1
|
Kazantsev P, Wesolowska P, Bokulic T, Falowska-Pietrzak O, Repnin K, Dimitriadis A, Swamidas J, Izewska J. The IAEA remote audit of small field dosimetry for testing the implementation of the TRS-483 code of practice. Med Phys 2024; 51:5632-5644. [PMID: 38700987 DOI: 10.1002/mp.17109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND The TRS‑483, an IAEA/AAPM International Code of Practice on dosimetry of small static photon fields, underwent testing via an IAEA coordinated research project (CRP). Alongside small field output factors (OFs) measurements using active dosimeters by CRP participants, the IAEA Dosimetry Laboratory received a mandate to formulate a remote small field dosimetry audit method using its passive dosimetry systems. PURPOSE This work aimed to develop a small field dosimetry audit methodology employing radiophotoluminescent dosimeters (RPLDs) and radiochromic films. The methodology was subsequently evaluated through a multicenter pilot study with CRP participants. METHODS The developments included designing and manufacturing a dosimeter holder set and the characterization of an RPLD system for measurements in small photon fields using the new holder. The audit included verification of small field OFs and lateral beam profiles for small fields. At first, treatment planning system (TPS) calculated OFs were checked against a reference data set that was available for conventional linacs. Second, calculated OFs were verified through the RPLD measurement of point doses in a machine-specific reference field, 4 cm × 4 cm, 2 cm × 2 cm, and 1 cm × 1 cm, corresponding size circular fields or nearest achievable field sizes. Lastly, profile checks in in-plane and cross-plane directions were done for the two smallest fields by comparing film measurements with TPS calculations at 20%, 50%, and 80% isodose levels. RESULTS RPLD correction factors for small field measurements were approximately unity. However, they influenced the dose determination's overall uncertainty in small fields, estimated at 2.30% (k = 1 level). Considering the previous experience in auditing reference beam output following the TRS-398 Code of Practice, the acceptance limit of 5% for the ratio of the dose determined by RPLD to the dose calculated by TPS, DRPLD/DTPS, was considered adequate. The multicenter pilot study included 15 participants from 14 countries (39 beams). Consistent with the previous findings, the results of the OF check against the reference data confirmed that TPSs tend to overestimate OFs for the smallest fields included in this exercise. All except three RPLD measurement results were within the acceptance limit, and the spread of results increased for smaller field sizes. The differences between the film measured and TPS calculated dose profiles were within 3 mm for most of the beams checked; deviated results revealed problems with TPS commissioning and calibration of the treatment unit collimation systems. CONCLUSION The newly developed small field dosimetry audit methodology proved effective and successfully complemented the CRP OF measurements by participants with RPLD audit results.
Collapse
Affiliation(s)
| | - Paulina Wesolowska
- International Atomic Energy Agency, Vienna, Austria
- The Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Tomislav Bokulic
- International Atomic Energy Agency, Vienna, Austria
- University of Zagreb, Zagreb, Croatia
| | - Olga Falowska-Pietrzak
- International Atomic Energy Agency, Vienna, Austria
- Stockholm University, Stockholm, Sweden
| | - Kostiantyn Repnin
- International Atomic Energy Agency, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
2
|
Hill R, Barbagallo C, Baldock C. In Australia professional registration for qualified medical physicists should be mandated through the Australian Health Practitioner Regulation Agency (AHPRA). Phys Eng Sci Med 2024; 47:381-384. [PMID: 38165633 DOI: 10.1007/s13246-023-01376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Affiliation(s)
- Robin Hill
- Department of Radiation Oncology, Chris O'Brien Lifehouse, 2050, Camperdown, NSW, Australia
- Institute of Medical Physics, School of Physics, University of Sydney, 2006, Camperdown, NSW, Australia
- Arto Hardy Family Biomedical Innovation Hub, Chris O'Brien Lifehouse, 2050, Camperdown, NSW, Australia
| | - Cathryn Barbagallo
- Australasian College of Physical Scientists and Engineers in Medicine, 2020, Mascot, NSW, Australia
- Alfred Health Radiation Oncology, Alfred Health, 3181, Prahran, VIC, Australia
| | - Clive Baldock
- Graduate Research School, Western Sydney University, 2747, Penrith, NSW, Australia.
| |
Collapse
|
3
|
Dimitriadis A, Kazantsev P, Chelminski K, Titovich E, Naida E, Magnus T, Meghzifene A, Azangwe G, Carrara M, Swamidas J. IAEA/WHO postal dosimetry audit methodology for electron beams using radio photoluminescent dosimeters. Med Phys 2023; 50:7214-7221. [PMID: 37793099 DOI: 10.1002/mp.16776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/02/2023] [Accepted: 09/23/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Independent dosimetry audits are an important intervention in radiotherapy for quality assurance. Electron beams, used for superficial radiotherapy treatments, must also be tested in dosimetry audits as part of a good quality assurance program to help prevent clinical errors. PURPOSE To establish a new service for IAEA/WHO postal dosimetry audits in electron beams using RPL dosimeters. METHODS A novel postal audit methodology employing a PMMA holder system for RPLDs was developed. The associated correction factors including holder dependence, energy dependence, dose response non-linearity, and fading were obtained and tested in a multi-center (n = 12) pilot study. A measurement uncertainty budget was estimated and employed in analyzing the irradiated dosimeters. RESULTS Holder and energy correction factors ranged from 1.004 to 1.010 and 1.019 to 1.059 respectively across the energy range. The non-linearity and fading correction models used for photon beams were tested in electron beams and did not significantly increase measurement uncertainty. The mean dose ratio ± SD of the multi-center study was 1.001 ± 0.011. The overall uncertainty budget was estimated as ± 1.42% (k = 1). CONCLUSIONS A methodology for IAEA/WHO postal dosimetry audits in electron beams was developed and validated in a multi-center study and is now made available to radiotherapy centers as a routine service.
Collapse
Affiliation(s)
- Alexis Dimitriadis
- Dosimetry and Medical Radiation Physics Section, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Pavel Kazantsev
- Dosimetry and Medical Radiation Physics Section, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Krzysztof Chelminski
- Dosimetry and Medical Radiation Physics Section, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Egor Titovich
- Dosimetry and Medical Radiation Physics Section, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Ekaterina Naida
- Dosimetry and Medical Radiation Physics Section, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Talent Magnus
- Dosimetry and Medical Radiation Physics Section, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Ahmed Meghzifene
- Dosimetry and Medical Radiation Physics Section, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Godfrey Azangwe
- Dosimetry and Medical Radiation Physics Section, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Mauro Carrara
- Dosimetry and Medical Radiation Physics Section, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Jamema Swamidas
- Dosimetry and Medical Radiation Physics Section, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| |
Collapse
|
4
|
Misson-Yates S, Cunningham R, Gonzalez R, Diez P, Clark CH. Optimised conformal total body irradiation: a heterogeneous practice, so where next? Br J Radiol 2023; 96:20220650. [PMID: 36475820 PMCID: PMC10078861 DOI: 10.1259/bjr.20220650] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The use of volumetric arc therapy and inverse planning has been in routine use in radiotherapy for two decades. However, use in total body irradiation (TBI) has been more recent and few guidelines exist as to how to plan or verify. This has led to heterogeneous approaches. The goal of this review is to provide an overview of current advanced planning and dosimetry verification protocols used in optimised conformal TBI as a basis for investigating the need for greater standardisation in TBI.
Collapse
Affiliation(s)
- Sarah Misson-Yates
- Department of Medical Physics, Guy's Cancer Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Rissa Cunningham
- Department of Medical Physics, Guy's Cancer Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Regina Gonzalez
- Department of Medical Physics, Guy's Cancer Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Patricia Diez
- Radiotherapy Physics, National Radiotherapy Trials Quality Assurance Group (RTTQA), Mount Vernon Cancer Centre, Northwood, UK
| | - Catharine H Clark
- Radiotherapy Physics, National Radiotherapy Trials Quality Assurance Group (RTTQA), Mount Vernon Cancer Centre, Northwood, UK
- Metrology for Medical Physics Centre, National Physical Laboratory, Teddington, UK
- Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, UK
- Medical Physics and Bioengineering Department, University College London, London, UK
| |
Collapse
|
5
|
Burton A, Beveridge S, Hardcastle N, Lye J, Sanagou M, Franich R. Adoption of respiratory motion management in radiation therapy. Phys Imaging Radiat Oncol 2022; 24:21-29. [PMID: 36148153 PMCID: PMC9485913 DOI: 10.1016/j.phro.2022.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
Background and Purpose A survey on the patterns of practice of respiratory motion management (MM) was distributed to 111 radiation therapy facilities to inform the development of an end-to-end dosimetry audit including respiratory motion. Materials and methods The survey (distributed via REDCap) asked facilities to provide information specific to the combinations of MM techniques (breath-hold gating – BHG, internal target volume – ITV, free-breathing gating – FBG, mid-ventilation – MidV, tumour tracking – TT), sites treated (thorax, upper abdomen, lower abdomen), and fractionation regimes (conventional, stereotactic ablative body radiation therapy – SABR) used in their clinic. Results The survey was completed by 78% of facilities, with 98% of respondents indicating that they used at least one form of MM. The ITV approach was common to all MM-users, used for thoracic treatments by 89% of respondents, and upper and lower abdominal treatments by 38%. BHG was the next most prevalent (41% of MM users), with applications in upper abdominal and thoracic treatment sites (28% vs 25% respectively), but minimal use in the lower abdomen (9%). FBG and TT were utilised sparingly (17%, 7% respectively), and MidV was not selected at all. Conclusions Two distinct treatment workflows (including use of motion limitation, imaging used for motion assessment, dose calculation, and image guidance procedures) were identified for the ITV and BHG MM techniques, to form the basis of the initial audit. Thoracic SABR with the ITV approach was common to nearly all respondents, while upper abdominal SABR using BHG stood out as more technically challenging. Other MM techniques were sparsely used, but may be considered for future audit development.
Collapse
|
6
|
Abdullah N, Bradley D, Nisbet A, Kamarul Zaman Z, Deraman S, Mohd Noor N. Dosimetric characteristics of fabricated germanium doped optical fibres for a postal audit of therapy electron beams. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
7
|
Powers M, Baines J, Crane R, Fisher C, Gibson S, Marsh L, Oar B, Shoobridge A, Simpson-Page E, Van der Walt M, de Vine G. Commissioning measurements on an Elekta Unity MR-Linac. Phys Eng Sci Med 2022; 45:457-473. [PMID: 35235188 PMCID: PMC9239956 DOI: 10.1007/s13246-022-01113-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/18/2022] [Indexed: 11/03/2022]
Abstract
Magnetic resonance-guided radiotherapy technology is relatively new and commissioning publications, quality assurance (QA) protocols and commercial products are limited. This work provides guidance for implementation measurements that may be performed on the Elekta Unity MR-Linac (Elekta, Stockholm, Sweden). Adaptations of vendor supplied phantoms facilitated determination of gantry angle accuracy and linac isocentre, whereas in-house developed phantoms were used for end-to-end testing and anterior coil attenuation measurements. Third-party devices were used for measuring beam quality, reference dosimetry and during treatment plan commissioning; however, due to several challenges, variations on standard techniques were required. Gantry angle accuracy was within 0.1°, confirmed with pixel intensity profiles, and MV isocentre diameter was < 0.5 mm. Anterior coil attenuation was approximately 0.6%. Beam quality as determined by TPR20,10 was 0.705 ± 0.001, in agreement with treatment planning system (TPS) calculations, and gamma comparison against the TPS for a 22.0 × 22.0 cm2 field was above 95.0% (2.0%, 2.0 mm). Machine output was 1.000 ± 0.002 Gy per 100 MU, depth 5.0 cm. During treatment plan commissioning, sub-standard results indicated issues with machine behaviour. Once rectified, gamma comparisons were above 95.0% (2.0%, 2.0 mm). Centres which may not have access to specialized equipment can use in-house developed phantoms, or adapt those supplied by the vendor, to perform commissioning work and confirm operation of the MRL within published tolerances. The plan QA techniques used in this work can highlight issues with machine behaviour when appropriate gamma criteria are set.
Collapse
Affiliation(s)
- Marcus Powers
- Townsville Cancer Centre, Townsville Hospital and Health Service, Townsville, QLD, Australia. .,College of Science and Engineering, James Cook University, Townsville, QLD, Australia.
| | - John Baines
- Townsville Cancer Centre, Townsville Hospital and Health Service, Townsville, QLD, Australia.
| | - Robert Crane
- Townsville Cancer Centre, Townsville Hospital and Health Service, Townsville, QLD, Australia
| | - Chantelle Fisher
- Townsville Cancer Centre, Townsville Hospital and Health Service, Townsville, QLD, Australia
| | - Stephen Gibson
- Townsville Cancer Centre, Townsville Hospital and Health Service, Townsville, QLD, Australia
| | - Linda Marsh
- Townsville Cancer Centre, Townsville Hospital and Health Service, Townsville, QLD, Australia
| | - Bronwyn Oar
- Townsville Cancer Centre, Townsville Hospital and Health Service, Townsville, QLD, Australia
| | - Ariadne Shoobridge
- Townsville Cancer Centre, Townsville Hospital and Health Service, Townsville, QLD, Australia.,College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Emily Simpson-Page
- Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Marchant Van der Walt
- Townsville Cancer Centre, Townsville Hospital and Health Service, Townsville, QLD, Australia
| | - Glenn de Vine
- Townsville Cancer Centre, Townsville Hospital and Health Service, Townsville, QLD, Australia
| |
Collapse
|