials. Sci Rep 2022; 12:14580. [PMID: 36028638 PMCID: PMC9418162 DOI: 10.1038/s41598-022-18741-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Additive manufacturing and 3D printing are widely used in medical imaging to produce phantoms for image quality optimization, imaging protocol definition, comparison of image quality between different imaging systems, dosimetry, and quality control. Anthropomorphic phantoms mimic tissues and contrasts in real patients with regard to X-ray attenuation, as well as dependence on X-ray spectra. If used with different X-ray energies, or to optimize the spectrum for a certain procedure, the energy dependence of the attenuation must replicate the corresponding energy dependence of the tissues mimicked, or at least be similar. In the latter case the materials’ Hounsfield values need to be known exactly to allow to correct contrast and contrast to noise ratios accordingly for different beam energies. Fresh bovine and porcine tissues including soft and adipose tissues, and hard tissues from soft spongious bone to cortical bone were scanned at different energies, and reference values of attenuation in Hounsfield units (HU) determined. Mathematical model equations describing CT number dependence on kV for bones of arbitrary density, and for adipose tissues are derived. These data can be used to select appropriate phantom constituents, compare CT values with arbitrary phantom materials, and calculate correction factors for phantoms consisting of materials with an energy dependence different to the tissues. Using data on a wide number of additive manufacturing and 3D printing materials, CT numbers and their energy dependence were compared to those of the tissues. Two commercially available printing filaments containing calcium carbonate powder imitate bone tissues with high accuracy at all kV values. Average adipose tissue can be duplicated by several off-the-shelf printing polymers. Since suitable printing materials typically exhibit a too high density for the desired attenuation of especially soft tissues, controlled density reduction by underfilling might improve tissue equivalence.
Collapse
|
19
|
Use of a PLA sleeve to remove electron enhancement in superficial X-ray therapy. Phys Eng Sci Med 2022; 45:1005-1011. [PMID: 35920979 DOI: 10.1007/s13246-022-01163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 07/09/2022] [Indexed: 10/16/2022]
Abstract
A newly installed superficial X-ray unit was found to produce enhanced electron dose at the skin surface. The ACPSEM kilovoltage dosimetry recommendations suggest using nail varnish within the treatment cones as a method to reduce this dose. In this study, a 3D PLA sleeve was produced and used as an alternative to the nail varnish for energies between 55 and 100 kV. Further, plastic wrap was also investigated as an alternative method to reduce dose. It was found that a 1 mm printed sleeve, inserted into the treatment cone sufficiently reduced the enhanced dose as measured with a thin-window Exradin chamber to within 3.3% of the dose measured with a Farmer-type ionisation chamber. The use of plastic wrap also reduced the enhanced dose, but impracticalities in its use make it non-viable for routine clinical use.
Collapse
|
20
|
Okkalidis N. 3D printing methods for radiological anthropomorphic phantoms. Phys Med Biol 2022; 67. [PMID: 35830787 DOI: 10.1088/1361-6560/ac80e7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/13/2022] [Indexed: 01/06/2023]
Abstract
Three dimensional (3D) printing technology has been widely evaluated for the fabrication of various anthropomorphic phantoms during the last couple of decades. The demand for such high quality phantoms is constantly rising and gaining an ever-increasing interest. Although, in a short time 3D printing technology provided phantoms with more realistic features when compared to the previous conventional methods, there are still several aspects to be explored. One of these aspects is the further development of the current 3D printing methods and software devoted to radiological applications. The current 3D printing software and methods usually employ 3D models, while the direct association of medical images with the 3D printing process is needed in order to provide results of higher accuracy and closer to the actual tissues' texture. Another aspect of high importance is the development of suitable printing materials. Ideally, those materials should be able to emulate the entire range of soft and bone tissues, while still matching the human's anatomy. Five types of 3D printing methods have been mainly investigated so far: (a) solidification of photo-curing materials; (b) deposition of melted plastic materials; (c) printing paper-based phantoms with radiopaque ink; (d) melting or binding plastic powder; and (e) bio-printing. From the first and second category, polymer jetting technology and fused filament fabrication (FFF), also known as fused deposition modelling (FDM), are the most promising technologies for the fulfilment of the requirements of realistic and radiologically equivalent anthropomorphic phantoms. Another interesting approach is the fabrication of radiopaque paper-based phantoms using inkjet printers. Although, this may provide phantoms of high accuracy, the utilized materials during the fabrication process are restricted to inks doped with various contrast materials. A similar condition applies to the polymer jetting technology, which despite being quite fast and very accurate, the utilized materials are restricted to those capable of polymerization. The situation is better for FFF/FDM 3D printers, since various compositions of plastic filaments with external substances can be produced conveniently. Although, the speed and accuracy of this 3D printing method are lower compared to the others, the relatively low-cost, constantly improving resolution, sufficient printing volume and plethora of materials are quite promising for the creation of human size heterogeneous phantoms and their adaptation to the treatment procedures of patients in the current health systems.
Collapse
Affiliation(s)
- Nikiforos Okkalidis
- Research Institute, Medical University of Varna, Bulgaria.,Morphé, Praxitelous 1, Thessaloniki, Greece
| |
Collapse
|
21
|
Adam DP, Grudzinski J, Bormett I, Cox BL, Marsh IR, Bradshaw TJ, Harari PM, Bednarz B. Validation of Monte Carlo 131 I radiopharmaceutical dosimetry workflow using a 3D printed anthropomorphic head and neck phantom. Med Phys 2022; 49:5491-5503. [PMID: 35607296 PMCID: PMC9388595 DOI: 10.1002/mp.15699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/11/2022] Open
Abstract
Purpose Approximately 50% of head and neck cancer (HNC) patients will experience loco‐regional disease recurrence following initial courses of therapy. Retreatment with external beam radiotherapy (EBRT) is technically challenging and may be associated with a significant risk of irreversible damage to normal tissues. Radiopharmaceutical therapy (RPT) is a potential method to treat recurrent HNC in conjunction with EBRT. Phantoms are used to calibrate and add quantification to nuclear medicine images, and anthropomorphic phantoms can account for both the geometrical and material composition of the head and neck. In this study, we present the creation of an anthropomorphic, head and neck, nuclear medicine phantom, and its characterization for the validation of a Monte Carlo, SPECT image‐based, 131I RPT dosimetry workflow. Methods 3D‐printing techniques were used to create the anthropomorphic phantom from a patient CT dataset. Three 131I SPECT/CT imaging studies were performed using a homogeneous, Jaszczak, and an anthropomorphic phantom to quantify the SPECT images using a GE Optima NM/CT 640 with a high energy general purpose collimator. The impact of collimator detector response (CDR) modeling and volume‐based partial volume corrections (PVCs) upon the absorbed dose was calculated using an image‐based, Geant4 Monte Carlo RPT dosimetry workflow and compared against a ground truth scenario. Finally, uncertainties were quantified in accordance with recent EANM guidelines. Results The 3D‐printed anthropomorphic phantom was an accurate re‐creation of patient anatomy including bone. The extrapolated Jaszczak recovery coefficients were greater than that of the 3D‐printed insert (∼22.8 ml) for both the CDR and non‐CDR cases (with CDR: 0.536 vs. 0.493, non‐CDR: 0.445 vs. 0.426, respectively). Utilizing Jaszczak phantom PVCs, the absorbed dose was underpredicted by 0.7% and 4.9% without and with CDR, respectively. Utilizing anthropomorphic phantom recovery coefficient overpredicted the absorbed dose by 3% both with and without CDR. All dosimetry scenarios that incorporated PVC were within the calculated uncertainty of the activity. The uncertainties in the cumulative activity ranged from 23.6% to 106.4% for Jaszczak spheres ranging in volume from 0.5 to 16 ml. Conclusion The accuracy of Monte Carlo‐based dosimetry for 131I RPT in HNC was validated with an anthropomorphic phantom. In this study, it was found that Jaszczak‐based PVCs were sufficient. Future applications of the phantom could involve 3D printing and characterizing patient‐specific volumes for more personalized RPT dosimetry estimates.
Collapse
Affiliation(s)
- David P Adam
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705
| | - Joseph Grudzinski
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, 53705
| | - Ian Bormett
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, 53705
| | - Benjamin L Cox
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, 53705
| | - Ian R Marsh
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705
| | - Tyler J Bradshaw
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, 53705
| | - Paul M Harari
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, 53705
| | - Bryan Bednarz
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705
| |
Collapse
|
22
|
Brown K, Kupfer T, Harris B, Penso S, Khor R, Moseshvili E. Not all 3D-printed bolus is created equal: Variation between 3D-printed polylactic acid (PLA) bolus samples sourced from external manufacturers. J Med Radiat Sci 2022; 69:348-356. [PMID: 35506369 PMCID: PMC9442296 DOI: 10.1002/jmrs.591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Polylactic acid (PLA) is a promising material for customised bolus 3D-printing in radiotherapy, however variations in printing techniques between external manufacturers could increase treatment uncertainties. This study aimed to assess consistency across various 3D-printed PLA samples from different manufacturers. METHODS Sample prints of dimensions 5 × 5 × 1 cm with 100% infill were acquired from multiple commercial 3D-printing services. All samples were CT scanned to determine average Hounsfield unit (HU) values and physical densities. The coefficient of equivalent thickness (CET) was obtained for both photons and electrons and dose attenuation compared to TPS calculations in Elekta Monaco v5.11. RESULTS Some samples showed warped edges up to 1.5 mm and extensive internal radiological defects only detectable with CT scanning. Physical densities ranged from 1.06 to 1.22 g cm-3 and HU values ranged from -5.1 to 221.0 HU. Measured CET values varied from 0.95 to 1.17 and TPS dose calculations were consistent with the variation in CET. Electron R50 and R90 shifted by up to 2 mm for every 1 cm of printed bolus, a clinically significant finding. Photon surface dose varied by up to 3%, while depth doses were within 1%. CONCLUSIONS 3D-printed PLA can have considerable variability in density, HU and CET values between samples and manufacturers. Centres looking to outsource 3D-printed bolus would benefit from clear, open communication with manufacturers and undertake stringent QA examination prior to implementation into the clinical environment.
Collapse
Affiliation(s)
- Kerryn Brown
- Department of Radiation Oncology, ONJ Centre, Austin Hospital, Heidelberg, Australia
| | - Tom Kupfer
- Department of Radiation Oncology, ONJ Centre, Austin Hospital, Heidelberg, Australia
| | - Benjamin Harris
- Department of Radiation Oncology, ONJ Centre, Austin Hospital, Heidelberg, Australia
| | - Sam Penso
- Department of Radiation Oncology, ONJ Centre, Austin Hospital, Heidelberg, Australia
| | - Richard Khor
- Department of Radiation Oncology, ONJ Centre, Austin Hospital, Heidelberg, Australia
| | - Eka Moseshvili
- Department of Radiation Oncology, ONJ Centre, Austin Hospital, Heidelberg, Australia.,Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia.,Department of Radiation Oncology, GenesisCare, Shepparton, Australia
| |
Collapse
|
23
|
Meyer-Szary J, Luis MS, Mikulski S, Patel A, Schulz F, Tretiakow D, Fercho J, Jaguszewska K, Frankiewicz M, Pawłowska E, Targoński R, Szarpak Ł, Dądela K, Sabiniewicz R, Kwiatkowska J. The Role of 3D Printing in Planning Complex Medical Procedures and Training of Medical Professionals-Cross-Sectional Multispecialty Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3331. [PMID: 35329016 PMCID: PMC8953417 DOI: 10.3390/ijerph19063331] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/18/2022] [Accepted: 03/05/2022] [Indexed: 12/19/2022]
Abstract
Medicine is a rapidly-evolving discipline, with progress picking up pace with each passing decade. This constant evolution results in the introduction of new tools and methods, which in turn occasionally leads to paradigm shifts across the affected medical fields. The following review attempts to showcase how 3D printing has begun to reshape and improve processes across various medical specialties and where it has the potential to make a significant impact. The current state-of-the-art, as well as real-life clinical applications of 3D printing, are reflected in the perspectives of specialists practicing in the selected disciplines, with a focus on pre-procedural planning, simulation (rehearsal) of non-routine procedures, and on medical education and training. A review of the latest multidisciplinary literature on the subject offers a general summary of the advances enabled by 3D printing. Numerous advantages and applications were found, such as gaining better insight into patient-specific anatomy, better pre-operative planning, mock simulated surgeries, simulation-based training and education, development of surgical guides and other tools, patient-specific implants, bioprinted organs or structures, and counseling of patients. It was evident that pre-procedural planning and rehearsing of unusual or difficult procedures and training of medical professionals in these procedures are extremely useful and transformative.
Collapse
Affiliation(s)
- Jarosław Meyer-Szary
- Department of Pediatric Cardiology and Congenital Heart Defects, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Marlon Souza Luis
- Department of Pediatric Cardiology and Congenital Heart Defects, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
- First Doctoral School, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Szymon Mikulski
- Department of Head and Neck Surgery, Singapore General Hospital, Singapore 169608, Singapore
| | - Agastya Patel
- First Doctoral School, Medical University of Gdańsk, 80-211 Gdańsk, Poland
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| | - Finn Schulz
- University Clinical Centre in Gdańsk, 80-952 Gdańsk, Poland
| | - Dmitry Tretiakow
- Department of Otolaryngology, Faculty of Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| | - Justyna Fercho
- Neurosurgery Department, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Kinga Jaguszewska
- Department of Gynecology, Obstetrics and Neonatology, Division of Gynecology and Obstetrics, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Mikołaj Frankiewicz
- Department of Urology, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Ewa Pawłowska
- Department of Oncology and Radiotherapy, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Radosław Targoński
- 1st Department of Cardiology, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Łukasz Szarpak
- Institute of Outcomes Research, Maria Sklodowska-Curie Medical Academy, 03-411 Warsaw, Poland
- Research Unit, Maria Sklodowska-Curie Bialystok Oncology Center, 15-027 Bialystok, Poland
- Henry JN Taub Department of Emergency Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Katarzyna Dądela
- Department of Pediatric Cardiology, University Children's Hospital, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Robert Sabiniewicz
- Department of Pediatric Cardiology and Congenital Heart Defects, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Joanna Kwiatkowska
- Department of Pediatric Cardiology and Congenital Heart Defects, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| |
Collapse
|
24
|
Ma X, Buschmann M, Unger E, Homolka P. Classification of X-Ray Attenuation Properties of Additive Manufacturing and 3D Printing Materials Using Computed Tomography From 70 to 140 kVp. Front Bioeng Biotechnol 2021; 9:763960. [PMID: 34912790 PMCID: PMC8666890 DOI: 10.3389/fbioe.2021.763960] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Additive manufacturing and 3D printing is particularly useful in the production of phantoms for medical imaging applications including determination and optimization of (diagnostic) image quality and dosimetry. Additive manufacturing allows the leap from simple slab and stylized to (pseudo)-anthropomorphic phantoms. This necessitates the use of materials with x-ray attenuation as close as possible to that of the tissues or organs mimicked. X-ray attenuation properties including their energy dependence were determined for 35 printing materials comprising photocured resins and thermoplastic polymers. Prior to measuring x-ray attenuation in CT from 70 to 140 kVp, printing parameters were thoroughly optimized to ensure maximum density avoiding too low attenuation due to microscopic or macroscopic voids. These optimized parameters are made available. CT scanning was performed in a water filled phantom to guarantee defined scan conditions and accurate HU value determination. The spectrum of HU values covered by polymers printed using fused deposition modeling reached from −258 to +1,063 at 120 kVp (−197 to +1,804 at 70 kVp, to −266 to +985 at 140 kVp, respectively). Photocured resins covered 43 to 175 HU at 120 kVp (16–156 at 70, and 57–178 at 140 kVp). At 120 kVp, ASA mimics water almost perfectly (+2 HU). HIPS (−40 HU) is found close to adipose tissue. In all photocurable resins, and 17 printing filaments HU values decreased with increasing beam hardness contrary to soft tissues except adipose tissue making it difficult to mimic water or average soft tissue in phantoms correctly over a range of energies with one single printing material. Filled filaments provided both, the HU range, and an appropriate energy dependence mimicking bone tissues. A filled material with almost constant HU values was identified potentially allowing mimicking soft tissues by reducing density using controlled under-filling. The measurements performed in this study can be used to design phantoms with a wide range of x-ray contrasts, and energy dependence of these contrasts by combining appropriate materials. Data provided on the energy dependence can also be used to correct contrast or contrast to noise ratios from phantom measurements to real tissue contrasts or CNRs.
Collapse
Affiliation(s)
- Xiangjie Ma
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Martin Buschmann
- Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Ewald Unger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Peter Homolka
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
25
|
Pereira DD, Cardoso SC, da Rosa LA, de Souza FM, de Sousa JV, Batista DV, Boiset GR, Wolff W, Gonçalves OD. Validation of polylactic acid polymer as soft tissue substitutive in radiotherapy. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Tino RB, Yeo AU, Brandt M, Leary M, Kron T. A customizable anthropomorphic phantom for dosimetric verification of 3D-printed lung, tissue, and bone density materials. Med Phys 2021; 49:52-69. [PMID: 34796527 DOI: 10.1002/mp.15364] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/26/2021] [Accepted: 10/30/2021] [Indexed: 12/29/2022] Open
Abstract
PURPOSE To design and manufacture a customized thoracic phantom slab utilizing the 3D printing process, also known as additive manufacturing, consisting of different tissue density materials. Here, we demonstrate the 3D-printed phantom's clinical feasibility for imaging and dosimetric verification of volumetric modulated arc radiotherapy (VMAT) plans for lung and spine stereotactic ablative body radiotherapy (SABR) through end-to-end dosimetric verification. METHODS A customizable anthropomorphic phantom slab was designed using the CT dataset of a commercial phantom (adult female ATOM dosimetry phantom, CIRS Inc.). Material extrusion 3D printing was utilized to manufacture the phantom slab consisting of acrylonitrile butadiene styrene material for the lung and the associated lesion, polylactic acid (PLA) material for soft tissue and spinal cord, and both PLA and iron-reinforced PLA materials for bone. CT images were acquired for both the commercial phantom and 3D-printed phantom for HU comparison. VMAT plans were generated for spine and lung SABR scenarios and were delivered as per departmental SABR protocols using a Varian TrueBeam STx linear accelerator. End-to-end dosimetry was implemented with radiochromic films, analyzed with gamma criteria of 5% dose difference, and a distance-to-agreement of 1 mm, at a 10% low-dose threshold by comparing with calculated dose using the Acuros algorithm of the Eclipse treatment planning system (v15.6). RESULTS 3D-printed phantom inserts were observed to produce HU ranging from -750 to 2100. The 3D-printed phantom slab was observed to achieve a similar range of HU from the commercial phantom including a mean HU of -760 for lung tissue, a mean HU of 50 for soft tissue, and a mean HU of 220 and 630 for low- and high-density bone, respectively. Film dosimetry results show 2D-gamma passing rates for lung SABR (internal and superior) and spine SABR (inferior and superior) over 98% and 90%, respectively. CONCLUSIONS The end-to-end testing of VMAT plans for spine and lung SABR suggests the clinical feasibility of the 3D-printed phantom, consisting of different tissue density materials that emulate lung, soft tissue, and bone in kV imaging and megavoltage photon dosimetry. Further investigation of the proposed 3D printing techniques for manufacturability and reproducibility will enable the development of clinical 3D-printed phantoms in radiotherapy.
Collapse
Affiliation(s)
- Rance Bolislis Tino
- RMIT Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, Victoria, Australia.,Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology, Queensland, Brisbane, Australia
| | - Adam Unjin Yeo
- School of Applied Sciences, RMIT University, Melbourne, Victoria, Australia.,Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Milan Brandt
- RMIT Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, Victoria, Australia.,ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology, Queensland, Brisbane, Australia
| | - Martin Leary
- RMIT Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, Victoria, Australia.,ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology, Queensland, Brisbane, Australia
| | - Tomas Kron
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology, Queensland, Brisbane, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
27
|
Development of a new poly-ε-caprolactone with low melting point for creating a thermoset mask used in radiation therapy. Sci Rep 2021; 11:20409. [PMID: 34650081 PMCID: PMC8516973 DOI: 10.1038/s41598-021-00005-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/01/2021] [Indexed: 12/03/2022] Open
Abstract
This study aimed to develop a poly-ε-caprolactone (PCL) material that has a low melting point while maintaining the deformation ability. The new PCL (abbreviated as 4b45/2b20) was fabricated by mixing two types of PCL with different molecular weights, numbers of branches, and physical properties. To investigate the melting point, crystallization temperature, elastic modulus, and elongation at break for 4b45/2b20 and three commercially available masks, differential scanning calorimetry and tensile tests were performed. The melting point of 4b45/2b20 was 46.0 °C, and that of the commercially available masks was approximately 56.0 °C (55.7 °C–56.5 °C). The elastic modulus at 60 °C of 4b45/2b20 was significantly lower than the commercially available masks (1.1 ± 0.3 MPa and 46.3 ± 5.4 MPa, p = 0.0357). In addition, the elongation at break of 4b45/2b20 were significantly larger than the commercially available masks (275.2 ± 25.0% and 216.0 ± 15.2%, p = 0.0347). The crystallization temperature of 4b45/2b20 (22.1 °C) was clinically acceptable and no significant difference was found in the elastic modulus at 23 °C (253.7 ± 24.3 MPa and 282.0 ± 44.3 MPa, p = 0.4). As a shape memory-based thermoset material, 4b45/2b20 has a low melting point and large deformation ability. In addition, the crystallization temperature and strength are within the clinically acceptable standards. Because masks made using the new PCL material are formed with less pressure on the face than commercially available masks, it is a promising material for making a radiotherapy mask that can reduce the burden on patients.
Collapse
|
28
|
Kairn T, Talkhani S, Charles PH, Chua B, Lin CY, Livingstone AG, Maxwell SK, Poroa T, Simpson-Page E, Spelleken E, Vo M, Crowe SB. Determining tolerance levels for quality assurance of 3D printed bolus for modulated arc radiotherapy of the nose. Phys Eng Sci Med 2021; 44:1187-1199. [PMID: 34529247 DOI: 10.1007/s13246-021-01054-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
Given the existing literature on the subject, there is obviously a need for specific advice on quality assurance (QA) tolerances for departments using or implementing 3D printed bolus for radiotherapy treatments. With a view to providing initial suggested QA tolerances for 3D printed bolus, this study evaluated the dosimetric effects of changes in bolus geometry and density, for a particularly common and challenging clinical situation: specifically, volumetric modulated arc therapy (VMAT) treatment of the nose. Film-based dose verification measurements demonstrated that both the AAA and the AXB algorithms used by the Varian Eclipse treatment planning system (Varian Medical Systems, Palo Alto, USA) were capable of providing sufficiently accurate dose calculations to allow this planning system to be used to evaluate the effects of bolus errors on dose distributions from VMAT treatments of the nose. Thereafter, the AAA and AXB algorithms were used to calculate the dosimetric effects of applying a range of simulated errors to the design of a virtual bolus, to identify QA tolerances that could be used to avoid clinically significant effects from common printing errors. Results were generally consistent, whether the treatment target was superficial and treated with counter-rotating coplanar arcs or more-penetrating and treated with noncoplanar arcs, and whether the dose was calculated using the AAA algorithm or the AXB algorithm. The results of this study suggest the following QA tolerances are advisable, when 3D printed bolus is fabricated for use in photon VMAT treatments of the nose: bolus relative electron density variation within [Formula: see text] (although an action level at [Formula: see text] may be permissible); bolus thickness variation within [Formula: see text] mm (or 0.5 mm variation on opposite sides); and air gap between bolus and skin [Formula: see text] mm. These tolerances should be investigated for validity with respect to other treatment modalities and anatomical sites. This study provides a set of baselines for future comparisons and a useful method for identifying additional or alternative 3D printed bolus QA tolerances.
Collapse
Affiliation(s)
- T Kairn
- Cancer Care Services, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia. .,Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD, Australia. .,School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, QLD, Australia. .,School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, Australia.
| | - S Talkhani
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, Australia
| | - P H Charles
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD, Australia.,School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, QLD, Australia.,School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, Australia
| | - B Chua
- Cancer Care Services, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - C Y Lin
- Cancer Care Services, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - A G Livingstone
- Cancer Care Services, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - S K Maxwell
- Cancer Care Services, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - T Poroa
- Cancer Care Services, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - E Simpson-Page
- Cancer Care Services, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - E Spelleken
- GenesisCare Rockhampton, Rockhampton Hospital, Rockhampton, QLD, Australia
| | - M Vo
- Cancer Care Services, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - S B Crowe
- Cancer Care Services, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia.,Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD, Australia.,School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, QLD, Australia.,School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
29
|
Wang X, Wang X, Xiang Z, Zeng Y, Liu F, Shao B, He T, Ma J, Yu S, Liu L. The Clinical Application of 3D-Printed Boluses in Superficial Tumor Radiotherapy. Front Oncol 2021; 11:698773. [PMID: 34490095 PMCID: PMC8416990 DOI: 10.3389/fonc.2021.698773] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/23/2021] [Indexed: 02/05/2023] Open
Abstract
During the procedure of radiotherapy for superficial tumors, the key to treatment is to ensure that the skin surface receives an adequate radiation dose. However, due to the presence of the built-up effect of high-energy rays, equivalent tissue compensators (boluses) with appropriate thickness should be placed on the skin surface to increase the target radiation dose. Traditional boluses do not usually fit the skin perfectly. Wet gauze is variable in thickness day to day which results in air gaps between the skin and the bolus. These unwanted but avoidable air gaps lead to a decrease of the radiation dose in the target area and can have a poor effect on the outcome. Three-dimensional (3D) printing, a new rising technology named “additive manufacturing” (AM), could create physical models with specific shapes from digital information by using special materials. It has been favored in many fields because of its advantages, including less waste, low-cost, and individualized design. It is not an exception in the field of radiotherapy, personalized boluses made through 3D printing technology also make up for a number of shortcomings of the traditional commercial bolus. Therefore, an increasing number of researchers have tried to use 3D-printed boluses for clinical applications rather than commercial boluses. Here, we review the 3D-printed bolus’s material selection and production process, its clinical applications, and potential radioactive dermatitis. Finally, we discuss some of the challenges that still need to be addressed with the 3D-printed boluses.
Collapse
Affiliation(s)
- Xiran Wang
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Xuetao Wang
- Department of Radiotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhongzheng Xiang
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanyuan Zeng
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Liu
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Bianfei Shao
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Tao He
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiachun Ma
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Siting Yu
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Liu
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
McCallum S, Maresse S, Fearns P. Evaluating 3D-printed Bolus Compared to Conventional Bolus Types Used in External Beam Radiation Therapy. Curr Med Imaging 2021; 17:820-831. [PMID: 33530912 DOI: 10.2174/1573405617666210202114336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND When treating superficial tumors with external beam radiation therapy, bolus is often used. Bolus increases surface dose, reduces dose to underlying tissue, and improves dose homogeneity. INTRODUCTION The conventional bolus types used clinically in practice have some disadvantages. The use of Three-Dimensional (3D) printing has the potential to create more effective boluses. CT data is used for dosimetric calculations for these treatments and often to manufacture the customized 3D-printed bolus. PURPOSE The aim of this review is to evaluate the published studies that have compared 3D-printed bolus against conventional bolus types. METHODS AND RESULTS A systematic search of several databases and a further appraisal for relevance and eligibility resulted in the 14 articles used in this review. The 14 articles were analyzed based on their comparison of 3D-printed bolus and at least one conventional bolus type. CONCLUSION The findings of this review indicated that 3D-printed bolus has a number of advantages. Compared to conventional bolus types, 3D-printed bolus was found to have equivalent or improved dosimetric measures, positional accuracy, fit, and uniformity. 3D-printed bolus was also found to benefit workflow efficiency through both time and cost effectiveness. However, factors such as patient comfort and staff perspectives need to be further explored to support the use of 3Dprinted bolus in routine practice.
Collapse
Affiliation(s)
- Stephanie McCallum
- Medical Radiation Science, Faculty of Science and Engineering, Curtin University, Perth, Australia
| | - Sharon Maresse
- Medical Radiation Science, Faculty of Science and Engineering, Curtin University, Perth, Australia
| | - Peter Fearns
- Medical Radiation Science, Faculty of Science and Engineering, Curtin University, Perth, Australia
| |
Collapse
|
31
|
Wu CA, Squelch A, Sun Z. Investigation of Three-dimensional Printing Materials for Printing Aorta Model Replicating Type B Aortic Dissection. Curr Med Imaging 2021; 17:843-849. [PMID: 33602103 DOI: 10.2174/1573405617666210218102046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/25/2020] [Accepted: 01/06/2021] [Indexed: 11/22/2022]
Abstract
AIM This study aims to determine a printing material that has both elastic property and radiology equivalence close to the real aorta for simulation of endovascular stent-graft repair of aortic dissection. BACKGROUND With the rapid development of Three-Dimensional (3D) printing technology, a patient- specific 3D printed model is able to help surgeons to make a better treatment plan for Type B aortic dissection patients. However, the radiological properties of most 3D printing materials have not been well characterized. This study aims to investigate the appropriate materials for printing human aorta with mechanical and radiological properties similar to the real aortic Computed Tomography (CT) attenuation. OBJECTIVE Quantitative assessment of CT attenuation of different materials used in 3D printed models of aortic dissection for developing patient-specific 3D printed aorta models to simulate type B aortic dissection. METHODS A 25-mm length of aorta model was segmented from a patient's image dataset with a diagnosis of type B aortic dissection. Four different elastic commercial 3D printing materials, namely Agilus A40 and A50, Visijet CE-NT A30 and A70 were selected and printed with different hardness. Totally four models were printed out and CT scanned twice on a 192-slice CT scanner using the standard aortic CT angiography protocol, with and without contrast inside the lumen. Five reference points with the Region Of Interest (ROI) of 1.77 mm2 were selected at the aortic wall, and intimal flap and their Hounsfield units (HU) were measured and compared with the CT attenuation of original CT images. The comparison between the patient's aorta and models was performed through a paired-sample t-test to determine if there is any significant difference. RESULTS The mean CT attenuation of the aortic wall of the original CT images was 80.7 HU. Analysis of images without using contrast medium showed that the material of Agilus A50 produced the mean CT attenuation of 82.6 HU, which is similar to that of original CT images. The CT attenuation measured at images acquired with the other three materials was significantly lower than that of the original images (p<0.05). After adding contrast medium, Visijet CE-NT A30 had an average CT attenuation of 90.6 HU, which is close to that of the original images without a statistically significant difference (p>0.05). In contrast, the CT attenuation measured at images acquired with other three materials (Agilus A40, A50 and Visiject CE-NT A70) was 129 HU, 135 HU and 129.6 HU, respectively, which is significantly higher than that of original CT images (p<0.05). CONCLUSION Both Visijet CE-NT and Agilus have tensile strength and elongation close to actual patient's tissue properties producing similar CT attenuation. Visijet CE-NT A30 is considered the appropriate material for printing aorta to simulate contrast-enhanced CT imaging of type B aortic dissection. Due to the lack of body phantoms in the experiments, further research with the simulation of realistic anatomical body environment should be conducted.
Collapse
Affiliation(s)
- Chia-An Wu
- Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, Perth, 6845, Australia
| | - Andrew Squelch
- Discipline of Exploration Geophysics, WA School of Mines: Mineral, Energy and Chemical Engineering, Curtin University, Perth, 6845, Australia
| | - Zhonghua Sun
- Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, Perth, 6845, Australia
| |
Collapse
|
32
|
Goodall SK, Rampant P, Smith W, Waterhouse D, Rowshanfarzad P, Ebert MA. Investigation of the effects of spinal surgical implants on radiotherapy dosimetry: A study of 3D printed phantoms. Med Phys 2021; 48:4586-4597. [PMID: 34214205 DOI: 10.1002/mp.15070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/29/2021] [Accepted: 06/12/2021] [Indexed: 01/22/2023] Open
Abstract
PURPOSE The use of three-dimensional (3D) printing to develop custom phantoms for dosimetric studies in radiotherapy is increasing. The process allows production of phantoms designed to evaluated specific geometries, patients, or patient groups with a defining feature. The ability to print bone-equivalent phantoms has, however, proved challenging. The purpose of this work was to 3D print a series of three similar spine phantoms containing no surgical implants, implants made of titanium, and implants made of carbon fiber, for future dosimetric and imaging studies. Phantoms were evaluated for (a) tissue and bone equivalence, (b) geometric accuracy compared to design, and (c) similarity to one another. METHODS Sample blocks of PLA, HIPS, and StoneFil PLA-concrete with different infill densities were printed to evaluate tissue and bone equivalence. The samples were used to develop CT to physical (PD) and effective relative electron density (REDeff ) conversion curves and define the settings for printing the phantoms. CT scans of the printed phantoms were obtained to assess the geometry and densities achieved. Mean distance to agreement (MDA) and DICE coefficient (DSC) values were calculated between contours defining the different materials, obtained from design and like phantom modules. HU values were used to determine PD and REDeff and subsequently evaluate tissue and bone equivalence. RESULTS Sample objects showed linear relationships between HU and both PD and REDeff for both PLA and StoneFil. The PD and REDeff of the objects calculated using clinical CT conversion curves were not accurate and custom conversion curves were required. PLA printed with 90% infill density was found to have a PD of 1.11 ± 0.03 g.cm-3 and REDeff of 1.04 ± 0.02 and selected for tissue- equivalent phantom elements. StoneFil printed with 100% infill density showed a PD of 1.35 ± 0.03 g.cm-3 and REDeff of 1.24 ± 0.04 and was selected for bone-equivalent elements. Upon evaluation of the final phantoms, the PLA elements displayed PD in the range of 1.10 ± 0.03 g.cm-3 -1.13 ± 0.03 g.cm-3 and REDeff in the range of 1.02 ± 0.03-1.06 ± 0.03. The StoneFil elements showed PD in the range of 1.43 ± 0.04 g.cm-3 -1.46 ± 0.04 g.cm-3 and REDeff in the range of 1.31 ± 0.04-1.33 ± 0.04. The PLA phantom elements were shown to have MDA of ≤1.00 mm and DSC of ≥0.95 compared to design, and ≤0.48 mm and ≥0.91 compared like modules. The StoneFil elements displayed MDA values of ≤0.44 mm and DSC of ≥0.98 compared to design and ≤0.43 mm and ≥0.92 compared like modules. CONCLUSIONS Phantoms which were radiologically equivalent to tissue and bone were produced with a high level of similarity to design and even higher level of similarity of one another. When used in conjunction with the derived CT to PD or REDeff conversion curves they are suitable for evaluating the effects of spinal surgical implants of varying material of construction.
Collapse
Affiliation(s)
- Simon K Goodall
- School of Physics, Mathematics, and Computing, Faculty of Engineering and Mathematical Sciences, University of Western Australia, Crawley, WA, Australia.,GenesisCare, Wembley, WA, Australia
| | | | - Warwick Smith
- School of Physics, Mathematics, and Computing, Faculty of Engineering and Mathematical Sciences, University of Western Australia, Crawley, WA, Australia.,GenesisCare, Wembley, WA, Australia
| | | | - Pejman Rowshanfarzad
- School of Physics, Mathematics, and Computing, Faculty of Engineering and Mathematical Sciences, University of Western Australia, Crawley, WA, Australia
| | - Martin A Ebert
- School of Physics, Mathematics, and Computing, Faculty of Engineering and Mathematical Sciences, University of Western Australia, Crawley, WA, Australia.,Department of Radiation Oncology, Sir Charles Gardiner Hospital, Nedlands, WA, Australia.,5D Clinics, Perth, WA, Australia
| |
Collapse
|
33
|
Dumas JL, Dal R, Zefkili S, Robilliard M, Losa S, Birba I, Vu-Bezin J, Beddok A, Calugaru V, Dutertre G, De Marzi L. Addressing the dosimetric impact of bone cement and vertebroplasty in stereotactic body radiation therapy. Phys Med 2021; 85:42-49. [PMID: 33965740 DOI: 10.1016/j.ejmp.2021.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/08/2021] [Accepted: 04/23/2021] [Indexed: 10/21/2022] Open
Abstract
PURPOSE Bone cement used for vertebroplasty can affect the accuracy on the dose calculation of the radiation therapy treatment. In addition the CT values of high density objects themselves can be misrepresented in kVCT images. The aim of our study is then to propose a streamlined approach for estimating the real density of cement implants used in stereotactic body radiation therapy. METHODS Several samples of cement were manufactured and irradiated in order to investigate the impact of their composition on the radiation dose. The validity of the CT conversion method for a range of photon energies was investigated, for the studied samples and on six patients. Calculations and measurements were carried out with various overridden densities and dose prediction algorithms (AXB with dose-to-medium reporting or AAA) in order to find the effective density override. RESULTS Relative dose differences of several percent were found between the dose measured and calculated downstream of the implant using an ion chamber and TPS or EPID dosimetry. If the correct density is assigned to the implant, calculations can provide clinically acceptable accuracy (gamma criteria of 3%/2 mm). The use of MV imaging significantly favors the attribution of a correct equivalent density to the implants compared to the use of kVCT images. CONCLUSION The porosity and relative density of the various studied implants vary significantly. Bone cement density estimations can be characterized using MV imaging or planar in vivo dosimetry, which could help determining whether errors in dose calculations are due to incorrect densities.
Collapse
Affiliation(s)
- Jean-Luc Dumas
- Institut Curie, PSL Research University, Radiation Oncology Department, Paris, France.
| | - Romaric Dal
- Institut Curie, PSL Research University, Radiation Oncology Department, Paris, France
| | - Sofia Zefkili
- Institut Curie, PSL Research University, Radiation Oncology Department, Paris, France
| | - Magalie Robilliard
- Institut Curie, PSL Research University, Radiation Oncology Department, Paris, France
| | - Sandra Losa
- Institut Curie, PSL Research University, Radiation Oncology Department, Paris, France
| | - Imène Birba
- Institut Curie, PSL Research University, Radiation Oncology Department, Paris, France
| | - Jérémi Vu-Bezin
- Institut Curie, PSL Research University, Radiation Oncology Department, Paris, France
| | - Arnaud Beddok
- Institut Curie, PSL Research University, Radiation Oncology Department, Paris, France
| | - Valentin Calugaru
- Institut Curie, PSL Research University, Radiation Oncology Department, Paris, France
| | | | - Ludovic De Marzi
- Institut Curie, PSL Research University, Radiation Oncology Department, Paris, France; Institut Curie, University Paris Saclay, PSL Research University, Inserm LITO, Orsay, France.
| |
Collapse
|
34
|
Craft DF, Lentz J, Armstrong M, Foster M, Gagneur J, Harrington D, Schild SE, Fatyga M. Three-Dimensionally Printed On-Skin Radiation Shields Using High-Density Filament. Pract Radiat Oncol 2020; 10:e543-e550. [DOI: 10.1016/j.prro.2020.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/13/2020] [Accepted: 03/20/2020] [Indexed: 11/28/2022]
|
35
|
Turek P, Budzik G, Przeszłowski Ł. Assessing the Radiological Density and Accuracy of Mandible Polymer Anatomical Structures Manufactured Using 3D Printing Technologies. Polymers (Basel) 2020; 12:polym12112444. [PMID: 33105810 PMCID: PMC7690625 DOI: 10.3390/polym12112444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022] Open
Abstract
Nowadays, 3D printing technologies are among the rapidly developing technologies applied to manufacture even the most geometrically complex models, however no techniques dominate in the area of craniofacial applications. This study included 12 different anatomical structures of the mandible, which were obtained during the process of reconstructing data from the Siemens Somatom Sensation Open 40 system. The manufacturing process used for the 12 structures involved the use of 8 3D printers and 12 different polymer materials. Verification of the accuracy and radiological density was performed with the CT160Xi Benchtop tomography system. The most accurate results were obtained in the case of models manufactured using the following materials: E-Model (Standard Deviation (SD) = 0.145 mm), FullCure 830 (SD = 0.188 mm), VeroClear (SD = 0.128 mm), Digital ABS-Ivory (SD = 0.117 mm), and E-Partial (SD = 0.129 mm). In the case of radiological density, ABS-M30 was similar to spongious bone, PC-10 was similar to the liver, and Polylactic acid (PLA) and Polyethylene terephthalate (PET) were similar to the spleen. Acrylic resin materials were able to imitate the pancreas, kidney, brain, and heart. The presented results constitute valuable guidelines that may improve currently used radiological phantoms and may provide support to surgeons in the process of performing more precise treatments within the mandible area.
Collapse
|
36
|
Aoyama T, Uto K, Shimizu H, Ebara M, Kitagawa T, Tachibana H, Suzuki K, Kodaira T. Physical and dosimetric characterization of thermoset shape memory bolus developed for radiotherapy. Med Phys 2020; 47:6103-6112. [PMID: 33012062 PMCID: PMC7821231 DOI: 10.1002/mp.14516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 12/19/2022] Open
Abstract
PURPOSE We developed a thermoset shape memory bolus (shape memory bolus) made from poly-ε-caprolactone (PCL) polymer. This study aimed to investigate whether the shape memory bolus can be applied to radiotherapy as a bolus that conformally adheres to the body surface, can be created in a short time, and can be reused. METHODS The shape memory bolus was developed by cross-linking tetrabranch PCL with reactive acrylate end groups. Dice similarity coefficient (DSC) was used to evaluate shape memory characterization before deformation and after restoration. In addition, the degree of adhesion to the body surface and crystallization time were calculated. Moreover, dosimetric characterization was evaluated using the water equivalent phantom and an Alderson RANDO phantom. RESULTS The DSC value between before deformation and after restoration was close to 1. The degree of adhesion of the shape memory bolus (1.9%) was improved compared with the conventional bolus (45.6%) and was equivalent to three-dimensional (3D) printer boluses (1.3%-3.5%). The crystallization time was approximately 1.5 min, which was clinically acceptable. The dose calculation accuracy, dose distribution, and dose index were the equivalent compared with 3D boluses. CONCLUSION The shape memory bolus has excellent adhesion to the body surface, can be created in a short time, and can be reused. In addition, the shape memory bolus needs can be made from low-cost materials and no quality control systems are required for individual clinical departments, and it is useful as a bolus for radiotherapy.
Collapse
Affiliation(s)
- Takahiro Aoyama
- Department of Radiation Oncology, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-Ku, Nagoya, Aichi, 464-8681, Japan.,Graduate School of Medicine, Aichi Medical University, 1-1 Yazako-karimata, Nagakute, Aichi, 480-1195, Japan
| | - Koichiro Uto
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Hidetoshi Shimizu
- Department of Radiation Oncology, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-Ku, Nagoya, Aichi, 464-8681, Japan
| | - Mitsuhiro Ebara
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Tomoki Kitagawa
- Department of Radiation Oncology, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-Ku, Nagoya, Aichi, 464-8681, Japan
| | - Hiroyuki Tachibana
- Department of Radiation Oncology, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-Ku, Nagoya, Aichi, 464-8681, Japan
| | - Kojiro Suzuki
- Department of Radiology, Aichi Medical University, 1-1 Yazako-karimata, Nagakute, Aichi, 480-1195, Japan
| | - Takeshi Kodaira
- Department of Radiation Oncology, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-Ku, Nagoya, Aichi, 464-8681, Japan
| |
Collapse
|
37
|
Low JM, Lee NJ, Sprow G, Chlebik A, Olch A, Darrow K, Bowlin K, Wong KK. Scalp and Cranium Radiation Therapy Using Modulation (SCRUM) and Bolus. Adv Radiat Oncol 2020; 5:936-942. [PMID: 33083656 PMCID: PMC7557138 DOI: 10.1016/j.adro.2020.03.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/31/2020] [Accepted: 03/09/2020] [Indexed: 11/30/2022] Open
Abstract
Purpose A bolus is usually required to ensure radiation dose coverage of extensive superficial tumors of the scalp or skull. Oftentimes, these boluses are challenging to make and are nonreproducible, so an easier method was sought. Methods and Materials Thermoplastic sheets are widely available in radiation oncology clinics and can serve as bolus. Two template cutouts were designed for anterior and posterior halves to encompass the cranium of children and adults. Results The created bolus was imaged using computed tomography, which demonstrated good conformity and minimal air gaps. Conclusions Although making a bolus for treating superficial tumors of the scalp or head and neck is challenging, the presented technique enables thermoplastic to be used as a bolus and is quick, easy, and reproducible.
Collapse
Affiliation(s)
- Justin M. Low
- Long School of Medicine, University of Texas Health Science Center San Antonio, San Antonio, Texas
| | - Nicole J.H. Lee
- Touro University California College of Osteopathic Medicine, Vallejo, California
| | - Grant Sprow
- Albert Einstein College of Medicine, Bronx, New York
| | - Alisha Chlebik
- Children’s Center for Cancer and Blood Diseases, Children’s Hospital Los Angeles, Los Angeles, California
| | - Arthur Olch
- Children’s Center for Cancer and Blood Diseases, Children’s Hospital Los Angeles, Los Angeles, California
- Department of Radiation Oncology, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Kaleb Darrow
- University of Tennessee Health Science Center College of Medicine, Memphis, Tennessee
| | - Kristine Bowlin
- Children’s Center for Cancer and Blood Diseases, Children’s Hospital Los Angeles, Los Angeles, California
| | - Kenneth K. Wong
- Children’s Center for Cancer and Blood Diseases, Children’s Hospital Los Angeles, Los Angeles, California
- Department of Radiation Oncology, Keck School of Medicine of the University of Southern California, Los Angeles, California
- Corresponding author: Kenneth K. Wong, MD
| |
Collapse
|
38
|
Koutsouvelis N, Rouzaud M, Dubouloz A, Nouet P, Jaccard M, Garibotto V, Tournier BB, Zilli T, Dipasquale G. 3D printing for dosimetric optimization and quality assurance in small animal irradiations using megavoltage X-rays. Z Med Phys 2020; 30:227-235. [PMID: 32475758 DOI: 10.1016/j.zemedi.2020.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/17/2020] [Accepted: 03/30/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE New therapeutic options in radiotherapy (RT) are often explored in preclinical in-vivo studies using small animals. We report here on the feasibility of modern megavoltage (MV) linear accelerator (LINAC)-based RT for small animals using easy-to-use consumer 3D printing technology for dosimetric optimization and quality assurance (QA). METHODS In this study we aimed to deliver 5×2Gy to the half-brain of a rat using a 4MV direct hemi-field X-ray beam. To avoid the beam's build-up in the target and optimize dosimetry, a 1cm thick, customized, 3D-printed bolus was used. A 1:1 scale copy of the rat was 3D printed based on the CT dataset as an end-to-end QA tool. The plan robustness to HU changes was verified. Thermoluminescent dosimeters (TLDs), for both MV irradiations and for kV imaging doses, and a gafchromic film were placed within the phantom for dose delivery verifications. The phantom was designed using a standard treatment planning software, and was irradiated at the LINAC with the target aligned using kV on-board imaging. RESULTS The plan was robust (dose difference<1% for HU modification from 0 to 250). Film dosimetry showed a good concordance between planned and measured dose, with the steep dose gradient at the edge of the hemi-field properly aligned to spare the contralateral half-brain. In the treated region, the mean TLDs percentage dose differences (±2 SD) were 1.3% (±3.8%) and 0.9% (±1.7%) beneath the bolus. The mean (±2 SD) out-of-field dose measurements was 0.05Gy (±0.02Gy) for an expected dose of 0.04Gy. Imaging doses (2mGy) still spared the contralateral-brain. CONCLUSIONS Use of consumer 3D-printers enables dosimetry optimization and QA assessment for small animals MV RT in preclinical studies using standard LINACS.
Collapse
Affiliation(s)
| | - Michel Rouzaud
- Radiation Oncology, Geneva University Hospital, Geneva, Switzerland
| | - Angele Dubouloz
- Radiation Oncology, Geneva University Hospital, Geneva, Switzerland
| | - Philippe Nouet
- Radiation Oncology, Geneva University Hospital, Geneva, Switzerland
| | - Maud Jaccard
- Radiation Oncology, Geneva University Hospital, Geneva, Switzerland
| | - Valentina Garibotto
- Faculty of Medicine, Geneva University, Geneva, Switzerland; Nuclear Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Benjamin B Tournier
- Faculty of Medicine, Geneva University, Geneva, Switzerland; Adult Psychiatry, Department of Mental Health and Psychiatry, University Hospital of Geneva, Geneva, Switzerland
| | - Thomas Zilli
- Radiation Oncology, Geneva University Hospital, Geneva, Switzerland; Faculty of Medicine, Geneva University, Geneva, Switzerland
| | | |
Collapse
|
39
|
Subashi E, Jacobs C, Hood R, Kirsch DG, Craciunescu O. A design process for a 3D printed patient-specific applicator for HDR brachytherapy of the orbit. 3D Print Med 2020; 6:15. [PMID: 32601842 PMCID: PMC7322888 DOI: 10.1186/s41205-020-00068-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/15/2020] [Indexed: 11/10/2022] Open
Abstract
Background This report describes a process for designing a 3D printed patient-specific applicator for HDR brachytherapy of the orbit. Case presentation A 34-year-old man with recurrent melanoma of the orbit was referred for consideration of re-irradiation. An applicator for HDR brachytherapy was designed based on the computed tomography (CT) of patient anatomy. The body contour was used to generate an applicator with a flush fit against the patient’s skin while the planning target volume (PTV) was used to devise channels that allow for access and coverage of the tumor bed. An end-to-end dosimetric test was devised to determine feasibility for clinical use. The applicator was designed to conform to the volume and contours inside the orbital cavity. Support wings placed flush with the patient skin provided stability and reproducibility, while 16 source channels of varying length were needed for sufficient access to the target. A solid sheath, printed as an outer support-wall for each channel, prevented bending or accidental puncturing of the surface of the applicator. Conclusions Quality assurance tests demonstrated feasibility for clinical use. Our experience with available 3D printing technology used to generate an applicator for the orbit may provide guidance for how materials of suitable biomechanical and radiation properties can be used in brachytherapy.
Collapse
Affiliation(s)
- Ergys Subashi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Corbin Jacobs
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Rodney Hood
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - David G Kirsch
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Oana Craciunescu
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA.,Medical Physics Graduate Program, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
40
|
Tino R, Yeo A, Leary M, Brandt M, Kron T. A Systematic Review on 3D-Printed Imaging and Dosimetry Phantoms in Radiation Therapy. Technol Cancer Res Treat 2020; 18:1533033819870208. [PMID: 31514632 PMCID: PMC6856980 DOI: 10.1177/1533033819870208] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Additive manufacturing or 3-dimensional printing has become a widespread technology with many applications in medicine. We have conducted a systematic review of its application in radiation oncology with a particular emphasis on the creation of phantoms for image quality assessment and radiation dosimetry. Traditionally used phantoms for quality assurance in radiotherapy are often constraint by simplified geometry and homogenous nature to perform imaging analysis or pretreatment dosimetric verification. Such phantoms are limited due to their ability in only representing the average human body, not only in proportion and radiation properties but also do not accommodate pathological features. These limiting factors restrict the patient-specific quality assurance process to verify image-guided positioning accuracy and/or dose accuracy in "water-like" condition. METHODS AND RESULTS English speaking manuscripts published since 2008 were searched in 5 databases (Google Scholar, Scopus, PubMed, IEEE Xplore, and Web of Science). A significant increase in publications over the 10 years was observed with imaging and dosimetry phantoms about the same total number (52 vs 50). Key features of additive manufacturing are the customization with creation of realistic pathology as well as the ability to vary density and as such contrast. Commonly used printing materials, such as polylactic acid, acrylonitrile butadiene styrene, high-impact polystyrene and many more, are utilized to achieve a wide range of achievable X-ray attenuation values from -1000 HU to 500 HU and higher. Not surprisingly, multimaterial printing using the polymer jetting technology is emerging as an important printing process with its ability to create heterogeneous phantoms for dosimetry in radiotherapy. CONCLUSION Given the flexibility and increasing availability and low cost of additive manufacturing, it can be expected that its applications for radiation medicine will continue to increase.
Collapse
Affiliation(s)
- Rance Tino
- RMIT Centre for Additive Manufacture, Innovative Manufacturing Research Group (Medical Manufacturing), RMIT University, Melbourne, Australia.,ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology, Brisbane, Australia.,Physical Sciences Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Adam Yeo
- Physical Sciences Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Martin Leary
- RMIT Centre for Additive Manufacture, Innovative Manufacturing Research Group (Medical Manufacturing), RMIT University, Melbourne, Australia.,ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology, Brisbane, Australia
| | - Milan Brandt
- RMIT Centre for Additive Manufacture, Innovative Manufacturing Research Group (Medical Manufacturing), RMIT University, Melbourne, Australia.,ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology, Brisbane, Australia
| | - Tomas Kron
- ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology, Brisbane, Australia.,Physical Sciences Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
41
|
Asfia A, Novak JI, Mohammed MI, Rolfe B, Kron T. A review of 3D printed patient specific immobilisation devices in radiotherapy. Phys Imaging Radiat Oncol 2020; 13:30-35. [PMID: 33458304 PMCID: PMC7807671 DOI: 10.1016/j.phro.2020.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Radiotherapy is one of the most effective cancer treatment techniques, however, delivering the optimal radiation dosage is challenging due to movements of the patient during treatment. Immobilisation devices are typically used to minimise motion. This paper reviews published research investigating the use of 3D printing (additive manufacturing) to produce patient-specific immobilisation devices, and compares these to traditional devices. MATERIALS AND METHODS A systematic review was conducted across thirty-eight databases, with results limited to those published between January 2000 and January 2019. A total of eighteen papers suitably detailed the use of 3D printing to manufacture and test immobilisers, and were included in this review. This included ten journal papers, five posters, two conference papers and one thesis. RESULTS 61% of relevant studies featured human subjects, 22% focussed on animal subjects, 11% used phantoms, and one study utilised experimental test methods. Advantages of 3D printed immobilisers reported in literature included improved patient experience and comfort over traditional methods, as well as high levels of accuracy between immobiliser and patient, repeatable setup, and similar beam attenuation properties to thermoformed immobilisers. Disadvantages included the slow 3D printing process and the potential for inaccuracies in the digitisation of patient geometry. CONCLUSION It was found that a lack of technical knowledge, combined with disparate studies with small patient samples, required further research in order to validate claims supporting the benefits of 3D printing to improve patient comfort or treatment accuracy.
Collapse
Affiliation(s)
- Amirhossein Asfia
- School of Engineering, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Victoria, Australia
- ARC Industrial Transformation Training Centre in Additive Bio-manufacturing, Brisbane, Queensland, Australia
| | - James I. Novak
- School of Engineering, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Victoria, Australia
| | | | - Bernard Rolfe
- School of Engineering, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Victoria, Australia
| | - Tomas Kron
- ARC Industrial Transformation Training Centre in Additive Bio-manufacturing, Brisbane, Queensland, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- School of Applied Sciences, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
42
|
PLA as a suitable 3D printing thermoplastic for use in external beam radiotherapy. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2019; 42:1165-1176. [DOI: 10.1007/s13246-019-00818-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/05/2019] [Indexed: 11/26/2022]
|
43
|
Neumann W, Pusch TP, Siegfarth M, Schad LR, Stallkamp JL. CT and MRI compatibility of flexible 3D-printed materials for soft actuators and robots used in image-guided interventions. Med Phys 2019; 46:5488-5498. [PMID: 31587313 DOI: 10.1002/mp.13852] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/12/2019] [Accepted: 09/26/2019] [Indexed: 01/09/2023] Open
Abstract
PURPOSE Three-dimensional (3D) printing allows for the fabrication of medical devices with complex geometries, such as soft actuators and robots that can be used in image-guided interventions. This study investigates flexible and rigid 3D-printing materials in terms of their impact on multimodal medical imaging. METHODS The generation of artifacts in clinical computer tomography (CT) and magnetic resonance (MR) imaging was evaluated for six flexible and three rigid materials, each with a cubical and a cylindrical geometry, and for one exemplary flexible fluidic actuator. Additionally, CT Hounsfield units (HU) were quantified for various parameter sets iterating peak voltage, x-ray tube current, slice thickness, and convolution kernel. RESULTS We found the image artifacts caused by the materials to be negligible in both CT and MR images. The HU values mainly depended on the elemental composition of the materials and applied peak voltage was ranging between 80 and 140 kVp. Flexible, nonsilicone-based materials were ranged between 51 and 114 HU. The voltage dependency was less than 29 HU. Flexible, silicone-based materials were ranged between 60 and 365 HU. The voltage-dependent influence was as large as 172 HU. Rigid materials ranged between -69 and 132 HU. The voltage-dependent influence was <33 HU. CONCLUSIONS All tested materials may be employed for devices placed in the field of view during CT and MR imaging as no significant artifacts were measured. Moreover, the material selection in CT could be based on the desired visibility of the material depending on the application. Given the wide availability of the tested materials, we expect our results to have a positive impact on the development of devices and robots for image-guided interventions.
Collapse
Affiliation(s)
- Wiebke Neumann
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Tim P Pusch
- Fraunhofer Institute for Manufacturing Engineering and Automation, Project Group for Automation in Medicine and Biotechnology, 68167, Mannheim, Germany
| | - Marius Siegfarth
- Fraunhofer Institute for Manufacturing Engineering and Automation, Project Group for Automation in Medicine and Biotechnology, 68167, Mannheim, Germany
| | - Lothar R Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Jan L Stallkamp
- Fraunhofer Institute for Manufacturing Engineering and Automation, Project Group for Automation in Medicine and Biotechnology, 68167, Mannheim, Germany.,Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| |
Collapse
|
44
|
Brivio D, Naumann L, Albert S, Sajo E, Zygmanski P. 3D printing for rapid prototyping of low-Z/density ionization chamber arrays. Med Phys 2019; 46:5770-5779. [PMID: 31571224 DOI: 10.1002/mp.13841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 12/31/2022] Open
Abstract
PURPOSE To explore 3D printing for rapid development of prototype thin slab low-Z/density ionization chamber arrays viable for custom needs in radiotherapy dosimetry and quality assurance (QA). MATERIALS AND METHODS We designed and fabricated parallel plate ionization chambers and ionization chamber arrays using an off-the-shelf 3D printing equipment. Conductive components of the detectors were made of conductive polylactic acid (cPLA) and insulating components were made of acrylonitrile butadiene styrene (ABS). We characterized the detector responses using a Varian TrueBeam linac at 95 cm SSD in slab solid water phantom at 5 cm depth. We measured the current-voltage (IV) curves, the response to different energy beam lines (2.5 MV, 6 MV, 6 MV FFF) for various dose rates and compared them to responses of a commercial Exradin A12 ionization chamber. We measured off-axis ratio (OAR) for several small field static multi-leaf collimators field sizes (0.5-3 cm) and compared them to OAR data obtained for commissioning of stereotactic radiotherapy. RESULTS We identified the printing capability and the limitations of a low-cost off-the-shelf 3D printer for rapid prototyping of detector arrays. The design of the array with sub-millimeter size features conformed to the 3D printing capabilities. IV-curve for the array showed a strong polarity effect (8%) due to the design. Results for the parallel plate and the array compared well with A12 chamber: monitor unit (MU) dependence for the array was within a few % and the response to different energy beam lines was within 1%. Off-axis dose profiles measured with the array were comparable to dose profiles obtained in water tank and stereotactic diode after accounting for the size of the chambers. Dose error was within 2% at the center of the profile and slightly larger at the penumbra. CONCLUSIONS Rapid prototyping of ion chambers by means of low-cost 3D printing is feasible with certain limitations in the design and spatial accuracy of the printed details.
Collapse
Affiliation(s)
- Davide Brivio
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Louise Naumann
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Steffen Albert
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Heidelberg University, Heidelberg, Germany.,University of Massachusetts Lowell, Lowell, MA, USA
| | - Erno Sajo
- University of Massachusetts Lowell, Lowell, MA, USA
| | - Piotr Zygmanski
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
45
|
Sasaki DK, McGeachy P, Alpuche Aviles JE, McCurdy B, Koul R, Dubey A. A modern mold room: Meshing 3D surface scanning, digital design, and 3D printing with bolus fabrication. J Appl Clin Med Phys 2019; 20:78-85. [PMID: 31454148 PMCID: PMC6753733 DOI: 10.1002/acm2.12703] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 11/28/2022] Open
Abstract
Purpose This case series represents an initial experience with implementing 3‐dimensional (3D) surface scanning, digital design, and 3D printing for bolus fabrication for patients with complex surface anatomy where traditional approaches are challenging. Methods and Materials For 10 patients requiring bolus in regions with complex contours, bolus was designed digitally from 3D surface scanning data or computed tomography (CT) images using either a treatment planning system or mesh editing software. Boluses were printed using a fused deposition modeling printer with polylactic acid. Quality assurance tests were performed for each printed bolus to verify density and shape. Results For 9 of 10 patients, digitally designed boluses were used for treatment with no issues. In 1 case, the bolus was not used because dosimetric requirements were met without the bolus. QA tests revealed that the bulk density was within 3% of the reference value for 9 of 12 prints, and with more judicious selection of print settings this could be increased. For these 9 prints, density uniformity was as good as or better than our traditional sheet bolus material. The average shape error of the pieces was less than 0.5 mm, and no issues with fit or comfort were encountered during use. Conclusions This study demonstrates that new technologies such as 3D surface scanning, digital design and 3D printing can be safely and effectively used to modernize bolus fabrication.
Collapse
Affiliation(s)
- David Kiyoshi Sasaki
- Department of Medical Physics, CancerCare Manitoba, Winnipeg, Manitoba, Canada.,Department of Radiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Philip McGeachy
- Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta, Canada
| | - Jorge E Alpuche Aviles
- Department of Medical Physics, CancerCare Manitoba, Winnipeg, Manitoba, Canada.,Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Boyd McCurdy
- Department of Medical Physics, CancerCare Manitoba, Winnipeg, Manitoba, Canada.,Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Radiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rashmi Koul
- Department of Radiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Radiation Oncology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Arbind Dubey
- Department of Radiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Radiation Oncology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
46
|
Park JM, Son J, An HJ, Kim JH, Wu HG, Kim JI. Bio-compatible patient-specific elastic bolus for clinical implementation. ACTA ACUST UNITED AC 2019; 64:105006. [DOI: 10.1088/1361-6560/ab1c93] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Baltz GC, Chi PM, Wong P, Wang C, Craft DF, Kry SF, Lin SSH, Garden AS, Smith SA, Howell RM. Development and validation of a 3D-printed bolus cap for total scalp irradiation. J Appl Clin Med Phys 2019; 20:89-96. [PMID: 30821903 PMCID: PMC6414136 DOI: 10.1002/acm2.12552] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 12/07/2018] [Accepted: 01/21/2019] [Indexed: 11/10/2022] Open
Abstract
PURPOSE The goal of total scalp irradiation (TSI) is to deliver a uniform dose to the scalp, which requires the use of a bolus cap. Most current methods for fabricating bolus caps are laborious, yet still result in nonconformity and low reproducibility, which can lead to nonuniform irradiation of the scalp. We developed and validated patient-specific bolus caps for TSI using three-dimensional (3D) printing. METHODS AND MATERIALS 3D-printing materials were radiologically analyzed to identify a material with properties suitable for use as a bolus cap. A Python script was developed within a commercial treatment planning system to automate the creation of a ready-to-print, patient-specific 3D bolus cap model. A bolus cap was printed for an anthropomorphic head phantom using a commercial vendor and a computed tomography simulation of the anthropomorphic head phantom and bolus cap was used to create a volumetric-modulated arc therapy TSI treatment plan. The planned treatment was delivered to the head phantom and dosimetric validation was performed using thermoluminescent dosimeters (TLD). The developed procedure was used to create a bolus cap for a clinical TSI patient, and in vivo TLD measurements were acquired for several fractions. RESULTS Agilus-60 was validated as a new 3D-printing material suitable for use as bolus. A 3D-printed Agilus-60 bolus cap had excellent conformality to the phantom scalp, with a maximum air gap of 4 mm. TLD measurements showed that the bolus cap generated a uniform dose to the scalp within a 2.7% standard deviation, and the delivered doses agreed with calculated doses to within 2.4% on average. The patient bolus was conformal and the average difference between TLD measured and planned doses was 5.3%. CONCLUSIONS We have developed a workflow to 3D-print highly conformal bolus caps for TSI and demonstrated these caps can reproducibly generate a uniform dose to the scalp.
Collapse
Affiliation(s)
- Garrett C. Baltz
- Department of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- Medical Physics ProgramThe University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical SciencesHoustonTXUSA
| | - Pai‐Chun Melinda Chi
- Department of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- Medical Physics ProgramThe University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical SciencesHoustonTXUSA
| | - Pei‐Fong Wong
- Department of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Congjun Wang
- Department of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- Medical Physics ProgramThe University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical SciencesHoustonTXUSA
| | - Daniel F. Craft
- Department of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- Medical Physics ProgramThe University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical SciencesHoustonTXUSA
| | - Stephen F. Kry
- Department of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- Medical Physics ProgramThe University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical SciencesHoustonTXUSA
| | - Stacy Sydney Hsinyi Lin
- Department of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Adam S. Garden
- Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Susan A. Smith
- Department of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Rebecca M. Howell
- Department of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- Medical Physics ProgramThe University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical SciencesHoustonTXUSA
| |
Collapse
|
48
|
Oare C, Wilke C, Ehler E, Mathew D, Sterling D, Ferreira C. Dose calibration of Gafchromic EBT3 film for Ir-192 brachytherapy source using 3D-printed PLA and ABS plastics. 3D Print Med 2019; 5:3. [PMID: 30725341 PMCID: PMC6676362 DOI: 10.1186/s41205-019-0040-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/14/2019] [Indexed: 11/10/2022] Open
Abstract
3D printing technology has allowed the creation of custom applicators for high dose rate (HDR) brachytherapy, especially for complex anatomy. With conformal therapy comes the need for advanced dosimetric verification. It is important to demonstrate how dose to 3D printed materials can be related to dose to water. This study aimed to determine dose differences and uncertainties using 3D printed PLA and ABS plastics for Radiochromic film calibration in HDR brachytherapy.Gafchromic EBT3 film pieces were irradiated in water with an Ir-192 source at calculated dose levels ranging from 0 to 800 cGy, to create the control calibration curve. Similarly, film was placed below 3D printed PLA and ABS blocks and irradiated at the same dose levels calculated for water, ranging from 0 to 800 cGy. After a 72-h development time, film pieces were scanned on a flatbed scanner and the median pixel value was recorded in the region of highest dose. This value was converted to net optical density (NOD). A rational function was used to fit a calibration curve in water that relates NOD to dose for red, green, and blue color channels. Based on this fitted curve, ABS and PLA NOD values were used to estimate dose in 3D printed plastics.From the fitted calibration curve, mean residual error between measured and planned dose to water was less than 1% for each color channel at high dose levels. At high dose levels, ABS and PLA mean residual errors were about 6.9 and 7.8% in the red channel, while 5.2 and 5.7% in the green channel. Combined uncertainties measured to be about 6.9% at high dose levels. This study demonstrated dose differences and uncertainties using 3D printed applicators for HDR Ir-192 brachytherapy.
Collapse
Affiliation(s)
- Courtney Oare
- University of Minnesota Medical School, 420 Delaware St SE, Minneapolis, MN 55414 USA
| | - Christopher Wilke
- University of Minnesota Medical School, 420 Delaware St SE, Minneapolis, MN 55414 USA
| | - Eric Ehler
- University of Minnesota Medical School, 420 Delaware St SE, Minneapolis, MN 55414 USA
| | - Damien Mathew
- University of Minnesota Medical School, 420 Delaware St SE, Minneapolis, MN 55414 USA
| | - David Sterling
- University of Minnesota Medical School, 420 Delaware St SE, Minneapolis, MN 55414 USA
| | - Clara Ferreira
- University of Minnesota Medical School, 420 Delaware St SE, Minneapolis, MN 55414 USA
| |
Collapse
|
49
|
Craft DF, Balter P, Woodward W, Kry SF, Salehpour M, Ger R, Peters M, Baltz G, Traneus E, Howell RM. Design, fabrication, and validation of patient-specific electron tissue compensators for postmastectomy radiation therapy. Phys Imaging Radiat Oncol 2018; 8:38-43. [PMID: 33458415 PMCID: PMC7807570 DOI: 10.1016/j.phro.2018.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 11/17/2022] Open
Abstract
Background and purpose Postmastectomy radiotherapy (PMRT) is complex to plan and deliver, but could be improved with 3D-printed, patient-specific electron tissue compensators. The purposes of this study were to develop an algorithm to design patient-specific compensators that achieve clinical goals, to 3D-print the planned compensators, and validate calculated dose distributions with film and thermoluminescent dosimeter (TLD) measurements in 3D-printed phantoms of PMRT patients. Materials and methods An iterative algorithm was developed to design compensators corresponding to single-field, single-energy electron plans for PMRT patients. The 3D-printable compensators were designed to fit into the electron aperture, with cerrobend poured around it. For a sample of eight patients, calculated dose distributions for compensator plans were compared with patients’ (multi-field, multi-energy) clinical treatment plans. For all patients, dosimetric parameters were compared including clinical target volume (CTV), lung, and heart metrics. For validation, compensators were fabricated and irradiated for a set of six 3D-printed patient-specific phantoms. Dose distributions in the phantoms were measured with TLD and film. These measurements were compared with the treatment planning system calculated dose distributions. Results The compensator treatment plans achieved superior CTV coverage (97% vs 89% of the CTV receiving the prescription dose, p < 0.0025), and similar heart and lung doses (p > 0.35) to the conventional treatment plans. Average differences between calculated and measured TLD values were 2%, and average film profile differences were <2 mm. Conclusions We developed a new compensator based treatment methodology for PMRT and demonstrated its validity and superiority to conventional multi-field plans through end-to-end testing.
Collapse
Affiliation(s)
- Daniel F. Craft
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
- Corresponding author at: Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 94, Houston, TX 77030, USA.
| | - Peter Balter
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Wendy Woodward
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Stephen F. Kry
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Mohammad Salehpour
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Rachel Ger
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Mary Peters
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Garrett Baltz
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Erik Traneus
- RaySearch Laboratories AB, Stockholm 111 34, Sweden
| | - Rebecca M. Howell
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| |
Collapse
|
50
|
Mickevicius NJ, Chen X, Boyd Z, Lee HJ, Ibbott GS, Paulson ES. Simultaneous motion monitoring and truth-in-delivery analysis imaging framework for MR-guided radiotherapy. ACTA ACUST UNITED AC 2018; 63:235014. [DOI: 10.1088/1361-6560/aaec91] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|