1
|
Zhang L, Li H, Zhao S, Tao X, Li M, Yang S, Zhou L, Liu M, Zhang X, Dong D, Tian J, Wu N. Deep learning model based on primary tumor to predict lymph node status in clinical stage IA lung adenocarcinoma: a multicenter study. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:233-240. [PMID: 39281718 PMCID: PMC11401490 DOI: 10.1016/j.jncc.2024.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 09/18/2024] Open
Abstract
Objective To develop a deep learning model to predict lymph node (LN) status in clinical stage IA lung adenocarcinoma patients. Methods This diagnostic study included 1,009 patients with pathologically confirmed clinical stage T1N0M0 lung adenocarcinoma from two independent datasets (699 from Cancer Hospital of Chinese Academy of Medical Sciences and 310 from PLA General Hospital) between January 2005 and December 2019. The Cancer Hospital dataset was randomly split into a training cohort (559 patients) and a validation cohort (140 patients) to train and tune a deep learning model based on a deep residual network (ResNet). The PLA Hospital dataset was used as a testing cohort to evaluate the generalization ability of the model. Thoracic radiologists manually segmented tumors and interpreted high-resolution computed tomography (HRCT) features for the model. The predictive performance was assessed by area under the curves (AUCs), accuracy, precision, recall, and F1 score. Subgroup analysis was performed to evaluate the potential bias of the study population. Results A total of 1,009 patients were included in this study; 409 (40.5%) were male and 600 (59.5%) were female. The median age was 57.0 years (inter-quartile range, IQR: 50.0-64.0). The deep learning model achieved AUCs of 0.906 (95% CI: 0.873-0.938) and 0.893 (95% CI: 0.857-0.930) for predicting pN0 disease in the testing cohort and a non-pure ground glass nodule (non-pGGN) testing cohort, respectively. No significant difference was detected between the testing cohort and the non-pGGN testing cohort (P = 0.622). The precisions of this model for predicting pN0 disease were 0.979 (95% CI: 0.963-0.995) and 0.983 (95% CI: 0.967-0.998) in the testing cohort and the non-pGGN testing cohort, respectively. The deep learning model achieved AUCs of 0.848 (95% CI: 0.798-0.898) and 0.831 (95% CI: 0.776-0.887) for predicting pN2 disease in the testing cohort and the non-pGGN testing cohort, respectively. No significant difference was detected between the testing cohort and the non-pGGN testing cohort (P = 0.657). The recalls of this model for predicting pN2 disease were 0.903 (95% CI: 0.870-0.936) and 0.931 (95% CI: 0.901-0.961) in the testing cohort and the non-pGGN testing cohort, respectively. Conclusions The superior performance of the deep learning model will help to target the extension of lymph node dissection and reduce the ineffective lymph node dissection in early-stage lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Li Zhang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hailin Li
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Shaohong Zhao
- Department of Radiology, PLA General Hospital, Beijing, China
| | - Xuemin Tao
- Department of Radiology, PLA General Hospital, Beijing, China
| | - Meng Li
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shouxin Yang
- Department of Radiology, Peking University Cancer Hospital & Institute, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing, China
| | - Lina Zhou
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengwen Liu
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue Zhang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Di Dong
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jie Tian
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Ning Wu
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Li Y, Huang XT, Feng YB, Fan QR, Wang DW, Lv FJ, He XQ, Li Q. Value of CT-Based Deep Learning Model in Differentiating Benign and Malignant Solid Pulmonary Nodules ≤ 8 mm. Acad Radiol 2024:S1076-6332(24)00305-2. [PMID: 38806374 DOI: 10.1016/j.acra.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/27/2024] [Accepted: 05/12/2024] [Indexed: 05/30/2024]
Abstract
RATIONALE AND OBJECTIVES We examined the effectiveness of computed tomography (CT)-based deep learning (DL) models in differentiating benign and malignant solid pulmonary nodules (SPNs) ≤ 8 mm. MATERIALS AND METHODS The study patients (n = 719) were divided into internal training, internal validation, and external validation cohorts; all had small SPNs and had undergone preoperative chest CTs and surgical resection. We developed five DL models incorporating features of the nodule and five different peri-nodular regions with the Multiscale Dual Attention Network (MDANet) to differentiate benign and malignant SPNs. We selected the best-performing model, which was then compared to four conventional algorithms (VGG19, ResNet50, ResNeXt50, and DenseNet121). Furthermore, another five DL models were constructed using MDANet to distinguish benign tumors from inflammatory nodules and the one performed best was selected out. RESULTS Model 4, which incorporated the nodule and 15 mm peri-nodular region, best differentiated benign and malignant SPNs. The model had an area under the curve (AUC), accuracy, recall, precision, and F1-score of 0.730, 0.724, 0.711, 0.705, and 0.707 in the external validation cohort. Model 4 also performed better than the other four conventional algorithms. Model 8, which incorporated the nodule and 10 mm peri-nodular region, was the best model for distinguishing benign tumors from inflammatory nodules. The model had an AUC, accuracy, recall, precision, and F1-score of 0.871, 0.938, 0.863, 0.904, and 0.882 in the external validation cohort. CONCLUSION The study concludes that CT-based DL models built with MDANet can accurately discriminate among small benign and malignant SPNs, benign tumors and inflammatory nodules.
Collapse
Affiliation(s)
- Yuan Li
- Department of Thoracic Surgery, the First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, China (Y.L.); Department of Thoracic Surgery, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Y.L.)
| | - Xing-Tao Huang
- Department of Radiology, the Fifth People's Hospital of Chongqing, No. 24 Renji Road, Nan'an District, Chongqing, China (X.T.H.)
| | - Yi-Bo Feng
- Institute of Research, Infervision Medical Technology Co., Ltd, 25F Building E, Yuanyang International Center, Chaoyang District. Beijing, China (B.Y.F., R.Q.F., W.D.W.)
| | - Qian-Rui Fan
- Institute of Research, Infervision Medical Technology Co., Ltd, 25F Building E, Yuanyang International Center, Chaoyang District. Beijing, China (B.Y.F., R.Q.F., W.D.W.)
| | - Da-Wei Wang
- Institute of Research, Infervision Medical Technology Co., Ltd, 25F Building E, Yuanyang International Center, Chaoyang District. Beijing, China (B.Y.F., R.Q.F., W.D.W.)
| | - Fa-Jin Lv
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, China (F.J.L., X.Q.H., Q.L.)
| | - Xiao-Qun He
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, China (F.J.L., X.Q.H., Q.L.)
| | - Qi Li
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, China (F.J.L., X.Q.H., Q.L.).
| |
Collapse
|
3
|
Wu T, Gao C, Lou X, Wu J, Xu M, Wu L. Predictive value of radiomic features extracted from primary lung adenocarcinoma in forecasting thoracic lymph node metastasis: a systematic review and meta-analysis. BMC Pulm Med 2024; 24:246. [PMID: 38762472 PMCID: PMC11102161 DOI: 10.1186/s12890-024-03020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/16/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND The application of radiomics in thoracic lymph node metastasis (LNM) of lung adenocarcinoma is increasing, but diagnostic performance of radiomics from primary tumor to predict LNM has not been systematically reviewed. Therefore, this study sought to provide a general overview regarding the methodological quality and diagnostic performance of using radiomic approaches to predict the likelihood of LNM in lung adenocarcinoma. METHODS Studies were gathered from literature databases such as PubMed, Embase, the Web of Science Core Collection, and the Cochrane library. The Radiomic Quality Score (RQS) and the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) were both used to assess the quality of each study. The pooled sensitivity, specificity, and area under the curve (AUC) of the best radiomics models in the training and validation cohorts were calculated. Subgroup and meta-regression analyses were also conducted. RESULTS Seventeen studies with 159 to 1202 patients each were enrolled between the years of 2018 to 2022, of which ten studies had sufficient data for the quantitative evaluation. The percentage of RQS was between 11.1% and 44.4% and most of the studies were considered to have a low risk of bias and few applicability concerns in QUADAS-2. Pyradiomics and logistic regression analysis were the most commonly used software and methods for radiomics feature extraction and selection, respectively. In addition, the best prediction models in seventeen studies were mainly based on radiomics features combined with non-radiomics features (semantic features and/or clinical features). The pooled sensitivity, specificity, and AUC of the training cohorts were 0.84 (95% confidence interval (CI) [0.73-0.91]), 0.88 (95% CI [0.81-0.93]), and 0.93(95% CI [0.90-0.95]), respectively. For the validation cohorts, the pooled sensitivity, specificity, and AUC were 0.89 (95% CI [0.82-0.94]), 0.86 (95% CI [0.74-0.93]) and 0.94 (95% CI [0.91-0.96]), respectively. CONCLUSIONS Radiomic features based on the primary tumor have the potential to predict preoperative LNM of lung adenocarcinoma. However, radiomics workflow needs to be standardized to better promote the applicability of radiomics. TRIAL REGISTRATION CRD42022375712.
Collapse
Affiliation(s)
- Ting Wu
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, China
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, China
| | - Chen Gao
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, China
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, China
| | - Xinjing Lou
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, China
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, China
| | - Jun Wu
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, China
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, China
| | - Maosheng Xu
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, China.
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, China.
| | - Linyu Wu
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, China.
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, China.
| |
Collapse
|
4
|
Ma X, Xia L, Chen J, Wan W, Zhou W. Development and validation of a deep learning signature for predicting lymph node metastasis in lung adenocarcinoma: comparison with radiomics signature and clinical-semantic model. Eur Radiol 2023; 33:1949-1962. [PMID: 36169691 DOI: 10.1007/s00330-022-09153-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/23/2022] [Accepted: 09/08/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To develop and validate a deep learning (DL) signature for predicting lymph node (LN) metastasis in patients with lung adenocarcinoma. METHODS A total of 612 patients with pathologically-confirmed lung adenocarcinoma were retrospectively enrolled and were randomly divided into training cohort (n = 489) and internal validation cohort (n = 123). Besides, 108 patients were enrolled and constituted an independent test cohort (n = 108). Patients' clinical characteristics and CT semantic features were collected. The radiomics features were derived from contrast-enhanced CT images. The clinical-semantic model and radiomics signature were built to predict LN metastasis. Furthermore, Swin Transformer was adopted to develop a DL signature predictive of LN metastasis. Model performance was evaluated by area under the receiver operating characteristic curve (AUC), sensitivity, specificity, calibration curve, and decision curve analysis. The comparisons of AUC were conducted by the DeLong test. RESULTS The proposed DL signature yielded an AUC of 0.948-0.961 across all three cohorts, significantly superior to both clinical-semantic model and radiomics signature (all p < 0.05). The calibration curves show that DL signature predicted probabilities fit well the actual observed probabilities of LN metastasis. DL signature gained a higher net benefit than both clinical-semantic model and radiomics signature. The incorporation of radiomics signature or clinical-semantic risk predictors failed to reveal an incremental value over the DL signature. CONCLUSIONS The proposed DL signature based on Swin Transformer achieved a promising performance in predicting LN metastasis and could confer important information in noninvasive mediastinal LN staging and individualized therapeutic options. KEY POINTS • Accurate prediction for lymph node metastasis is crucial to formulate individualized therapeutic options for patients with lung adenocarcinoma. • The deep learning signature yielded an AUC of 0.948-0.961 across all three cohorts in predicting lymph node metastasis, superior to both radiomics signature and clinical-semantic model. • The incorporation of radiomics signature or clinical-semantic risk predictors into deep learning signature failed to reveal an incremental value over deep learning signature.
Collapse
Affiliation(s)
- Xiaoling Ma
- Medical Imaging Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Liming Xia
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Qiaokou District, Wuhan, 430030, Hubei, China.
| | | | - Weijia Wan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Wen Zhou
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Qiaokou District, Wuhan, 430030, Hubei, China
| |
Collapse
|
5
|
Tan M, Ma W, Yang Y, Duan S, Jin L, Wu Y, Li M. Predictive value of peritumour radiomics in the diagnosis of benign and malignant pulmonary nodules with halo sign. Clin Radiol 2023; 78:e52-e62. [PMID: 36460488 DOI: 10.1016/j.crad.2022.09.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/05/2022] [Accepted: 09/26/2022] [Indexed: 12/03/2022]
Abstract
AIM To evaluate peritumour radiomics in predicting benign and malignant pulmonary nodules with halo sign. MATERIALS AND METHODS In this retrospective study, 305 pulmonary nodules with halo sign (benign, 120; adenocarcinoma, 185) were collected. Manual segmentation was used to mark the gross tumour volume (GTV) and the peritumour volume (PTV) was established by uniform dilation (1 cm) of the tumour area in three dimensions. The GTV and PTV radiomic features were combined to produce the gross tumour and peritumour volume (GPTV). The minimum-redundancy maximum-relevance (mRMR) feature ranking method and least absolute shrinkage and selection operator (LASSO) algorithm were used to eliminate redundant radiomic features. Predictive models combined with clinical features and radiomic signatures were established. Multivarible logistic regression analysis was used to establish the combined model and develop a nomogram. Receiver operating characteristic (ROC) curve analysis was used to evaluate the predictive performance of the model. RESULTS In the testing cohort, the area under the ROC curve (AUC) of the GTV, PTV, and GPTV radiomic models was 0.701 (95% CI: 0.589-0.814), 0.674 (95% CI: 0.557-0.791) and 0.755 (95% CI: 0.643-0.867), respectively. The AUC of the nomogram model based on clinical and GPTV radiomic signatures was 0.804 (95% CI: 0.707-0.901). CONCLUSION The nomogram model based on clinical and GPTV radiomic signatures can better predict benign and malignant pulmonary nodules with halo signs, demonstrating that the model has potential as a convenient and effective auxiliary diagnostic tool for radiologists.
Collapse
Affiliation(s)
- M Tan
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Department of Radiology, Chengdu Second People's Hospital, Chengdu, China
| | - W Ma
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Department of Radiology, Shanghai Chest Hospital, Shanghai, China
| | - Y Yang
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - S Duan
- GE Healthcare, Shanghai, China
| | - L Jin
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Y Wu
- Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China.
| | - M Li
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Ge G, Zhang J. Feature selection methods and predictive models in CT lung cancer radiomics. J Appl Clin Med Phys 2023; 24:e13869. [PMID: 36527376 PMCID: PMC9860004 DOI: 10.1002/acm2.13869] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/31/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Radiomics is a technique that extracts quantitative features from medical images using data-characterization algorithms. Radiomic features can be used to identify tissue characteristics and radiologic phenotyping that is not observable by clinicians. A typical workflow for a radiomics study includes cohort selection, radiomic feature extraction, feature and predictive model selection, and model training and validation. While there has been increasing attention given to radiomic feature extraction, standardization, and reproducibility, currently, there is a lack of rigorous evaluation of feature selection methods and predictive models. Herein, we review the published radiomics investigations in CT lung cancer and provide an overview of the commonly used radiomic feature selection methods and predictive models. We also compare limitations of various methods in clinical applications and present sources of uncertainty associated with those methods. This review is expected to help raise awareness of the impact of radiomic feature and model selection methods on the integrity of radiomics studies.
Collapse
Affiliation(s)
- Gary Ge
- Department of Radiology, University of Kentucky, Lexington, Kentucky, USA
| | - Jie Zhang
- Department of Radiology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
7
|
Zhang H, Liao M, Guo Q, Chen J, Wang S, Liu S, Xiao F. Predicting N2 lymph node metastasis in presurgical stage I-II non-small cell lung cancer using multiview radiomics and deep learning method. Med Phys 2022; 50:2049-2060. [PMID: 36563341 DOI: 10.1002/mp.16177] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/07/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Accurate diagnosis of N2 lymph node status of the resectable stage I-II non-small cell lung cancer (NSCLC) before surgery is crucial, while there is lack of corresponding method clinically. PURPOSE To develop and validate a model to quantitively predict the N2 lymph node metastasis in presurgical clinical stage I-II NSCLC using multiview radiomics and deep learning method. METHODS In this study, 140 NSCLC patients were enrolled and randomly divided into training and test sets. Univariate and multiple analysis method were used step by step to establish the clinical model; Then a multiview radiomics modeling scheme was designed, in which the optimal input feature set was determined by subcategorizing radiomics features (C1: original; C2: LoG and C3: wavelet) and comparison of corresponding radiomics model. The minimum-redundancy maximum-relevance (mRMR) selection and the least absolute shrinkage and selection operator (LASSO) algorithm were used for the feature selection and construction of each radiomics model (Rad). Next, an end-to-end ResNet18 architecture and transfer learning techniques were designed to construct a deep learning model (DL). Subsequently, the screened clinical risk factors and constructed Rad and DL models were combined and compared and a nomogram was constructed. Finally, the diagnostic performance of all constructed models were evaluated and compared using receiver operating characteristic curve (ROC) analysis, Delong test, Calibration analysis, Hosmer-Lemeshow test, and decision curves, respectively. RESULTS Carcinoma embryonic antigen (CEA) level and spiculation were screened to make up the Clinical model, while seven radiomics features in the optimal input feature set C2 + C3 were selected to construct the Rad. DL was constructed by training on 1.8 million natural images and small sample data of our N2 lymph node volume of interest (VOI) images. Except for the Clinical model, all other models showed good predictive accuracy and consistency in both training set and test set. DL (area under curve (AUC): 0.83) was better than Rad (AUC: 0.76) in predictive accuracy, but their difference was not significant (p = 0.45). The combined models showed better diagnostic performance than the model only clinical or image risk factors were used (AUC for Clinical, Rad + DL, Rad + Clinical, DL + Clinical, and Rad + DL + Clinical were respectively 0.66, 0.86, 0.82, 0.86, and 0.88). Finally, the Rad + DL + Clinical model with the best diagnostic performance was selected to draw the final nomogram for clinical use. CONCLUSION This study proposes a nomogram based on multiview radiomics, deep learning, and clinical features that can be efficiently used to quantitively predict presurgical N2 diseases in patients with clinical stage I-II NSCLC.
Collapse
Affiliation(s)
- Hanfei Zhang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Meiyan Liao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | | | - Jun Chen
- Wuhan GE Healthcare, Wuhan, China
| | - Shan Wang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Songmei Liu
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Feng Xiao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Qiao J, Zhang X, Du M, Wang P, Xin J. 18F-FDG PET/CT radiomics nomogram for predicting occult lymph node metastasis of non-small cell lung cancer. Front Oncol 2022; 12:974934. [PMID: 36249026 PMCID: PMC9554943 DOI: 10.3389/fonc.2022.974934] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022] Open
Abstract
Purpose To investigate the ability of a PET/CT-based radiomics nomogram to predict occult lymph node metastasis in patients with clinical stage N0 non-small cell lung cancer (NSCLC). Materials and methods This retrospective study included 228 patients with surgically confirmed NSCLC (training set, 159 patients; testing set, 69 patients). ITKsnap3.8.0 was used for image(CT and PET images) segmentation, AK version 3.2.0 was used for radiomics feature extraction, and Python3.7.0 was used for radiomics feature screening. A radiomics model for predicting occult lymph node metastasis was established using a logistic regression algorithm. A nomogram was constructed by combining radiomics scores with selected clinical predictors. Receiver operating characteristic (ROC) curves were used to verify the performance of the radiomics model and nomogram in the training and testing sets. Results The radiomics nomogram comprising six selected features achieved good prediction efficiency, including radiomics characteristics and tumor location information (central or peripheral), which demonstrated good calibration and discrimination ability in the training (area under the ROC curve [AUC] = 0.884, 95% confidence interval [CI]: 0.826-0.941) and testing (AUC = 0.881, 95% CI: 0.8031-0.959) sets. Clinical decision curves demonstrated that the nomogram was clinically useful. Conclusion The PET/CT-based radiomics nomogram is a noninvasive tool for predicting occult lymph node metastasis in NSCLC.
Collapse
Affiliation(s)
- Jianyi Qiao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Nuclear Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin Zhang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Nuclear Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ming Du
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Nuclear Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Pengyuan Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Nuclear Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Xin
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Nuclear Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Jun Xin,
| |
Collapse
|
9
|
Kothari G, Woon B, Patrick CJ, Korte J, Wee L, Hanna GG, Kron T, Hardcastle N, Siva S. The impact of inter-observer variation in delineation on robustness of radiomics features in non-small cell lung cancer. Sci Rep 2022; 12:12822. [PMID: 35896707 PMCID: PMC9329346 DOI: 10.1038/s41598-022-16520-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022] Open
Abstract
Artificial intelligence and radiomics have the potential to revolutionise cancer prognostication and personalised treatment. Manual outlining of the tumour volume for extraction of radiomics features (RF) is a subjective process. This study investigates robustness of RF to inter-observer variation (IOV) in contouring in lung cancer. We utilised two public imaging datasets: ‘NSCLC-Radiomics’ and ‘NSCLC-Radiomics-Interobserver1’ (‘Interobserver’). For ‘NSCLC-Radiomics’, we created an additional set of manual contours for 92 patients, and for ‘Interobserver’, there were five manual and five semi-automated contours available for 20 patients. Dice coefficients (DC) were calculated for contours. 1113 RF were extracted including shape, first order and texture features. Intraclass correlation coefficient (ICC) was computed to assess robustness of RF to IOV. Cox regression analysis for overall survival (OS) was performed with a previously published radiomics signature. The median DC ranged from 0.81 (‘NSCLC-Radiomics’) to 0.85 (‘Interobserver’—semi-automated). The median ICC for the ‘NSCLC-Radiomics’, ‘Interobserver’ (manual) and ‘Interobserver’ (semi-automated) were 0.90, 0.88 and 0.93 respectively. The ICC varied by feature type and was lower for first order and gray level co-occurrence matrix (GLCM) features. Shape features had a lower median ICC in the ‘NSCLC-Radiomics’ dataset compared to the ‘Interobserver’ dataset. Survival analysis showed similar separation of curves for three of four RF apart from ‘original_shape_Compactness2’, a feature with low ICC (0.61). The majority of RF are robust to IOV, with first order, GLCM and shape features being the least robust. Semi-automated contouring improves feature stability. Decreased robustness of a feature is significant as it may impact upon the features’ prognostic capability.
Collapse
Affiliation(s)
- Gargi Kothari
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre Building, 305 Grattan Street, Melbourne, VIC, 3000, Australia. .,Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC, Australia.
| | - Beverley Woon
- Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC, Australia.,Department of Radiology, Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Cameron J Patrick
- Statistical Consulting Centre, University of Melbourne, Parkville, Australia
| | - James Korte
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Department of Biomedical Engineering, School of Chemical and Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australia
| | - Leonard Wee
- Department of Radiotherapy (MAASTRO), GROW School of Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands.,Clinical Data Science, Maastricht University, Maastricht, The Netherlands
| | - Gerard G Hanna
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre Building, 305 Grattan Street, Melbourne, VIC, 3000, Australia.,Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Tomas Kron
- Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC, Australia.,Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Nicholas Hardcastle
- Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC, Australia.,Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Shankar Siva
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre Building, 305 Grattan Street, Melbourne, VIC, 3000, Australia.,Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
10
|
van Kempen EJ, Post M, Mannil M, Witkam RL, Ter Laan M, Patel A, Meijer FJA, Henssen D. Performance of machine learning algorithms for glioma segmentation of brain MRI: a systematic literature review and meta-analysis. Eur Radiol 2021; 31:9638-9653. [PMID: 34019128 PMCID: PMC8589805 DOI: 10.1007/s00330-021-08035-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/04/2021] [Accepted: 05/03/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Different machine learning algorithms (MLAs) for automated segmentation of gliomas have been reported in the literature. Automated segmentation of different tumor characteristics can be of added value for the diagnostic work-up and treatment planning. The purpose of this study was to provide an overview and meta-analysis of different MLA methods. METHODS A systematic literature review and meta-analysis was performed on the eligible studies describing the segmentation of gliomas. Meta-analysis of the performance was conducted on the reported dice similarity coefficient (DSC) score of both the aggregated results as two subgroups (i.e., high-grade and low-grade gliomas). This study was registered in PROSPERO prior to initiation (CRD42020191033). RESULTS After the literature search (n = 734), 42 studies were included in the systematic literature review. Ten studies were eligible for inclusion in the meta-analysis. Overall, the MLAs from the included studies showed an overall DSC score of 0.84 (95% CI: 0.82-0.86). In addition, a DSC score of 0.83 (95% CI: 0.80-0.87) and 0.82 (95% CI: 0.78-0.87) was observed for the automated glioma segmentation of the high-grade and low-grade gliomas, respectively. However, heterogeneity was considerably high between included studies, and publication bias was observed. CONCLUSION MLAs facilitating automated segmentation of gliomas show good accuracy, which is promising for future implementation in neuroradiology. However, before actual implementation, a few hurdles are yet to be overcome. It is crucial that quality guidelines are followed when reporting on MLAs, which includes validation on an external test set. KEY POINTS • MLAs from the included studies showed an overall DSC score of 0.84 (95% CI: 0.82-0.86), indicating a good performance. • MLA performance was comparable when comparing the segmentation results of the high-grade gliomas and the low-grade gliomas. • For future studies using MLAs, it is crucial that quality guidelines are followed when reporting on MLAs, which includes validation on an external test set.
Collapse
Affiliation(s)
- Evi J van Kempen
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands
| | - Max Post
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands
| | - Manoj Mannil
- Clinic of Radiology, University Hospital Münster, Münster, Germany
| | - Richard L Witkam
- Department of Anaesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mark Ter Laan
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ajay Patel
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands
| | - Frederick J A Meijer
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands
| | - Dylan Henssen
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands.
| |
Collapse
|
11
|
Thoracic imaging radiomics for staging lung cancer: a systematic review and radiomic quality assessment. Clin Transl Imaging 2021. [DOI: 10.1007/s40336-021-00474-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Zhang R, Zhang R, Luan T, Liu B, Zhang Y, Xu Y, Sun X, Xing L. A Radiomics Nomogram for Preoperative Prediction of Clinical Occult Lymph Node Metastasis in cT1-2N0M0 Solid Lung Adenocarcinoma. Cancer Manag Res 2021; 13:8157-8167. [PMID: 34737644 PMCID: PMC8560059 DOI: 10.2147/cmar.s330824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
Background Clinical occult lymph node metastasis (cOLNM) means that the lymph node is negatively diagnosed by preoperative computed tomography (CT), but has been proven to be positive by postoperative pathology. The aim of this study was to establish and validate a nomogram based on radiomics features for the preoperative prediction of cOLNM in early-stage solid lung adenocarcinoma patients. Methods A total of 244 patients with clinical T1-2N0M0 solid lung adenocarcinoma who underwent preoperative contrast-enhanced chest CT were divided into a primary group (n = 160) and an independent validation group from another hospital (n = 84). The records of 851 radiomics features of each primary tumor were extracted. LASSO analysis was used to reduce the data dimensionality and select features. Multivariable logistic regression was utilized to identify independent predictors of cOLNM and develop a predictive nomogram. The performance of the predictive model was assessed by its calibration and discrimination. Decision curve analysis (DCA) was performed to estimate the clinical usefulness of the nomogram. Results The predictive model consisted of a clinical factor (CT-reported tumor size) and a radiomics feature (Rad-score). The nomogram presented good discrimination, with a C-index of 0.782 (95% CI, 0.768–0.796) in the primary cohort and 0.813 (95% CI, 0.787–0.839) in the validation cohort, and good calibration. DCA showed that the radiomics nomogram was clinically useful. Conclusion This study develops and validates a nomogram that incorporates clinical and radiomics factors. It can be tailored for the individualized preoperative prediction of cOLNM in early-stage solid lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Ran Zhang
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China.,Tongji University, Shanghai, People's Republic of China
| | - Ranran Zhang
- Department of Medical Imaging, Linyi Cancer Hospital, Linyi, Shandong, People's Republic of China
| | - Ting Luan
- Department of Graduate, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China.,Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Biwei Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Yimei Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Yaping Xu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xiaorong Sun
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Ligang Xing
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| |
Collapse
|
13
|
Lam S, Tammemagi M. Contemporary issues in the implementation of lung cancer screening. Eur Respir Rev 2021; 30:30/161/200288. [PMID: 34289983 DOI: 10.1183/16000617.0288-2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/08/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer screening with low-dose computed tomography can reduce death from lung cancer by 20-24% in high-risk smokers. National lung cancer screening programmes have been implemented in the USA and Korea and are being implemented in Europe, Canada and other countries. Lung cancer screening is a process, not a test. It requires an organised programmatic approach to replicate the lung cancer mortality reduction and safety of pivotal clinical trials. Cost-effectiveness of a screening programme is strongly influenced by screening sensitivity and specificity, age to stop screening, integration of smoking cessation intervention for current smokers, screening uptake, nodule management and treatment costs. Appropriate management of screen-detected lung nodules has significant implications for healthcare resource utilisation and minimising harm from radiation exposure related to imaging studies, invasive procedures and clinically significant distress. This review focuses on selected contemporary issues in the path to implement a cost-effective lung cancer screening at the population level. The future impact of emerging technologies such as deep learning and biomarkers are also discussed.
Collapse
Affiliation(s)
- Stephen Lam
- British Columbia Cancer Agency, Vancouver, BC, Canada.,University of British Columbia, Vancouver, BC, Canada
| | - Martin Tammemagi
- Dept of Health Sciences, Brock University, St Catharines, ON, Canada
| |
Collapse
|
14
|
Integrative nomogram of intratumoral, peritumoral, and lymph node radiomic features for prediction of lymph node metastasis in cT1N0M0 lung adenocarcinomas. Sci Rep 2021; 11:10829. [PMID: 34031529 PMCID: PMC8144194 DOI: 10.1038/s41598-021-90367-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/21/2021] [Indexed: 12/23/2022] Open
Abstract
Radiomics studies to predict lymph node (LN) metastasis has only focused on either primary tumor or LN alone. However, combining radiomics features from multiple sources may reflect multiple characteristic of the lesion thereby increasing the discriminative performance of the radiomic model. Therefore, the present study intends to evaluate the efficiency of integrative nomogram, created by combining clinical parameters and radiomics features extracted from gross tumor volume (GTV), peritumoral volume (PTV) and LN, for the preoperative prediction of LN metastasis in clinical cT1N0M0 adenocarcinoma. A primary cohort of 163 patients (training cohort, 113; and internal validation cohort, 50) and an external validation cohort of 53 patients with clinical stage cT1N0M0 were retrospectively included. Features were extracted from three regions of interests (ROIs): GTV; PTV (5.0 mm around the tumor) and LN on pre-operative contrast enhanced computed tomography (CT). LASSO logistic regression method was used to build radiomic signatures. Multivariable regression analysis was used to build a nomogram. The performance of the nomogram was assessed with respect to its calibration, discrimination, and clinical usefulness. The discriminative performance of nomogram was validated both internally and externally. The radiomic signatures using the features of GTV, PTV and LN showed a good ability in predicting LN metastasis with an area under the curve (AUC) of 0.74 (95% CI 0.60–0.88), 0.72 (95% CI 0.57–0.87) and 0.64 (95% CI 0.48–0.80) respectively in external validation cohort. The integration of different signature together further increases the discriminatory ability: GTV + PTV (GPTV): AUC 0.75 (95% CI 0.61–0.89) and GPTV + LN: AUC 0.76 (95% CI 0.61–0.91) in external validation cohort. An integrative nomogram of clinical parameters and radiomic features demonstrated further increase in discriminatory ability with AUC of 0.79 (95% CI 0.66–0.93) in external validation cohort. The nomogram showed good calibration. Decision curve analysis demonstrated that the radiomic nomogram was clinically useful. The integration of information from clinical parameters along with CT radiomics information from GTV, PTV and LN was feasible and increases the predictive performance of the nomogram in predicting LN status in cT1N0M0 adenocarcinoma patients suggesting merit of information integration from multiple sources in building prediction model.
Collapse
|
15
|
Li Q, He XQ, Fan X, Zhu CN, Lv JW, Luo TY. Development and Validation of a Combined Model for Preoperative Prediction of Lymph Node Metastasis in Peripheral Lung Adenocarcinoma. Front Oncol 2021; 11:675877. [PMID: 34109124 PMCID: PMC8180898 DOI: 10.3389/fonc.2021.675877] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/23/2021] [Indexed: 12/25/2022] Open
Abstract
Background Based on the “seed and soil” theory proposed by previous studies, we aimed to develop and validate a combined model of machine learning for predicting lymph node metastasis (LNM) in patients with peripheral lung adenocarcinoma (PLADC). Methods Radiomics models were developed in a primary cohort of 390 patients (training cohort) with pathologically confirmed PLADC from January 2016 to August 2018. The patients were divided into the LNM (−) and LNM (+) groups. Thereafter, the patients were subdivided according to TNM stages N0, N1, N2, and N3. Radiomic features from unenhanced computed tomography (CT) were extracted. Radiomic signatures of the primary tumor (R1) and adjacent pleura (R2) were built as predictors of LNM. CT morphological features and clinical characteristics were compared between both groups. A combined model incorporating R1, R2, and CT morphological features, and clinical risk factors was developed by multivariate analysis. The combined model’s performance was assessed by receiver operating characteristic (ROC) curve. An internal validation cohort containing 166 consecutive patients from September 2018 to November 2019 was also assessed. Results Thirty-one radiomic features of R1 and R2 were significant predictors of LNM (all P < 0.05). Sex, smoking history, tumor size, density, air bronchogram, spiculation, lobulation, necrosis, pleural effusion, and pleural involvement also differed significantly between the groups (all P < 0.05). R1, R2, tumor size, and spiculation in the combined model were independent risk factors for predicting LNM in patients with PLADC, with area under the ROC curves (AUCs) of 0.897 and 0.883 in the training and validation cohorts, respectively. The combined model identified N0, N1, N2, and N3, with AUCs ranging from 0.691–0.927 in the training cohort and 0.700–0.951 in the validation cohort, respectively, thereby indicating good performance. Conclusion CT phenotypes of the primary tumor and adjacent pleura were significantly associated with LNM. A combined model incorporating radiomic signatures, CT morphological features, and clinical risk factors can assess LNM of patients with PLADC accurately and non-invasively.
Collapse
Affiliation(s)
- Qi Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-Qun He
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao Fan
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Chao-Nan Zhu
- Hangzhou YITU Healthcare Technology, Hangzhou, China
| | - Jun-Wei Lv
- Hangzhou YITU Healthcare Technology, Hangzhou, China
| | - Tian-You Luo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Lam S, Bryant H, Donahoe L, Domingo A, Earle C, Finley C, Gonzalez AV, Hergott C, Hung RJ, Ireland AM, Lovas M, Manos D, Mayo J, Maziak DE, McInnis M, Myers R, Nicholson E, Politis C, Schmidt H, Sekhon HS, Soprovich M, Stewart A, Tammemagi M, Taylor JL, Tsao MS, Warkentin MT, Yasufuku K. Management of screen-detected lung nodules: A Canadian partnership against cancer guidance document. CANADIAN JOURNAL OF RESPIRATORY CRITICAL CARE AND SLEEP MEDICINE 2020. [DOI: 10.1080/24745332.2020.1819175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Stephen Lam
- British Columbia Cancer Agency & the University of British Columbia, Vancouver, British Columbia, Canada
| | - Heather Bryant
- Screening and Early Detection, Canadian Partnership Against Cancer, Toronto, Ontario, Canada
| | - Laura Donahoe
- Division of Thoracic Surgery, Department of Surgery, University Health Network, Toronto, Ontario, Canada
| | - Ashleigh Domingo
- Screening and Early Detection, Canadian Partnership Against Cancer, Toronto, Ontario, Canada
| | - Craig Earle
- Screening and Early Detection, Canadian Partnership Against Cancer, Toronto, Ontario, Canada
| | - Christian Finley
- Department of Thoracic Surgery, St. Joseph's Healthcare, McMaster University, Hamilton, Ontario, Canada
| | - Anne V. Gonzalez
- Division of Respiratory Medicine, McGill University, Montreal, Quebec, Canada
| | - Christopher Hergott
- Division of Respiratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rayjean J. Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Ontario, Canada
| | - Anne Marie Ireland
- Patient and Family Advocate, Canadian Partnership Against Cancer, Toronto, Ontario, Canada
| | - Michael Lovas
- Patient and Family Advocate, Canadian Partnership Against Cancer, Toronto, Ontario, Canada
| | - Daria Manos
- Department of Diagnostic Radiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John Mayo
- Department of Radiology, Vancouver Coastal Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Donna E. Maziak
- Surgical Oncology Division of Thoracic Surgery, Ottawa Hospital, Ottawa, Ontario, Canada
| | - Micheal McInnis
- Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada
| | - Renelle Myers
- British Columbia Cancer Agency & the University of British Columbia, Vancouver, British Columbia, Canada
| | - Erika Nicholson
- Screening and Early Detection, Canadian Partnership Against Cancer, Toronto, Ontario, Canada
| | - Christopher Politis
- Screening and Early Detection, Canadian Partnership Against Cancer, Toronto, Ontario, Canada
| | - Heidi Schmidt
- University Health Network and Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Harman S. Sekhon
- Department of Pathology and Laboratory Medicine, University of Ottawa, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Marie Soprovich
- Patient and Family Advocate, Canadian Partnership Against Cancer, Toronto, Ontario, Canada
| | - Archie Stewart
- Patient and Family Advocate, Canadian Partnership Against Cancer, Toronto, Ontario, Canada
| | - Martin Tammemagi
- Department of Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Jana L. Taylor
- Department of Radiology, McGill University, Montreal, Quebec, Canada
| | - Ming-Sound Tsao
- Department of Laboratory Medicine and Pathobiology, University Health Network and Princess Margaret Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Matthew T. Warkentin
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Ontario, Canada
| | - Kazuhiro Yasufuku
- Division of Thoracic Surgery, Department of Surgery and Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Zhu H, Xu Y, Liang N, Sun H, Huang Z, Xie S, Wang W. Assessment of Clinical Stage IA Lung Adenocarcinoma with pN1/N2 Metastasis Using CT Quantitative Texture Analysis. Cancer Manag Res 2020; 12:6421-6430. [PMID: 32801882 PMCID: PMC7396813 DOI: 10.2147/cmar.s251598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To explore the application of texture analysis basing on computed tomography (CT) images in predicting lymph-node metastasis in patients with clinical stage IA lung adenocarcinoma. METHODS In total, 256 patients with clinical stage IA lung adenocarcinoma who had underwentgone preoperative CT examinations were enrolled. A total of 25 texture features using MaZda (version 4.6) software and conventional radiological features were extracted from raw CT data sets. Based on surgical results, patients were stratified into lymph node metastasis-positive and -negative groups. Independent-sample t-tests and Mann-Whitney U tests were used to compare continuous variables between the groups. Continuity-correction and χ2 tests were used for categorical variable comparison. Univariate and multivariate logistic regression analyses were performed to identify independent predictors of lymph-node metastasis. RESULTS In total, 256 clinical stage IA lung adenocarcinoma cases were proved by pathology: 39 (15.23%) cases with lymph-node metastasis (14 N1a, seven N1b, six N2a1, ten N2a2, and two N2b) and 217 (84.77%) cases without lymph-node metastasis. Univariate and multivariate logistic regression analyses demonstrated that total volume (OR 3.777, p=0.015), average CT value of whole tumor (OR 16.271, p<0.001), three texture parameters (mean OR 8.473, p<0.001; skewness OR 6.393, p=0.001; and entropy OR 0.343, p=0.049) were independent factors associated with lymph-node status. As such, early-stage lung adenocarcinoma with higher total volume (>4.05 cm3), average CT value of whole tumor (>-70 HU), mean (>133.79), entropy (>1.98), and lower skewness (≤0.02) pointed to positive lymph-node metastasis. CONCLUSION Texture parameters were independent factors associated with lymph-node status in clinical stage IA lung adenocarcinoma.
Collapse
Affiliation(s)
- Haixu Zhu
- Department of Radiology, People’s Hospital of Xinjiang Uyghur Autonomous Region, Urumqi830001, People’s Republic of China
- Department of Radiology, China–Japan Friendship Hospital, Beijing100029, People’s Republic of China
| | - Yanyan Xu
- Department of Radiology, China–Japan Friendship Hospital, Beijing100029, People’s Republic of China
| | - Nanxue Liang
- Department of Radiology, China–Japan Friendship Hospital, Beijing100029, People’s Republic of China
| | - Hongliang Sun
- Department of Radiology, China–Japan Friendship Hospital, Beijing100029, People’s Republic of China
| | - Zhenguo Huang
- Department of Radiology, China–Japan Friendship Hospital, Beijing100029, People’s Republic of China
| | - Sheng Xie
- Department of Radiology, China–Japan Friendship Hospital, Beijing100029, People’s Republic of China
| | - Wu Wang
- Department of Radiology, China–Japan Friendship Hospital, Beijing100029, People’s Republic of China
| |
Collapse
|
18
|
Association of a CT-Based Clinical and Radiomics Score of Non-Small Cell Lung Cancer (NSCLC) with Lymph Node Status and Overall Survival. Cancers (Basel) 2020; 12:cancers12061432. [PMID: 32486453 PMCID: PMC7352293 DOI: 10.3390/cancers12061432] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/25/2022] Open
Abstract
Background: To evaluate whether a model based on radiomic and clinical features may be associated with lymph node (LN) status and overall survival (OS) in lung cancer (LC) patients; to evaluate whether CT reconstruction algorithms may influence the model performance. Methods: patients operated on for LC with a pathological stage up to T3N1 were retrospectively selected and divided into training and validation sets. For the prediction of positive LNs and OS, the Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression model was used; univariable and multivariable logistic regression analysis assessed the association of clinical-radiomic variables and endpoints. All tests were repeated after dividing the groups according to the CT reconstruction algorithm. p-values < 0.05 were considered significant. Results: 270 patients were included and divided into training (n = 180) and validation sets (n = 90). Transfissural extension was significantly associated with positive LNs. For OS prediction, high- and low-risk groups were different according to the radiomics score, also after dividing the two groups according to reconstruction algorithms. Conclusions: a combined clinical–radiomics model was not superior to a single clinical or single radiomics model to predict positive LNs. A radiomics model was able to separate high-risk and low-risk patients for OS; CTs reconstructed with Iterative Reconstructions (IR) algorithm showed the best model performance.
Collapse
|
19
|
Sollini M, Gelardi F, Matassa G, Delgado Bolton RC, Chiti A, Kirienko M. Interdisciplinarity: an essential requirement for translation of radiomics research into clinical practice – a systematic review focused on thoracic oncology. Rev Esp Med Nucl Imagen Mol 2020. [DOI: 10.1016/j.remnie.2019.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Cong M, Yao H, Liu H, Huang L, Shi G. Development and evaluation of a venous computed tomography radiomics model to predict lymph node metastasis from non-small cell lung cancer. Medicine (Baltimore) 2020; 99:e20074. [PMID: 32358390 PMCID: PMC7440109 DOI: 10.1097/md.0000000000020074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The objective of this study was to develop a venous computed tomography (CT)-based radiomics model to predict the lymph node metastasis (LNM) in patients with non-small cell lung cancer (NSCLC). A total of 411 consecutive patients with NSCLC underwent tumor resection and lymph node (LN) dissection from January 2018 to September 2018 in our hospital. A radiologist with 20 years of diagnostic experience retrospectively reviewed all CT scans and classified all visible LNs into LNM and non-LNM groups without the knowledge of pathological diagnosis. A logistic regression model (radiomics model) in classification of pathology-confirmed NSCLC patients with and without LNM was developed on radiomics features for NSCLC patients. A morphology model was also developed on qualitative morphology features in venous CT scans. A training group included 288 patients (99 with and 189 without LNM) and a validation group included 123 patients (42 and 81, respectively). The receiver operating characteristic curve was performed to discriminate LNM (+) from LNM (-) for CT-reported status, the morphology model and the radiomics model. The area under the curve value in LNM classification on the training group was significantly greater at 0.79 (95% confidence interval [CI]: 0.77-0.81) by use of the radiomics model (build by best 10 features in predicting LNM) compared with 0.51 by CT-reported LN status (P < .001) or 0.66 (95% CI: 0.64-0.68) by morphology model (build by tumor size and spiculation) (P < .001). Similarly, the area under the curve value on the validation group was 0.73 (95% CI: 0.70-0.76) by the radiomics model, compared with 0.52 or 0.63 (95% CI: 0.60-0.66) by the other 2 (both P < .001). A radiomics model shows excellent performance for predicting LNM in NSCLC patients. This predictive radiomics model may benefit patients to get better treatments such as an appropriate surgery.
Collapse
Affiliation(s)
- Mengdi Cong
- Department of Computed Tomography and Magnetic Resonance, Children's Hospital of Hebei Province
| | - Haoyue Yao
- Department of Computed Tomography and Magnetic Resonance, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei Province
| | - Hui Liu
- Cooperate Research Center, United Imaging Healthcare, Shanghai, China
| | - Liqiang Huang
- Department of Computed Tomography and Magnetic Resonance, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei Province
| | - Gaofeng Shi
- Department of Computed Tomography and Magnetic Resonance, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei Province
| |
Collapse
|
21
|
Sollini M, Gelardi F, Matassa G, Delgado Bolton RC, Chiti A, Kirienko M. Interdisciplinarity: An essential requirement for translation of radiomics research into clinical practice -a systematic review focused on thoracic oncology. Rev Esp Med Nucl Imagen Mol 2020; 39:146-156. [PMID: 32278786 DOI: 10.1016/j.remn.2019.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Recently, evidence has accumulated that demonstrates the potential for future applications of radiomics in many clinical settings, including thoracic oncology. Methodological reasons for the immaturity of image mining (radiomics and artificial intelligence-based) studies have been identified. However, data on the influence of the composition of the research team on the quality of investigations in radiomics are lacking. AIM This review aims to evaluate the interdisciplinarity within studies on radiomics in thoracic oncology in order to assess its influence on the quality of research (QUADAS-2 score) in the image mining field. METHODS We considered for inclusion radiomics investigations with objectives relating to clinical practice in thoracic oncology. Subsequently, we interviewed the corresponding authors. The field of expertise and/or educational degree was then used to assess interdisciplinarity. Subsequently, all studies were evaluated applying the QUADAS-2 score and assigned to a research phase from 0 to IV. RESULTS Overall, 27 studies were included. The study quality according to the QUADAS-2 score was low (score ≤5) in 8, moderate (=6) in 12, and high (≥7) in 7 papers. An interdisciplinary team (at least 3 different expertise categories) was involved in half of the papers without any type of validation and in all papers with independent validation. Clinicians were not involved in phase 0 studies while they contributed to all papers classified as phase I and to 4/5 papers classified as phase II with independent validation. CONCLUSIONS The composition of the research team influences the quality of investigations in radiomics. Also, growth in interdisciplinarity appears to reflect research development from the early phase to a more mature, clinically oriented stage of investigation.
Collapse
Affiliation(s)
- M Sollini
- Nuclear Medicine, Diagnostic Imaging Department, Humanitas Clinical and Research Center - IRCCS, via Manzoni, 56 - 20089, Rozzano (Milán), Italia; Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini, 4 - 20090, Pieve Emanuele (Milán), Italia
| | - F Gelardi
- Training Program in Nuclear Medicine, Humanitas University, via Rita Levi Montalcini, 4 - 20090, Pieve Emanuele (Milán), Italia
| | - G Matassa
- Training Program in Nuclear Medicine, Humanitas University, via Rita Levi Montalcini, 4 - 20090, Pieve Emanuele (Milán), Italia
| | - R C Delgado Bolton
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, San Pedro University Hospital and Centre for Biomedical Research of La Rioja (CIBIR), calle Piqueras, 98, Logroño (La Rioja) 26006, España
| | - A Chiti
- Nuclear Medicine, Diagnostic Imaging Department, Humanitas Clinical and Research Center - IRCCS, via Manzoni, 56 - 20089, Rozzano (Milán), Italia; Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini, 4 - 20090, Pieve Emanuele (Milán), Italia
| | - M Kirienko
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini, 4 - 20090, Pieve Emanuele (Milán), Italia.
| |
Collapse
|
22
|
Akinci D'Antonoli T, Farchione A, Lenkowicz J, Chiappetta M, Cicchetti G, Martino A, Ottavianelli A, Manfredi R, Margaritora S, Bonomo L, Valentini V, Larici AR. CT Radiomics Signature of Tumor and Peritumoral Lung Parenchyma to Predict Nonsmall Cell Lung Cancer Postsurgical Recurrence Risk. Acad Radiol 2020; 27:497-507. [PMID: 31285150 DOI: 10.1016/j.acra.2019.05.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/14/2022]
Abstract
RATIONALE AND OBJECTIVES To estimate recurrence risk after surgery in nonsmall cell lung cancer (NSCLC) patients by employing tumoral and peritumoral radiomics analysis. MATERIALS AND METHODS One-hundred twenty-four surgically treated stage IA-IIB NSCLC patients' data from 2008 to 2013 were retrospectively collected. Patient outcome was defined as local recurrence (LR), distant metastasis (DM), and (sum of LR and DM) total recurrence (TR) at follow-up. Volumetric region of interests (ROIs) were drawn for the tumor, peritumoral lung parenchyma (2 cm around the tumor) and involved lobe on CT images. Ninety-four (morphological, first-order, textural, fractal-based) radiomics features were extracted from the ROIs and datasets were created from single or combined ROIs. Predictive models were built with radiomics signature (RS) and clinicopathological data, and the area under the curve (AUC) was used to evaluate the performance. Radiomics score was calculated with the best models' feature coefficients, low- and high-risk groups of patients defined accordingly. Kaplan-Meier curves were built, and the log-rank test was used for comparison among low- and high-risk groups. Differences in recurrence risk among the two risk groups were calculated (chi-square test). RESULTS Fifty-six patients developed TR (25 LR, 31 DM). The tumor-node-metastasis (TNM) stage recurrence predictability (AUCTR 0.680; AUCDM 0.672; AUCLR 0.580) was substantially improved when RS was added to the predictive model (AUCTR 0.760; AUCDM 0.759; AUCLR 0.750). Seventy-five percent of high-risk patients developed TR. Recurrence risk of the high-risk group was 16-fold higher than that of the low-risk group (p < 0.001). CONCLUSION Combination of the tumoral and peritumoral RS with TNM staging system outperformed TNM staging alone in individualized recurrence risk estimation of patients with surgically treated NSCLC.
Collapse
Affiliation(s)
- Tugba Akinci D'Antonoli
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy; Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy; Clinic of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alessandra Farchione
- Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Jacopo Lenkowicz
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy.
| | - Marco Chiappetta
- Dipartimento Scienze Cardiovascolari e Chirurgiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Giuseppe Cicchetti
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy; Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Antonella Martino
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Alessandra Ottavianelli
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy; Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Riccardo Manfredi
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy; Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Stefano Margaritora
- Dipartimento Scienze Cardiovascolari e Chirurgiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy; Istituto di Patologia Speciale Chirurgica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lorenzo Bonomo
- Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Vincenzo Valentini
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy; Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Anna Rita Larici
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy; Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| |
Collapse
|
23
|
Cao X, Li X, Wang X, Duan J, Zhu S, Zeng H, Yin Y, Yuan S, Hu X. Use CT Imaging to Predict the Short-Term Outcome of Concurrent Chemoradiotherapy in Patients With Locally Advanced Esophageal Squamous Cell Carcinoma. Dose Response 2020; 17:1559325819897175. [PMID: 31908624 PMCID: PMC6937540 DOI: 10.1177/1559325819897175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/17/2019] [Accepted: 12/01/2019] [Indexed: 12/02/2022] Open
Abstract
Objective: To extract the computed tomography (CT) imaging features of the primary lesions in patients with advanced esophageal squamous cell carcinoma (ESCC) and to study whether these imaging features can predict the short-term outcome after concurrent chemoradiotherapy (CCRT). Methods: From January 2014 to December 2015, a total of 49 patients with locally advanced ESCC who underwent CCRT were analyzed retrospectively. They were randomly categorized into the training and validation groups. Collection of CT imaging of patients before and intermediate stage undergoing radiotherapy. The correlations between imaging characteristics and short-term outcome were analyzed. The accuracy of cutoff value was verified by imaging characteristics of patients in validation group. Result: There were 38 patients in the training group and 11 patients in the validation group. 13 patients in the training group were classified as responders and 25 patients as nonresponders. According to the CT imaging before radiotherapy, there are no significant differences between responders and nonresponders. According to the CT imaging in the middle stage of radiotherapy, responders showed significantly higher Roundness than nonresponders (P = .004, 95% confidence interval [CI] = 0.0419-0.212). The areas under the ROC curves for the ability to predict significantly tumor response were 0.768 for Roundness (P = .001, 95% CI = 0.603-0.889). The cutoff value of Roundness is 0.3099. Roundness showed no significant associations with survival parameters. Conclusions: Computed tomography imaging in the middle stage of radiotherapy can predict the short-term outcome of concurrent chemoradiotherapy for patients with locally advanced ESCC but have no predictive effect on the total survival time.
Collapse
Affiliation(s)
- Xiaolan Cao
- School of Medicine and Life Sciences, University of Jinan, Jinan, China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xindi Li
- Department of Oncology, Shandong Provincial Third Hospital, Jinan, China
| | - Xiaoyue Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jinghao Duan
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shouhui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Haiyan Zeng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yong Yin
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shuanghu Yuan
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xudong Hu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
24
|
Sollini M, Antunovic L, Chiti A, Kirienko M. Towards clinical application of image mining: a systematic review on artificial intelligence and radiomics. Eur J Nucl Med Mol Imaging 2019; 46:2656-2672. [PMID: 31214791 PMCID: PMC6879445 DOI: 10.1007/s00259-019-04372-x] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE The aim of this systematic review was to analyse literature on artificial intelligence (AI) and radiomics, including all medical imaging modalities, for oncological and non-oncological applications, in order to assess how far the image mining research stands from routine medical application. To do this, we applied a trial phases classification inspired from the drug development process. METHODS Among the articles we considered for inclusion from PubMed were multimodality AI and radiomics investigations, with a validation analysis aimed at relevant clinical objectives. Quality assessment of selected papers was performed according to the QUADAS-2 criteria. We developed the phases classification criteria for image mining studies. RESULTS Overall 34,626 articles were retrieved, 300 were selected applying the inclusion/exclusion criteria, and 171 high-quality papers (QUADAS-2 ≥ 7) were identified and analysed. In 27/171 (16%), 141/171 (82%), and 3/171 (2%) studies the development of an AI-based algorithm, radiomics model, and a combined radiomics/AI approach, respectively, was described. A total of 26/27(96%) and 1/27 (4%) AI studies were classified as phase II and III, respectively. Consequently, 13/141 (9%), 10/141 (7%), 111/141 (79%), and 7/141 (5%) radiomics studies were classified as phase 0, I, II, and III, respectively. All three radiomics/AI studies were categorised as phase II trials. CONCLUSIONS The results of the studies are promising but still not mature enough for image mining tools to be implemented in the clinical setting and be widely used. The transfer learning from the well-known drug development process, with some specific adaptations to the image mining discipline could represent the most effective way for radiomics and AI algorithms to become the standard of care tools.
Collapse
Affiliation(s)
- Martina Sollini
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy
| | - Lidija Antunovic
- Nuclear Medicine, Humanitas Clinical and Research Center IRCCS, Rozzano, Milan, Italy
| | - Arturo Chiti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy
- Nuclear Medicine, Humanitas Clinical and Research Center IRCCS, Rozzano, Milan, Italy
| | - Margarita Kirienko
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy.
| |
Collapse
|
25
|
Development of a predictive radiomics model for lymph node metastases in pre-surgical CT-based stage IA non-small cell lung cancer. Lung Cancer 2019; 139:73-79. [PMID: 31743889 DOI: 10.1016/j.lungcan.2019.11.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 11/03/2019] [Accepted: 11/08/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVES To develop and validate predictive models using clinical parameters, radiomic features and a combination of both for lymph node metastasis (LNM) in pre-surgical CT-based stage IA non-small cell lung cancer (NSCLC) patients. METHODS This retrospective study included 649 pre-surgical CT-based stage IA NSCLC patients from our hospital. One hundred and thirty-eight (21 %) of the 649 patients had LNM after surgery. A total of 396 radiomic features were extracted from the venous phase contrast enhanced computed tomography (CECT). The training group included 455 patients (97 with and 358 without LNM) and the testing group included 194 patients (41 with and 153 without LNM). The least absolute shrinkage and selection operator (LASSO) algorithm was used for radiomic feature selection. The random forest (RF) was used for model development. Three models (a clinical model, a radiomics model, and a combined model) were developed to predict LNM in early stage NSCLC patients. The area under the receiver operating characteristic (ROC) curve (AUC) value and decision curve analysis were used to evaluate the performance in LNM status (with or without LNM) using the three models. RESULTS The ROC analysis (also decision curve analysis) showed predictive performance for LNM of the radiomics model (AUC values for training and testing, respectively 0.898 and 0.851) and of the combined model (0.911 and 0.860, respectively). Both performed better than the clinical model (0.739 and 0.614, respectively; delong test p-values both<0.001). CONCLUSION A radiomics model using the venous phase of CE-CT has potential for predicting LNM in pre-surgical CT-based stage IA NSCLC patients.
Collapse
|
26
|
MRI-based radiomics signature is a quantitative prognostic biomarker for nasopharyngeal carcinoma. Sci Rep 2019; 9:10412. [PMID: 31320729 PMCID: PMC6639299 DOI: 10.1038/s41598-019-46985-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 07/05/2019] [Indexed: 02/06/2023] Open
Abstract
This study aimed to develop prognosis signatures through a radiomics analysis for patients with nasopharyngeal carcinoma (NPC) by their pretreatment diagnosis magnetic resonance imaging (MRI). A total of 208 radiomics features were extracted for each patient from a database of 303 patients. The patients were split into the training and validation cohorts according to their pretreatment diagnosis date. The radiomics feature analysis consisted of cluster analysis and prognosis model analysis for disease free-survival (DFS), overall survival (OS), distant metastasis-free survival (DMFS) and locoregional recurrence-free survival (LRFS). Additionally, two prognosis models using clinical features only and combined radiomics and clinical features were generated to estimate the incremental prognostic value of radiomics features. Patients were clustered by non-negative matrix factorization (NMF) into two groups. It showed high correspondence with patients' T stage (p < 0.00001) and overall stage information (p < 0.00001) by chi-squared tests. There were significant differences in DFS (p = 0.0052), OS (p = 0.033), and LRFS (p = 0.037) between the two clustered groups but not in DMFS (p = 0.11) by log-rank tests. Radiomics nomograms that incorporated radiomics and clinical features could estimate DFS with the C-index of 0.751 [0.639, 0.863] and OS with the C-index of 0.845 [0.752, 0.939] in the validation cohort. The nomograms improved the prediction accuracy with the C-index value of 0.029 for DFS and 0.107 for OS compared with clinical features only. The DFS and OS radiomics nomograms developed in our study demonstrated the excellent prognostic estimation for NPC patients with a noninvasive way of MRI. The combination of clinical and radiomics features can provide more information for precise treatment decision.
Collapse
|
27
|
Can peritumoral radiomics increase the efficiency of the prediction for lymph node metastasis in clinical stage T1 lung adenocarcinoma on CT? Eur Radiol 2019; 29:6049-6058. [PMID: 30887209 DOI: 10.1007/s00330-019-06084-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/07/2019] [Accepted: 02/08/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To evaluate the efficiency of radiomics model on CT images of intratumoral and peritumoral lung parenchyma for preoperative prediction of lymph node (LN) metastasis in clinical stage T1 peripheral lung adenocarcinoma patients. METHODS Three hundred sixty-six peripheral lung adenocarcinoma patients with clinical stage T1 were evaluated using five CT scanners. For each patient, two volumes of interest (VOIs) on CT were defined as the gross tumor volume (GTV) and the peritumoral volume (PTV, 1.5 cm around the tumor). One thousand nine hundred forty-six radiomic features were obtained from each VOI, and then refined for reproducibility and redundancy. The refined features were investigated for usefulness in building radiomic signatures by mRMR feature ranking method and LASSO classifier. Multivariable logistic regression analysis was used to develop a radiomic nomogram incorporating the radiomic signature and clinical parameters. The prediction performance was evaluated on the validation cohort. RESULTS The radiomic signatures using the features of GTV and PTV showed a good ability in predicting LN metastasis with an AUC of 0.829 (95% CI, 0.745-0.913) and 0.825 (95% CI, 0.733-0.918), respectively. By incorporating the features of GTV and PTV, the AUC of radiomic signature increased to 0.843 (95% CI, 0.770-0.916). The AUC of radiomic nomogram was 0.869 (95% CI, 0.800-0.938). CONCLUSIONS Radiomic signatures of GTV and PTV both had a good prediction ability in the prediction of LN metastasis, and there is no significant difference of AUC between the two groups. The proposed nomogram can be conveniently used to facilitate the preoperative prediction of LN metastasis in T1 peripheral lung adenocarcinomas. KEY POINTS • Radiomics from peritumoral lung parenchyma increase the efficiency of the prediction for lymph node metastasis in clinical stage T1 lung adenocarcinoma on CT. • A radiomic nomogram was developed and validated to predict LN metastasis. • Different scan parameters on CT showed that radiomics signature had good predictive performance.
Collapse
|
28
|
Brown D, Zingone A, Yu Y, Zhu B, Candia J, Cao L, Ryan BM. Relationship between Circulating Inflammation Proteins and Lung Cancer Diagnosis in the National Lung Screening Trial. Cancer Epidemiol Biomarkers Prev 2018; 28:110-118. [PMID: 30297515 DOI: 10.1158/1055-9965.epi-18-0598] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/09/2018] [Accepted: 09/27/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Previously, we observed a strong relationship between circulating serum inflammation proteins in relation to lung cancer diagnosis and risk, both in case-control and prospective cohorts. Low-dose computed tomography (LDCT) screening has a high prevalence of false-positive nodules, thus companion noninvasive biomarkers that can distinguish between benign and malignant nodules could have clinical utility and positive impact on patient outcomes. METHODS We conducted a nested case-control study within the National Lung Screening Trial. Concentrations of 30 inflammation proteins were measured on plasma samples of 262 cases and 528 controls using a highly sensitive and analytically validated electrochemiluminescence V-PLEX immunoassay. RESULTS Comparing the fourth quartile with the first quartile, we found increased IFNγ and IL12/IL23p40 associated with increased odds of a lung cancer diagnosis [OR 1.89, 95% confidence intervals (CI), 1.16-3.09; OR 2.49, 95% CI, 1.46-4.23, respectively]. Confirming our previous observations, we also detected a relationship between increased IL6, IL8, and C-reactive protein (CRP) with lung cancer diagnosis. These relationships were significant after adjustment for age, gender, race, smoking, body mass index (BMI), family history of lung cancer, and previous diagnoses of inflammatory conditions. However, none of these proteins could distinguish between a benign and malignant lung nodule (IL6: OR 1.25, 95% CI, 0.59-2.64; IL8: OR 1.40, 95% CI, 0.70-2.81; CRP: OR 0.98, 95% CI, 0.45-2.12). CONCLUSIONS We have discovered new associations for IFNγ and IL12/IL23p40 with lung cancer but have no evidence that these proteins can distinguish between benign and malignant lung nodules. IMPACT Circulating inflammation proteins are unlikely to have utility as companion LDCT biomarkers.
Collapse
Affiliation(s)
- Derek Brown
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Adriana Zingone
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Yunkai Yu
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Bin Zhu
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Julián Candia
- Trans-NIH Center for Human Immunology (CHI), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Liang Cao
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Bríd M Ryan
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|