1
|
McDonnell C, McLaughlin O, McGarry CK, Hounsell AR, O'Keeffe S, Lewis E, Prise KM. Performance evaluation of an inorganic optical fibre dosimeter for use in external beam radiotherapy with pulsed beams. Phys Med Biol 2024; 69:215013. [PMID: 39379004 DOI: 10.1088/1361-6560/ad84b7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Objective. Optical fibre dosimeters (OFDs) offer great promise for real-timein vivodose measurement in radiation-based treatment modalities such as radiotherapy and brachytherapy. This is attributed to their many useful qualities such as high spatial resolution and sensitivity. However, there are several requirements that an optical fibre dosimeter must meet to be acceptable for dose measurement in a specified treatment modality. In this work, the dosimetric performance of a novel optical fibre dosimeter for use in external beam radiotherapy is presented.Approach. The dosimeter was characterised for photon beam energies between 6-15 MV using a Varian TrueBeam Linac at dose rates between 100-2400 MU/min and assessed based on its repeatability, dose dependence, dose rate dependence, energy dependence and dose-per-pulse dependence.Main Results. The results demonstrated excellent short-term repeatability of 0.3%, good linearity in response (R2>0.9997), and minor dose rate dependence between 0.53%-2.49% for all beam qualities investigated. As the scintillator of the OFD is non-water equivalent, Monte-Carlo-TOPAS simulations were used to calculate the absorbed dose energy dependence. A dose-per-pulse dependence was also investigated and compared with dosimetry measurements made with an ionisation chamber and simulated from the treatment planning system. An over-response of 20%was found at the lowest investigated dose-per-pulse, and an under-response of 34%was found at the highest investigated dose-per-pulse. This is believed to be due to an intrinsic energy dependence making this type of OFD unsuitable for external beam radiotherapy dosimetry.Significance. The OFD evaluated in this work was primarily designed for high-dose-rate brachytherapy whereas this study includes the first measurements made in external beam radiotherapy and highlights the challenges of transferability of the dosimeter to a different radiation source.
Collapse
Affiliation(s)
- C McDonnell
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, United Kingdom
| | - O McLaughlin
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, United Kingdom
| | - C K McGarry
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, United Kingdom
- Department of Radiotherapy Medical Physics, Northern Ireland Cancer Centre Belfast Health and Social Care Trust, Belfast BT9 7AB, United Kingdom
| | - A R Hounsell
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, United Kingdom
- Department of Radiotherapy Medical Physics, Northern Ireland Cancer Centre Belfast Health and Social Care Trust, Belfast BT9 7AB, United Kingdom
| | - S O'Keeffe
- Optical Fibre Sensors Research Centre University of Limerick, Limerick, Ireland
| | - E Lewis
- Optical Fibre Sensors Research Centre University of Limerick, Limerick, Ireland
| | - K M Prise
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, United Kingdom
| |
Collapse
|
2
|
Debnath SBC, Tonneau D, Fauquet C, Tallet A, Darréon J. Cerenkov free micro-dosimetry in small-field radiation therapy technique. Phys Med Biol 2024; 69:125018. [PMID: 38810619 DOI: 10.1088/1361-6560/ad51c6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/29/2024] [Indexed: 05/31/2024]
Abstract
Objective. Optical fiber-based scintillating dosimetry is a recent promising technique owing to the miniature size dosimeter and quality measurement in modern radiation therapy treatment. Despite several advantages, the major issue of using scintillating dosimeters is the Cerenkov effect and predominantly requires extra measurement corrections. Therefore, this work highlighted a novel micro-dosimetry technique to ensure Cerenkov-free measurement in radiation therapy treatment protocol by investigating several dosimetric characteristics.Approach.A micro-dosimetry technique was proposed with the performance evaluation of a novel infrared inorganic scintillator detector (IR-ISD). The detector essentially consists of a micro-scintillating head based on IR-emitting micro-clusters with a sensitive volume of 1.5 × 10-6mm3. The proposed system was evaluated under the 6 MV LINAC beam used in patient treatment. Overall measurements were performed using IBATMwater tank phantoms by following TRS-398 protocol for radiotherapy. Cerenkov measurements were performed for different small fields from 0.5 × 0.5 cm2to 10 × 10 cm2under LINAC. In addition, several dosimetric parameters such as percentage depth dose (PDD), high lateral resolution beam profiling, dose linearity, dose rate linearity, repeatability, reproducibility, and field output factor were investigated to realize the performance of the novel detector.Main results. This study highlighted a complete removal of the Cerenkov effect using a point-like miniature detector, especially for small field radiation therapy treatment. Measurements demonstrated that IR-ISD has acceptable behavior with dose rate variability (maximum standard deviation ∼0.18%) for the dose rate of 20-1000 cGy s-1. An entire linear response (R2= 1) was obtained for the dose delivered within the range of 4-1000 cGy, using a selected field size of 1 × 1 cm2. Perfect repeatability (max 0.06% variation from average) with day-to-day reproducibility (0.10% average variation) was observed. PDD profiles obtained in the water tank present almost identical behavior to the reference dosimeter with a build-up maximum depth dose at 1.5 cm. The small field of 0.5 × 0.5 cm2profiles have been characterized with a high lateral resolution of 100µm.Significance. Unlike recent plastic scintillation detector systems, the proposed micro-dosimetry system in this study requires no Cerenkov corrections and showed efficient performance for several dosimetric parameters. Therefore, it is expected that considering the detector correction factors, the IR-ISD system can be a suitable dose measurement tool, such as in small-field dose measurements, high and low gradient dose verification, and, by extension, in microbeam radiation and FLASH radiation therapy.
Collapse
Affiliation(s)
- Sree Bash Chandra Debnath
- Aix-Marseille University, CNRS, LP3 UMR 7341, 13288 Marseille, France
- Aix Marseille University, CNRS, CINaM UMR 7325, Marseille, 13288, France
| | - Didier Tonneau
- Aix Marseille University, CNRS, CINaM UMR 7325, Marseille, 13288, France
| | - Carole Fauquet
- Aix Marseille University, CNRS, CINaM UMR 7325, Marseille, 13288, France
| | - Agnes Tallet
- Institut Paoli-Calmettes, 13009 Marseille, France
| | | |
Collapse
|
3
|
Das IJ, Sohn JJ, Lim SN, Sengupta B, Feijoo M, Yadav P. Characteristics of a plastic scintillation detector in photon beam dosimetry. J Appl Clin Med Phys 2024; 25:e14209. [PMID: 37983685 PMCID: PMC10795454 DOI: 10.1002/acm2.14209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/24/2023] [Accepted: 11/04/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Plastic scintillating detectors (PSD) have gained popularity due to small size and are ideally suited in small-field dosimetry due to no correction needed and hence detector reading can be compared to dose. Likewise, these detectors are active and water equivalent. A new PSD from Blue Physics is characterized in photon beam. PURPOSE Innovation in small-field dosimetry detector has led us to examine Blue Physics PSD (BP-PSD) for use in photon beams from linear accelerator. METHODS BP-PSD was acquired and its characteristics were evaluated in photon beams from a Varian TrueBeam. Data were collected in a 3D water tank. Standard parameters; dose, dose rate, energy, angular dependence and temperature dependence were studied. Depth dose, profiles and output in a reference condition as well as small fields were measured. RESULTS BP-PSD is versatile and provides data very similar to an ion chamber when Cerenkov radiation is properly accounted. This device measures data pulse by pulse which very few detectors can perform. The differences between ion chamber data and PSD are < 2% in most cases. The angular dependence is a bit pronounces to 1.5% which is due to PSD housing. Depth dose and profiles are comparable within < 1% to an ion chamber. For small fields this detector provides suitable field output factor compared to other detectors and Monte Carlo (MC) simulated data without any added correction factor. CONCLUSIONS The characteristics of Blue Physics PSD is uniquely suitable in photon beam and more so in small fields. The data are reproducible compared to ion chamber for most parameters and ideally suitable for small-field dosimetry without any correction factor.
Collapse
Affiliation(s)
- Indra J. Das
- Department of Radiation OncologyNorthwest Memorial HospitalNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Jooyoung J. Sohn
- Department of Radiation OncologyNorthwest Memorial HospitalNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Sara N. Lim
- Department of Radiation OncologyNorthwest Memorial HospitalNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Bishwambhar Sengupta
- Department of Radiation OncologyNorthwest Memorial HospitalNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | | | - Poonam Yadav
- Department of Radiation OncologyNorthwest Memorial HospitalNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| |
Collapse
|
4
|
Silvestre Patallo I, Subiel A, Carter R, Flynn S, Schettino G, Nisbet A. Characterization of Inorganic Scintillator Detectors for Dosimetry in Image-Guided Small Animal Radiotherapy Platforms. Cancers (Basel) 2023; 15:987. [PMID: 36765943 PMCID: PMC9913621 DOI: 10.3390/cancers15030987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
The purpose of the study was to characterize a detection system based on inorganic scintillators and determine its suitability for dosimetry in preclinical radiation research. Dose rate, linearity, and repeatability of the response (among others) were assessed for medium-energy X-ray beam qualities. The response's variation with temperature and beam angle incidence was also evaluated. Absorbed dose quality-dependent calibration coefficients, based on a cross-calibration against air kerma secondary standard ionization chambers, were determined. Relative output factors (ROF) for small, collimated fields (≤10 mm × 10 mm) were measured and compared with Gafchromic film and to a CMOS imaging sensor. Independently of the beam quality, the scintillator signal repeatability was adequate and linear with dose. Compared with EBT3 films and CMOS, ROF was within 5% (except for smaller circular fields). We demonstrated that when the detector is cross-calibrated in the user's beam, it is a useful tool for dosimetry in medium-energy X-rays with small fields delivered by Image-Guided Small Animal Radiotherapy Platforms. It supports the development of procedures for independent "live" dose verification of complex preclinical radiotherapy plans with the possibility to insert the detectors in phantoms.
Collapse
Affiliation(s)
- Ileana Silvestre Patallo
- Medical Radiation Physics and Science Groups, National Physical Laboratory (NPL), Guilford TW11 0LW, UK
| | - Anna Subiel
- Medical Radiation Physics and Science Groups, National Physical Laboratory (NPL), Guilford TW11 0LW, UK
| | - Rebecca Carter
- Cancer Institute, University College London, London WC1E 6DD, UK
| | - Samuel Flynn
- Medical Radiation Physics and Science Groups, National Physical Laboratory (NPL), Guilford TW11 0LW, UK
- School of Physics and Astronomy, University of Birmingham, Edgbaston Campus, Birmingham B15 2TT, UK
| | - Giuseppe Schettino
- Medical Radiation Physics and Science Groups, National Physical Laboratory (NPL), Guilford TW11 0LW, UK
- Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Andrew Nisbet
- Department of Medical Physics & Biomedical Engineering, University College London, Mallet Place Engineering Building, London WC1E 6BT, UK
| |
Collapse
|
5
|
Esteves J, Pivot O, Ribouton J, Jalade P, Zouaoui A, Desbat L, Rit S, Blanc F, Haefeli G, Hopchev P, Galvan JM, Lu GN, Pittet P. A novel QA phantom based on scintillating fiber ribbons with implementation of 2D dose tomography for small-field radiotherapy. Med Phys 2023; 50:619-632. [PMID: 35933612 PMCID: PMC10087208 DOI: 10.1002/mp.15902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/10/2022] [Accepted: 07/20/2022] [Indexed: 01/25/2023] Open
Abstract
PURPOSE To develop a novel instrument for real-time quality assurance (QA) procedures in radiotherapy. The system implements a scintillation-based phantom and associated signal acquisition and processing modules and aims to monitor two-dimensional (2D) dose distributions of small fields. MATERIALS AND METHODS For the proposed phantom, we have designed and realized a prototype implementing six high-resolution tissue-equivalent scintillating fiber ribbons stacked with in-plane 30° rotated orientations from each other. Each ribbon output is coupled to a silicon photodiode linear array (with an element pitch of 400 μm) to detect scintillating signal, which represents the projected irradiation profile perpendicular to the ribbon's orientation. For the system providing six acquired projected dose profiles at different orientations, we have developed a two-step signal processing method to perform 2D dose reconstruction. The first step is to determine irradiation field geometry parameters using a tomographic geometry approach, and the second one is to perform specific penumbra estimation. The QA system prototype has been tested on a Novalis TrueBeam STX with a 6-MV photon beam for small elliptic fields defined by 5- and 10-mm cone collimators and for 10 × 10- and 20 × 10-mm2 rectangular fields defined by the micro-multileaf collimator. Gamma index analysis using EBT3 films as reference has been carried out with tight 2%-dose-difference (DD)/700-μm-distance-to-agreement (DTA) as well as 1%-DD/1-mm-DTA criteria for evaluating the system performances. The testing also includes an evaluation of the proposed two-step field reconstruction method in comparison with two conventional methods: filtered back projection (FBP) and simultaneous iterative reconstruction technique (SIRT). RESULTS The reconstructed 2D dose distributions have gamma index pass rates higher than 95% for all the tested configurations as compared with EBT3 film measurements with both 2%-DD/700-μm-DTA and 1%-DD/1-mm criteria. 2D global gamma analysis shows that the two-step and FBP radiation field reconstruction methods systematically outperform the SIRT approach. Moreover, higher gamma index success rates are obtained with the two-step method than with FBP in the case of the fields defined with the stereotactic cones. CONCLUSIONS The proposed small-field QA system makes a use of six water-equivalent scintillating detectors (fiber ribbons) to acquire dose distribution. The developed two-step signal processing method performs tomographic 2D dose reconstruction. A system prototype has been built and tested using hospital facilities with small rectangular and elliptic fields. Testing results show 2D reconstructed dose distributions with high accuracy and resolution. Such a system could potentially be an alternative approach to film dosimetry for small-field QA, which is still widely used as reference in clinical practice.
Collapse
Affiliation(s)
- Josué Esteves
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, Ecole Centrale de Lyon, CPE Lyon, INL, UMR5270, Villeurbanne, France
| | - Odran Pivot
- Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC, Grenoble, France
| | - Julien Ribouton
- Service de Radiophysique et Radiovigilance, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Patrice Jalade
- Service de Radiophysique et Radiovigilance, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Abdelaali Zouaoui
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, Ecole Centrale de Lyon, CPE Lyon, INL, UMR5270, Villeurbanne, France
| | - Laurent Desbat
- Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC, Grenoble, France
| | - Simon Rit
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, CREATIS, Lyon, France
| | | | | | | | - Jean-Marc Galvan
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, Ecole Centrale de Lyon, CPE Lyon, INL, UMR5270, Villeurbanne, France
| | - Guo-Neng Lu
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, Ecole Centrale de Lyon, CPE Lyon, INL, UMR5270, Villeurbanne, France
| | - Patrick Pittet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, Ecole Centrale de Lyon, CPE Lyon, INL, UMR5270, Villeurbanne, France
| |
Collapse
|
6
|
Momeni Harzanji Z, Larizadeh MH, Namiranian N, Nickfarjam A. Evaluation and Comparison of Dosimetric Characteristics of Semiflex ®3D and Microdiamond in Relative Dosimetry under 6 and 15 MV Photon Beams in Small Fields. J Biomed Phys Eng 2022; 12:477-488. [PMID: 36313410 PMCID: PMC9589081 DOI: 10.31661/jbpe.v0i0.2008-1160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 01/14/2021] [Indexed: 06/16/2023]
Abstract
BACKGROUND In modern radiotherapy techniques, the frequently small and non-uniformed fields can increase treatment efficiency due to their highly conformal dose distribution. Particular features including lack of Lateral Charge Particle Equilibrium (LCPE) lead to detectors with high resolution since any error in obtained dosimetric data could cause patient mistreatments. OBJECTIVE This study aims to evaluate and compare two small detectors (Semiflex®3D and microdiamond) dosimetric characteristics in small field relative dosimetry. MATERIAL AND METHODS In this experimental study, the dosimetric properties of Semiflex®3D and microdiamond were assessed under 6 and 15 MV photon beams. The linearity and stability of the detector's response and dose rate were measured. Square-field sizes ranging from 0.6×0.6 - 5×5 cm2 were used for obtaining percentage depth dose curves (PDDs) and in-plane profiles. The angular and temperature dependence of both detectors' responses were also studied. RESULTS The detector response shows good stability, no deviation from linearity, and low dose rate dependence (≤1.6%). PDDs and in-plan profiles of both detectors are in good agreement and no significant difference was observed except for the high dose gradient regions (P-value≤0.017). Both detectors demonstrated low angular dependence (<0.3%) with temperature dependence lower than 1% for both detectors. CONCLUSION The results indicate both investigated detectors were well performed in small field relative dosimetry and for measuring penumbra, it is better to use microdiamond detector.
Collapse
Affiliation(s)
- Zahra Momeni Harzanji
- MSc, Department of Medical Physics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hassan Larizadeh
- MD, Department of Radiation Oncology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nasim Namiranian
- MD, Yazd Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Abolfazl Nickfarjam
- PhD, Department of Medical Physics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
7
|
Damulira E. Radiation dosimetry in medicine using II-VI semiconductors. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Hart A, Cecchi D, Giguère C, Larose F, Therriault-Proulx F, Esplen N, Beaulieu L, Bazalova-Carter M. Lead-doped scintillator dosimeters for detection of ultrahigh dose-rate x-rays. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac69a5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/22/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. Lead-doped scintillator dosimeters may be well suited for the dosimetry of FLASH-capable x-ray radiotherapy beams. Our study explores the dose rate dependence and temporal resolution of scintillators that makes them promising in the accurate detection of ultrahigh dose-rate (UHDR) x-rays. Approach. We investigated the response of scintillators with four material compositions to UHDR x-rays produced by a conventional x-ray tube. Scintillator output was measured using the HYPERSCINT-RP100 dosimetry research platform. Measurements were acquired at high frame rates (400 fps) which allowed for accurate dose measurements of sub-second radiation exposures from 1 to 100 ms. Dose-rate dependence was assessed by scaling tube current of the x-ray tube. Scintillator measurements were validated against Monte Carlo simulations of the probe geometries and UHDR x-ray system. Calibration factors converting dose-to-medium to dose-to-water were obtained from simulation data of plastic and lead-doped scintillator materials. Main Results. The results of this work suggest that lead-doped scintillators were dose-rate independent for UHDR x-rays from 1.1 to 40.1 Gy s−1 and capable of measuring conventional radiotherapy dose-rates (0.1 Gy s−1) at extended distance from the x-ray focal spot. Dose-to-water measured with a 5% lead-doped scintillator detector agreed with simulations within 0.6%. Significance. Lead-doped scintillators may be a valuable tool for the accurate real-time dosimetry of FLASH-capable UHDR x-ray beams.
Collapse
|
9
|
Xie T, He B, Shi Q, Qian J, Hao W, Li S, Lewis E, Sun W. Measurement of scattered rays from different materials using an inorganic scintillator based optical fiber sensor and its application in radiotherapy. Biomed Phys Eng Express 2022; 8. [PMID: 34991079 DOI: 10.1088/2057-1976/ac48e3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/06/2022] [Indexed: 11/12/2022]
Abstract
Measurements using an Optical Fiber OFS including an inorganic scintillator placed on the surface of a phantom show that the particle energy distribution inside the phantom remains unchanged. The backscattered intensity measured using an Optical Fiber Sensor (OFS) exhibits a linear relationship with the total radiation dose delivered to the phantom, and this relationship shows that the OFS can be used for indirect dose measurement when located on the surface of the phantom i.e. that arising from the energetic backscattered electrons and photons. Such a device can therefore be used as a clinicalin-vivodosimeter, being located on the patient's body surface. In addition, the measurement results for the same OFS located inside and outside the radiation field of a compound water based phantom are analyzed. The differences in measurement of the fluorescence signal in response to various tissue materials representing bone or tumor tissue in the irradiation field are strongly related to the material's ability to block the scattered rays from the water phantom, as well as the scattered x-rays generated by the material located within the phantom.
Collapse
Affiliation(s)
- Tianci Xie
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Bo He
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Qieming Shi
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Jinqian Qian
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Wenjing Hao
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Song Li
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Elfed Lewis
- Optical Fiber Sensors Research Centre, University of Limerick, Castletroy, Limerick, Ireland
| | - Weimin Sun
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, People's Republic of China
| |
Collapse
|
10
|
Das IJ, Francescon P, Moran JM, Ahnesjö A, Aspradakis MM, Cheng CW, Ding GX, Fenwick JD, Saiful Huq M, Oldham M, Reft CS, Sauer OA. Report of AAPM Task Group 155: Megavoltage photon beam dosimetry in small fields and non-equilibrium conditions. Med Phys 2021; 48:e886-e921. [PMID: 34101836 DOI: 10.1002/mp.15030] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/06/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
Small-field dosimetry used in advance treatment technologies poses challenges due to loss of lateral charged particle equilibrium (LCPE), occlusion of the primary photon source, and the limited choice of suitable radiation detectors. These challenges greatly influence dosimetric accuracy. Many high-profile radiation incidents have demonstrated a poor understanding of appropriate methodology for small-field dosimetry. These incidents are a cause for concern because the use of small fields in various specialized radiation treatment techniques continues to grow rapidly. Reference and relative dosimetry in small and composite fields are the subject of the International Atomic Energy Agency (IAEA) dosimetry code of practice that has been published as TRS-483 and an AAPM summary publication (IAEA TRS 483; Dosimetry of small static fields used in external beam radiotherapy: An IAEA/AAPM International Code of Practice for reference and relative dose determination, Technical Report Series No. 483; Palmans et al., Med Phys 45(11):e1123, 2018). The charge of AAPM task group 155 (TG-155) is to summarize current knowledge on small-field dosimetry and to provide recommendations of best practices for relative dose determination in small megavoltage photon beams. An overview of the issue of LCPE and the changes in photon beam perturbations with decreasing field size is provided. Recommendations are included on appropriate detector systems and measurement methodologies. Existing published data on dosimetric parameters in small photon fields (e.g., percentage depth dose, tissue phantom ratio/tissue maximum ratio, off-axis ratios, and field output factors) together with the necessary perturbation corrections for various detectors are reviewed. A discussion on errors and an uncertainty analysis in measurements is provided. The design of beam models in treatment planning systems to simulate small fields necessitates special attention on the influence of the primary beam source and collimating devices in the computation of energy fluence and dose. The general requirements for fluence and dose calculation engines suitable for modeling dose in small fields are reviewed. Implementations in commercial treatment planning systems vary widely, and the aims of this report are to provide insight for the medical physicist and guidance to developers of beams models for radiotherapy treatment planning systems.
Collapse
Affiliation(s)
- Indra J Das
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Paolo Francescon
- Department of Radiation Oncology, Ospedale Di Vicenza, Vicenza, Italy
| | - Jean M Moran
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Anders Ahnesjö
- Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Maria M Aspradakis
- Institute of Radiation Oncology, Cantonal Hospital of Graubünden, Chur, Switzerland
| | - Chee-Wai Cheng
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - George X Ding
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - John D Fenwick
- Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - M Saiful Huq
- Department of Radiation Oncology, University of Pittsburgh, School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Mark Oldham
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Chester S Reft
- Department of Radiation Oncology, University of Chicago, Chicago, IL, USA
| | - Otto A Sauer
- Department of Radiation Oncology, Klinik fur Strahlentherapie, University of Würzburg, Würzburg, Germany
| |
Collapse
|
11
|
Debnath SBC, Tonneau D, Fauquet C, Tallet A, Goncalves A, Darreon J. Dosimetric characterization of a small-scale (Zn,Cd)S:Ag inorganic scintillating detector to be used in radiotherapy. Phys Med 2021; 84:15-23. [PMID: 33813200 DOI: 10.1016/j.ejmp.2021.03.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/14/2021] [Accepted: 03/20/2021] [Indexed: 12/01/2022] Open
Abstract
PURPOSE In modern radiotherapy techniques, to ensure an accurate beam modeling process, dosimeters with high accuracy and spatial resolution are required. Therefore, this work aims to propose a simple, robust, and a small-scale fiber-integrated X-ray inorganic detector and investigate the dosimetric characteristics used in radiotherapy. METHODS The detector is based on red-emitting silver-activated zinc-cadmium sulfide (Zn,Cd)S:Ag nanoclusters and the proposed system has been tested under 6 MV photons with standard dose rate used in the patient treatment protocol. The article presents the performances of the detector in terms of dose linearity, repeatability, reproducibility, percentage depth dose distribution, and field output factor. A comparative study is shown using a microdiamond dosimeter and considering data from recent literature. RESULTS We accurately measured a small field beam profile of 0.5 × 0.5 cm2 at a spatial resolution of 100 µm using a LINAC system. The dose linearity at 400 MU/min has shown less than 0.53% and 1.10% deviations from perfect linearity for the regular and smallest field. Percentage depth dose measurement agrees with microdiamond measurements within 1.30% and 2.94%, respectively for regular to small field beams. Besides, the stem effect analysis shows a negligible contribution in the measurements for fields smaller than 3x3 cm2. This study highlights the drastic decrease of the convolution effect using a point-like detector, especially in small dimension beam characterization. Field output factor has shown a good agreement while comparing it with the microdiamond dosimeter. CONCLUSION All the results presented here anticipated that the developed detector can accurately measure delivered dose to the region of interest, claim accurate depth dose distribution hence it can be a suitable candidate for beam characterization and quality assurance of LINAC system.
Collapse
Affiliation(s)
| | - Didier Tonneau
- Aix Marseille Université, CNRS, CINaM UMR 7325, 13288 Marseille, France
| | - Carole Fauquet
- Aix Marseille Université, CNRS, CINaM UMR 7325, 13288 Marseille, France
| | - Agnes Tallet
- Institut Paoli-Calmettes, 13009 Marseille, France
| | - Anthony Goncalves
- Institut Paoli-Calmettes, 13009 Marseille, France; Aix Marseille Université, CNRS UMR 7258, INSERM UMR 1068, CRCM, 13009 Marseille, France
| | | |
Collapse
|
12
|
Debnath SBC, Ferre M, Tonneau D, Fauquet C, Tallet A, Goncalves A, Darreon J. High resolution small-scale inorganic scintillator detector: HDR brachytherapy application. Med Phys 2021; 48:1485-1496. [PMID: 33476399 DOI: 10.1002/mp.14727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/21/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Brachytherapy (BT) deals with high gradient internal dose irradiation made up of a complex system where the source is placed nearby the tumor to destroy cancerous cells. A primary concern of clinical safety in BT is quality assurance to ensure the best matches between the delivered and prescribed doses targeting small volume tumors and sparing surrounding healthy tissues. Hence, the purpose of this study is to evaluate the performance of a point size inorganic scintillator detector (ISD) in terms of high dose rate brachytherapy (HDR-BT) treatment. METHODS A prototype of the dose verification system has been developed based on scintillating dosimetry to measure a high dose rate while using an 192 Ir BT source. The associated dose rate is measured in photons/s employing a highly sensitive photon counter (design data: 20 photons/s). Dose measurement was performed as a function of source-to-detector distance according to TG43U1 recommendations. Overall measurements were carried out inside water phantoms keeping the ISD along the BT needle; a minimum of 0.1 cm distance was maintained between each measurement point. The planned dwell times were measured accurately from the difference of two adjacent times of transit. The ISD system performances were also evaluated in terms of dose linearity, energy dependency, scintillation stability, signal-to-noise ratio (SNR), and signal-to-background ratio (SBR). Finally, a comparison was presented between the ISD measurements and results obtained from TG43 reference dataset. RESULTS The detection efficiency of the ISD was verified by measuring the planned dwell times at different dwell positions. Measurements demonstrated that the ISD has a perfectly linear behavior with dose rate (R2 = 1) and shows high SNR (>35) and SBR (>36) values even at the lowest dose rate investigated at around 10 cm from the source. Standard deviation (1σ) remains within 0.03% of signal magnitude, and less than 0.01% STEM signal was monitored at 0.1 cm source-to-detector distance. Stability of 0.54% is achieved, and afterglow stays less than 1% of the total signal in all the irradiations. Excellent symmetrical behavior of the dose rate regarding source position was observed at different radiation planes. Finally, a comparison with TG-43 reference dataset shows that corrected measurements agreed with simulation data within 1.2% and 1.3%, and valid for the source-to-detector distance greater than 0.25 cm. CONCLUSION The proposed ISD in this study anticipated that the system could be promoted to validate with further clinical investigations. It allows an appropriate dose verification with dwell time estimation during source tracking and suitable dose measurement with a high spatial resolution both nearby (high dose gradient) and far (low dose gradient) from the source position.
Collapse
Affiliation(s)
| | | | - Didier Tonneau
- Aix Marseille Université, CNRS, CINaM UMR 7325, Marseille, 13288, France
| | - Carole Fauquet
- Aix Marseille Université, CNRS, CINaM UMR 7325, Marseille, 13288, France
| | - Agnes Tallet
- Institut Paoli-Calmettes, Marseille, 13009, France
| | - Anthony Goncalves
- Institut Paoli-Calmettes, Marseille, 13009, France.,Aix Marseille Université, CNRS UMR 7258, INSERM UMR 1068, CRCM, Marseille, 13009, France
| | | |
Collapse
|