1
|
Homolka P, Breyer L, Semturs F. 3D Printing Materials Mimicking Human Tissues after Uptake of Iodinated Contrast Agents for Anthropomorphic Radiology Phantoms. Biomimetics (Basel) 2024; 9:606. [PMID: 39451811 PMCID: PMC11504517 DOI: 10.3390/biomimetics9100606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
(1) Background: 3D printable materials with accurately defined iodine content enable the development and production of radiological phantoms that simulate human tissues, including lesions after contrast administration in medical imaging with X-rays. These phantoms provide accurate, stable and reproducible models with defined iodine concentrations, and 3D printing allows maximum flexibility and minimal development and production time, allowing the simulation of anatomically correct anthropomorphic replication of lesions and the production of calibration and QA standards in a typical medical research facility. (2) Methods: Standard printing resins were doped with an iodine contrast agent and printed using a consumer 3D printer, both (resins and printer) available from major online marketplaces, to produce printed specimens with iodine contents ranging from 0 to 3.0% by weight, equivalent to 0 to 3.85% elemental iodine per volume, covering the typical levels found in patients. The printed samples were scanned in a micro-CT scanner to measure the properties of the materials in the range of the iodine concentrations used. (3) Results: Both mass density and attenuation show a linear dependence on iodine concentration (R2 = 1.00), allowing highly accurate, stable, and predictable results. (4) Conclusions: Standard 3D printing resins can be doped with liquids, avoiding the problem of sedimentation, resulting in perfectly homogeneous prints with accurate dopant content. Iodine contrast agents are perfectly suited to dope resins with appropriate iodine concentrations to radiologically mimic tissues after iodine uptake. In combination with computer-aided design, this can be used to produce printed objects with precisely defined iodine concentrations in the range of up to a few percent of elemental iodine, with high precision and anthropomorphic shapes. Applications include radiographic phantoms for detectability studies and calibration standards in projective X-ray imaging modalities, such as contrast-enhanced dual energy mammography (abbreviated CEDEM, CEDM, TICEM, or CESM depending on the equipment manufacturer), and 3-dimensional modalities like CT, including spectral and dual energy CT (DECT), and breast tomosynthesis.
Collapse
Affiliation(s)
- Peter Homolka
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Lara Breyer
- Department of Biomedical Imaging and Image-Guided Therapy, Medical Imaging Cluster (MIC), Medical University of Vienna, 1090 Vienna, Austria
| | - Friedrich Semturs
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
2
|
Mihaylova A, Shopova D, Parahuleva N, Yaneva A, Bakova D. (3D) Bioprinting-Next Dimension of the Pharmaceutical Sector. Pharmaceuticals (Basel) 2024; 17:797. [PMID: 38931464 PMCID: PMC11206453 DOI: 10.3390/ph17060797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/26/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
To create a review of the published scientific literature on the benefits and potential perspectives of the use of 3D bio-nitrification in the field of pharmaceutics. This work was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for reporting meta-analyses and systematic reviews. The scientific databases PubMed, Scopus, Google Scholar, and ScienceDirect were used to search and extract data using the following keywords: 3D bioprinting, drug research and development, personalized medicine, pharmaceutical companies, clinical trials, drug testing. The data points to several aspects of the application of bioprinting in pharmaceutics were reviewed. The main applications of bioprinting are in the development of new drug molecules as well as in the preparation of personalized drugs, but the greatest benefits are in terms of drug screening and testing. Growth in the field of 3D printing has facilitated pharmaceutical applications, enabling the development of personalized drug screening and drug delivery systems for individual patients. Bioprinting presents the opportunity to print drugs on demand according to the individual needs of the patient, making the shape, structure, and dosage suitable for each of the patient's physical conditions, i.e., print specific drugs for controlled release rates; print porous tablets to reduce swallowing difficulties; make transdermal microneedle patches to reduce patient pain; and so on. On the other hand, bioprinting can precisely control the distribution of cells and biomaterials to build organoids, or an Organ-on-a-Chip, for the testing of drugs on printed organs mimicking specified disease characteristics instead of animal testing and clinical trials. The development of bioprinting has the potential to offer customized drug screening platforms and drug delivery systems meeting a range of individualized needs, as well as prospects at different stages of drug development and patient therapy. The role of bioprinting in preclinical and clinical testing of drugs is also of significant importance in terms of shortening the time to launch a medicinal product on the market.
Collapse
Affiliation(s)
- Anna Mihaylova
- Department of Healthcare Management, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Dobromira Shopova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Nikoleta Parahuleva
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Antoniya Yaneva
- Department of Medical Informatics, Biostatistics and eLearning, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Desislava Bakova
- Department of Healthcare Management, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| |
Collapse
|
3
|
Ahmed AMM, Buschmann M, Breyer L, Kuntner C, Homolka P. Tailoring the Mass Density of 3D Printing Materials for Accurate X-ray Imaging Simulation by Controlled Underfilling for Radiographic Phantoms. Polymers (Basel) 2024; 16:1116. [PMID: 38675035 PMCID: PMC11053449 DOI: 10.3390/polym16081116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Additive manufacturing and 3D printing allow for the design and rapid production of radiographic phantoms for X-ray imaging, including CT. These are used for numerous purposes, such as patient simulation, optimization of imaging procedures and dose levels, system evaluation and quality assurance. However, standard 3D printing polymers do not mimic X-ray attenuation properties of tissues like soft, adipose, lung or bone tissue, and standard materials like liquid water. The mass density of printing polymers-especially important in CT-is often inappropriate, i.e., mostly too high. Different methods can be applied to reduce mass density. This work examines reducing density by controlled underfilling either realized by using 3D printing materials expanded through foaming during heating in the printing process, or reducing polymer flow to introduce microscopic air-filled voids. The achievable density reduction depends on the base polymer used. When using foaming materials, density is controlled by the extrusion temperature, and ranges from 33 to 47% of the base polymer used, corresponding to a range of -650 to -394 HU in CT with 120 kV. Standard filaments (Nylon, modified PLA and modified ABS) allowed density reductions by 20 to 25%, covering HU values in CT from -260 to 77 (Nylon), -230 to -20 (ABS) and -81 to 143 (PLA). A standard chalk-filled PLA filament allowed reproduction of bone tissue in a wide range of bone mineral content resulting in CT numbers from 57 to 460 HU. Controlled underfilling allowed the production of radiographic phantom materials with continuously adjustable attenuation in a limited but appropriate range, allowing for the reproduction of X-ray attenuation properties of water, adipose, soft, lung, and bone tissue in an accurate, predictable and reproducible manner.
Collapse
Affiliation(s)
| | - Martin Buschmann
- Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna, and University Hospital Vienna, 1090 Vienna, Austria;
| | - Lara Breyer
- Department of Biomedical Imaging and Image-Guided Therapy, Medical Imaging Cluster (MIC), Medical University of Vienna, 1090 Vienna, Austria; (L.B.); (C.K.)
| | - Claudia Kuntner
- Department of Biomedical Imaging and Image-Guided Therapy, Medical Imaging Cluster (MIC), Medical University of Vienna, 1090 Vienna, Austria; (L.B.); (C.K.)
| | - Peter Homolka
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
4
|
Mei K, Pasyar P, Geagan M, Liu LP, Shapira N, Gang GJ, Stayman JW, Noël PB. Design and fabrication of 3D-printed patient-specific soft tissue and bone phantoms for CT imaging. Sci Rep 2023; 13:17495. [PMID: 37840044 PMCID: PMC10577126 DOI: 10.1038/s41598-023-44602-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023] Open
Abstract
The objective of this study is to create patient-specific phantoms for computed tomography (CT) that possess accurate densities and exhibit visually realistic image textures. These qualities are crucial for evaluating CT performance in clinical settings. The study builds upon a previously presented 3D printing method (PixelPrint) by incorporating soft tissue and bone structures. We converted patient DICOM images directly into 3D printer instructions using PixelPrint and utilized calcium-doped filament to increase the Hounsfield unit (HU) range. Density was modeled by controlling printing speed according to volumetric filament ratio to emulate attenuation profiles. We designed micro-CT phantoms to demonstrate the reproducibility, and to determine mapping between filament ratios and HU values on clinical CT systems. Patient phantoms based on clinical cervical spine and knee examinations were manufactured and scanned with a clinical spectral CT scanner. The CT images of the patient-based phantom closely resembled original CT images in visual texture and contrast. Micro-CT analysis revealed minimal variations between prints, with an overall deviation of ± 0.8% in filament line spacing and ± 0.022 mm in line width. Measured differences between patient and phantom were less than 12 HU for soft tissue and 15 HU for bone marrow, and 514 HU for cortical bone. The calcium-doped filament accurately represented bony tissue structures across different X-ray energies in spectral CT (RMSE ranging from ± 3 to ± 28 HU, compared to 400 mg/ml hydroxyapatite). In conclusion, this study demonstrated the possibility of extending 3D-printed patient-based phantoms to soft tissue and bone structures while maintaining accurate organ geometry, image texture, and attenuation profiles.
Collapse
Affiliation(s)
- Kai Mei
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Pouyan Pasyar
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Geagan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leening P Liu
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Nadav Shapira
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Grace J Gang
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - J Webster Stayman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter B Noël
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Diagnostic and Interventional Radiology, School of Medicine and Klinikum Rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| |
Collapse
|
5
|
Marshall H, Selvan T, Ahmad R, Bento M, Veiga C, Sands G, Malone C, King RB, Clark CH, McGarry CK. Evaluation of a novel phantom for the quality assurance of a six-degree-of-freedom couch 3D-printed at multiple centres. Phys Med 2023; 114:103136. [PMID: 37769414 DOI: 10.1016/j.ejmp.2023.103136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 09/30/2023] Open
Abstract
This study aimed to validate a bespoke 3D-printed phantom for use in quality assurance (QA) of a 6 degrees-of-freedom (6DoF) treatment couch. A novel phantom design comprising a main body with internal cube structures, was fabricated at five centres using Polylactic Acid (PLA) material, with an additional phantom produced incorporating a PLA-stone hybrid material. Correctional setup shifts were determined using image registration by 3D-3D matching of high HU cube structures between obtained cone-beam computer tomography (CBCT) images to reference CTs, containing cubes with fabricated rotational offsets of 3.5°, 1.5° and -2.5° in rotation, pitch, and roll, respectively. Average rotational setup shifts were obtained for each phantom. The reproducibility of 3D-printing was probed by comparing the internal cube size as well as Hounsfield Units between each of the uniquely produced phantoms. For the five PLA phantoms, the average rot, pitch and roll correctional differences from the fabricated offsets were -0.3 ± 0.2°, -0.2 ± 0.5° and 0.2 ± 0.3° respectively, and for the PLA hybrid these differences were -0.09 ± 0.14°, 0.30 ± 0.00° and 0.03 ± 0.10°. There was found to be no statistically significant difference in average cube size between the five PLA printed phantoms, with the significant difference (P < 0.05) in HU of one phantom compared to the others attributed to setup choice and material density. This work demonstrated the capability producing a novel 3D-printed 6DoF couch QA phantom design, at multiple centres, with each unique model capable of sub-degree couch correction.
Collapse
Affiliation(s)
- Hannah Marshall
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.
| | - Tamil Selvan
- Department of Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, UK
| | - Reem Ahmad
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Mariana Bento
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Catarina Veiga
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Gordon Sands
- Radiotherapy Physics, UCLH NHS Foundation Trust, London, UK
| | - Ciaran Malone
- Radiotherapy Physics, St. Luke's Radiation Oncology Network, Dublin, Ireland
| | - Raymond B King
- Department of Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, UK
| | - Catharine H Clark
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK; Radiotherapy Physics, UCLH NHS Foundation Trust, London, UK; Metrology for Medical Physics, National Physical Laboratory, Teddington, UK
| | - Conor K McGarry
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK; Department of Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, UK
| |
Collapse
|
6
|
Mei K, Pasyar P, Geagan M, Liu LP, Shapira N, Gang GJ, Stayman JW, Noël PB. Design and fabrication of 3D-printed patient-specific soft tissue and bone phantoms for CT imaging. RESEARCH SQUARE 2023:rs.3.rs-2828218. [PMID: 37162901 PMCID: PMC10168445 DOI: 10.21203/rs.3.rs-2828218/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The objective of this study is to create patient-specific phantoms for computed tomography (CT) that have realistic image texture and densities, which are critical in evaluating CT performance in clinical settings. The study builds upon a previously presented 3D printing method (PixelPrint) by incorporating soft tissue and bone structures. We converted patient DICOM images directly into 3D printer instructions using PixelPrint and utilized stone-based filament to increase Hounsfield unit (HU) range. Density was modeled by controlling printing speed according to volumetric filament ratio to emulate attenuation profiles. We designed micro-CT phantoms to demonstrate the reproducibility and to determine mapping between filament ratios and HU values on clinical CT systems. Patient phantoms based on clinical cervical spine and knee examinations were manufactured and scanned with a clinical spectral CT scanner. The CT images of the patient-based phantom closely resembled original CT images in texture and contrast. Measured differences between patient and phantom were less than 15 HU for soft tissue and bone marrow. The stone-based filament accurately represented bony tissue structures across different X-ray energies, as measured by spectral CT. In conclusion, this study demonstrated the possibility of extending 3D-printed patient-based phantoms to soft tissue and bone structures while maintaining accurate organ geometry, image texture, and attenuation profiles.
Collapse
|
7
|
Mei K, Pasyar P, Geagan M, Liu LP, Shapira N, Gang GJ, Stayman JW, Noël PB. Design and fabrication of 3D-printed patient-specific soft tissue and bone phantoms for CT imaging. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.17.23288689. [PMID: 37162973 PMCID: PMC10168421 DOI: 10.1101/2023.04.17.23288689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The objective of this study is to create patient-specific phantoms for computed tomography (CT) that have realistic image texture and densities, which are critical in evaluating CT performance in clinical settings. The study builds upon a previously presented 3D printing method (PixelPrint) by incorporating soft tissue and bone structures. We converted patient DICOM images directly into 3D printer instructions using PixelPrint and utilized stone-based filament to increase Hounsfield unit (HU) range. Density was modeled by controlling printing speed according to volumetric filament ratio to emulate attenuation profiles. We designed micro-CT phantoms to demonstrate the reproducibility and to determine mapping between filament ratios and HU values on clinical CT systems. Patient phantoms based on clinical cervical spine and knee examinations were manufactured and scanned with a clinical spectral CT scanner. The CT images of the patient-based phantom closely resembled original CT images in texture and contrast. Measured differences between patient and phantom were less than 15 HU for soft tissue and bone marrow. The stone-based filament accurately represented bony tissue structures across different X-ray energies, as measured by spectral CT. In conclusion, this study demonstrated the possibility of extending 3D-printed patient-based phantoms to soft tissue and bone structures while maintaining accurate organ geometry, image texture, and attenuation profiles.
Collapse
Affiliation(s)
- Kai Mei
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pouyan Pasyar
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Geagan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leening P. Liu
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Nadav Shapira
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Grace J. Gang
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - J. Webster Stayman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter B. Noël
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Diagnostic and Interventional Radiology, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, 81675 München, Germany
| |
Collapse
|
8
|
An anthropomorphic 3D printed inhomogeneity thorax phantom slab for SBRT commissioning and quality assurance. Phys Eng Sci Med 2023; 46:575-583. [PMID: 36806158 DOI: 10.1007/s13246-023-01233-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 02/09/2023] [Indexed: 02/23/2023]
Abstract
Anthropomorphic phantoms with tissue equivalency are required in radiotherapy for quality assurance of imaging and dosimetric processes used in radiotherapy treatments. Commercial phantoms are expensive and provide limited approximation to patient geometry and tissue equivalency. In this study, a 5 cm thick anthropomorphic thoracic slab phantom was designed and 3D printed using models exported from a CT dataset to demonstrate the feasibility of manufacturing anthropomorphic 3D printed phantoms onsite in a clinical radiotherapy department. The 3D printed phantom was manufactured with polylactic acid with an in-fill density of 80% to simulate tissue density and 26% to simulate lung density. A common radio-opacifier, barium sulfate (BaSO4), was added 6% w/w to an epoxy resin mixture to simulate similar HU numbers for bone equivalency. A half-cylindrical shape was cropped away from the spine region to allow insertion of the bone equivalent mixture. Two Gafchromic™ EBT3 film strips were inserted into the 3D printed phantom to measure the delivery of two stereotactic radiotherapy plans targeting lung and bone lesions respectively. Results were analysed within SNC Patient with a low dose threshold of 10% and a gamma criterion of 3%/2 mm and 5%/1 mm. The resulting gamma pass rate across both criterions for lung and bone were ≥ 95% and approximately 85% respectively. Results shows that a cost-effective anthropomorphic 3D printed phantom with realistic heterogeneity simulation can be fabricated in departments with access a suitable 3D printer, which can be used for performing commissioning and quality assurance for stereotactic type radiotherapy to lesions in the presence of heterogeneity.
Collapse
|
9
|
Okkalidis N, Bliznakova K. A voxel-by-voxel method for mixing two filaments during a 3D printing process for soft-tissue replication in an anthropomorphic breast phantom. Phys Med Biol 2022; 67. [PMID: 36541511 DOI: 10.1088/1361-6560/aca640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 11/25/2022] [Indexed: 11/26/2022]
Abstract
Objective. In this study, a novel voxel-by-voxel mixing method is presented, according to which two filaments of different material are combined during the three dimensional (3D) printing process.Approach. In our approach, two types of filaments were used for the replication of soft-tissues, a polylactic acid (PLA) filament and a polypropylene (PP) filament. A custom-made software was used, while a series of breast patient CT scan images were directly associated to the 3D printing process. Each phantom´s layer was printed twice, once with the PLA filament and a second time with the PP filament. For each material, the filament extrusion rate was controlled voxel-by-voxel and was based on the Hounsfield units (HU) of the imported CT images. The phantom was scanned at clinical CT, breast tomosynthesis and micro CT facilities, as the major processing was performed on data from the CT. A side by side comparison between patient´s and phantom´s CT slices by means of profile and histogram comparison was accomplished. Further, in case of profile comparison, the Pearson´s coefficients were calculated.Main results. The visual assessment of the distribution of the glandular tissue in the CT slices of the printed breast anatomy showed high degree of radiological similarity to the corresponding patient´s glandular distribution. The profile plots´ comparison showed that the HU of the replicated and original patient soft tissues match adequately. In overall, the Pearson´s coefficients were above 0.91, suggesting a close match of the CT images of the phantom with those of the patient. The overall HU were close in terms of HU ranges. The HU mean, median and standard deviation of the original and the phantom CT slices were -149, -167, ±65 and -121, -130, ±91, respectively.Significance. The results suggest that the proposed methodology is appropriate for manufacturing of anthropomorphic soft tissue phantoms for x-ray imaging and dosimetry purposes, since it may offer an accurate replication of these tissues.
Collapse
Affiliation(s)
- Nikiforos Okkalidis
- Research Institute, Medical University of Varna, Bulgaria.,Morphé, Praxitelous 1, Thessaloniki, Greece
| | - Kristina Bliznakova
- Department of Medical Equipment, Electronic and Information Technologies in Healthcare, Medical University of Varna, Varna, Bulgaria
| |
Collapse
|
10
|
Okkalidis N, Bliznakova K, Kolev N. A filament 3D printing approach for CT-compatible bone tissues replication. Phys Med 2022; 102:96-102. [PMID: 36162230 DOI: 10.1016/j.ejmp.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 10/14/2022] Open
Abstract
PURPOSE The aim of this study is the development of a methodology for manufacturing 3D printed anthropomorphic structures, which mimic the X-ray properties of the human bone tissue. METHODS A mixing approach of two different materials is proposed for the fabrication of a radiologically equivalent hip bone for an anthropomorphic abdominal phantom. The materials employed for the phantom were polylactic acid (PLA) and Stonefil, while a custom-made dual motor filament extrusion setup and a custom-made software associating medical images directly with the 3D printing process were employed. RESULTS Three phantoms representing the hip bone were 3D printed utilizing two filaments under three different printing scenarios. The phantoms are based on a patient's abdominal CT scan images. Histograms of CT scans of the printed hip bone phantoms were calculated and compared to the original patient's hip bone histogram, demonstrating that a constant mixing composition of 30% Stonefil and 70% PLA with 0.0375 extrusion rate per voxel (93.75% flow for fulfilling a single voxel) for the cancellous bone, and using 100% Stonefil with 0.04 extrusion rate per voxel (100% flow) for the cortical bone results in a realistic anatomy replication of the hip bone. Reproduced HU varied between 700 and 800, which are close to those of the hip bone. CONCLUSIONS The study demonstrated that it is possible to mix two different filaments in real-time during the printing process to obtain phantoms with realistic and radiographically bone tissue equivalent attenuation. The results will be explored for manufacturing a CT-compatible abdominal phantom.
Collapse
Affiliation(s)
- Nikiforos Okkalidis
- Medical University of Varna, Bulgaria; Morphé, Praxitelous 1, Thessaloniki, Greece.
| | | | - Nikola Kolev
- Medical University of Varna, Bulgaria; First Clinic of Surgery in UMHAT "Saint Marina", Varna, Bulgaria
| |
Collapse
|
11
|
X-ray attenuation of bone, soft and adipose tissue in CT from 70 to 140 kV and comparison with 3D printable additive manufacturing materials. Sci Rep 2022; 12:14580. [PMID: 36028638 PMCID: PMC9418162 DOI: 10.1038/s41598-022-18741-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Additive manufacturing and 3D printing are widely used in medical imaging to produce phantoms for image quality optimization, imaging protocol definition, comparison of image quality between different imaging systems, dosimetry, and quality control. Anthropomorphic phantoms mimic tissues and contrasts in real patients with regard to X-ray attenuation, as well as dependence on X-ray spectra. If used with different X-ray energies, or to optimize the spectrum for a certain procedure, the energy dependence of the attenuation must replicate the corresponding energy dependence of the tissues mimicked, or at least be similar. In the latter case the materials’ Hounsfield values need to be known exactly to allow to correct contrast and contrast to noise ratios accordingly for different beam energies. Fresh bovine and porcine tissues including soft and adipose tissues, and hard tissues from soft spongious bone to cortical bone were scanned at different energies, and reference values of attenuation in Hounsfield units (HU) determined. Mathematical model equations describing CT number dependence on kV for bones of arbitrary density, and for adipose tissues are derived. These data can be used to select appropriate phantom constituents, compare CT values with arbitrary phantom materials, and calculate correction factors for phantoms consisting of materials with an energy dependence different to the tissues. Using data on a wide number of additive manufacturing and 3D printing materials, CT numbers and their energy dependence were compared to those of the tissues. Two commercially available printing filaments containing calcium carbonate powder imitate bone tissues with high accuracy at all kV values. Average adipose tissue can be duplicated by several off-the-shelf printing polymers. Since suitable printing materials typically exhibit a too high density for the desired attenuation of especially soft tissues, controlled density reduction by underfilling might improve tissue equivalence.
Collapse
|
12
|
Okkalidis N. 3D printing methods for radiological anthropomorphic phantoms. Phys Med Biol 2022; 67. [PMID: 35830787 DOI: 10.1088/1361-6560/ac80e7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/13/2022] [Indexed: 01/06/2023]
Abstract
Three dimensional (3D) printing technology has been widely evaluated for the fabrication of various anthropomorphic phantoms during the last couple of decades. The demand for such high quality phantoms is constantly rising and gaining an ever-increasing interest. Although, in a short time 3D printing technology provided phantoms with more realistic features when compared to the previous conventional methods, there are still several aspects to be explored. One of these aspects is the further development of the current 3D printing methods and software devoted to radiological applications. The current 3D printing software and methods usually employ 3D models, while the direct association of medical images with the 3D printing process is needed in order to provide results of higher accuracy and closer to the actual tissues' texture. Another aspect of high importance is the development of suitable printing materials. Ideally, those materials should be able to emulate the entire range of soft and bone tissues, while still matching the human's anatomy. Five types of 3D printing methods have been mainly investigated so far: (a) solidification of photo-curing materials; (b) deposition of melted plastic materials; (c) printing paper-based phantoms with radiopaque ink; (d) melting or binding plastic powder; and (e) bio-printing. From the first and second category, polymer jetting technology and fused filament fabrication (FFF), also known as fused deposition modelling (FDM), are the most promising technologies for the fulfilment of the requirements of realistic and radiologically equivalent anthropomorphic phantoms. Another interesting approach is the fabrication of radiopaque paper-based phantoms using inkjet printers. Although, this may provide phantoms of high accuracy, the utilized materials during the fabrication process are restricted to inks doped with various contrast materials. A similar condition applies to the polymer jetting technology, which despite being quite fast and very accurate, the utilized materials are restricted to those capable of polymerization. The situation is better for FFF/FDM 3D printers, since various compositions of plastic filaments with external substances can be produced conveniently. Although, the speed and accuracy of this 3D printing method are lower compared to the others, the relatively low-cost, constantly improving resolution, sufficient printing volume and plethora of materials are quite promising for the creation of human size heterogeneous phantoms and their adaptation to the treatment procedures of patients in the current health systems.
Collapse
Affiliation(s)
- Nikiforos Okkalidis
- Research Institute, Medical University of Varna, Bulgaria.,Morphé, Praxitelous 1, Thessaloniki, Greece
| |
Collapse
|
13
|
Hatamikia S, Kronreif G, Unger A, Oberoi G, Jaksa L, Unger E, Koschitz S, Gulyas I, Irnstorfer N, Buschmann M, Kettenbach J, Birkfellner W, Lorenz A. 3D printed patient-specific thorax phantom with realistic heterogenous bone radiopacity using filament printer technology. Z Med Phys 2022; 32:438-452. [PMID: 35221154 PMCID: PMC9948829 DOI: 10.1016/j.zemedi.2022.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/17/2021] [Accepted: 02/01/2022] [Indexed: 12/11/2022]
Abstract
Current medical imaging phantoms are usually limited by simplified geometry and radiographic skeletal homogeneity, which confines their usage for image quality assessment. In order to fabricate realistic imaging phantoms, replication of the entire tissue morphology and the associated CT numbers, defined as Hounsfield Unit (HU) is required. 3D printing is a promising technology for the production of medical imaging phantoms with accurate anatomical replication. So far, the majority of the imaging phantoms using 3D printing technologies tried to mimic the average HU of soft tissue human organs. One important aspect of the anthropomorphic imaging phantoms is also the replication of realistic radiodensities for bone tissues. In this study, we used filament printing technology to develop a CT-derived 3D printed thorax phantom with realistic bone-equivalent radiodensity using only one single commercially available filament. The generated thorax phantom geometry closely resembles a patient and includes direct manufacturing of bone structures while creating life-like heterogeneity within bone tissues. A HU analysis as well as a physical dimensional comparison were performed in order to evaluate the density and geometry agreement between the proposed phantom and the corresponding CT data. With the achieved density range (-482 to 968 HU) we could successfully mimic the realistic radiodensity of the bone marrow as well as the cortical bone for the ribs, vertebral body and dorsal vertebral column in the thorax skeleton. In addition, considering the large radiodensity range achieved a full thorax imaging phantom mimicking also soft tissues can become feasible. The physical dimensional comparison using both Extrema Analysis and Collision Detection methods confirmed a mean surface overlap of 90% and a mean volumetric overlap of 84,56% between the patient and phantom model. Furthermore, the reproducibility analyses revealed a good geometry and radiodensity duplicability in 24 printed cylinder replicas. Thus, according to our results, the proposed additively manufactured anthropomorphic thorax phantom has the potential to be efficiently used for validation of imaging- and radiation-based procedures in precision medicine.
Collapse
Affiliation(s)
- Sepideh Hatamikia
- Austrian Center for Medical Innovation and Technology, Wiener Neustadt, Austria; Danube Private University, 3500 Krems an der Donau, Austria; Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.
| | - Gernot Kronreif
- Austrian Center for Medical Innovation and Technology, Wiener Neustadt, Austria
| | - Alexander Unger
- Austrian Center for Medical Innovation and Technology, Wiener Neustadt, Austria
| | - Gunpreet Oberoi
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Laszlo Jaksa
- Austrian Center for Medical Innovation and Technology, Wiener Neustadt, Austria
| | - Ewald Unger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Stefan Koschitz
- Austrian Center for Medical Innovation and Technology, Wiener Neustadt, Austria
| | - Ingo Gulyas
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Nikolaus Irnstorfer
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy at the Medical University of Vienna
| | - Martin Buschmann
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Joachim Kettenbach
- Institute of Diagnostic, Interventional Radiology and Nuclear Medicine, Landesklinikum Wiener Neustadt, Wiener Neustadt, Austria
| | - Wolfgang Birkfellner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Andrea Lorenz
- Austrian Center for Medical Innovation and Technology, Wiener Neustadt, Austria
| |
Collapse
|
14
|
Dukov N, Bliznakova K, Okkalidis N, Teneva T, Encheva E, Bliznakov Z. Thermoplastic 3D printing technology using a single filament for producing realistic patient-derived breast models. Phys Med Biol 2022; 67. [PMID: 35038693 DOI: 10.1088/1361-6560/ac4c30] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/17/2022] [Indexed: 12/29/2022]
Abstract
Objective. This work describes an approach for producing physical anthropomorphic breast phantoms from clinical patient data using three-dimensional (3D) fused-deposition modelling (FDM) printing.Approach. The source of the anthropomorphic model was a clinical Magnetic Resonance Imaging (MRI) patient image set, which was segmented slice by slice into adipose and glandular tissues, skin and tumour formations; thus obtaining a four component computational breast model. The segmented tissues were mapped to specific Hounsfield Units (HU) values, which were derived from clinical breast Computed Tomography (CT) data. The obtained computational model was used as a template for producing a physical anthropomorphic breast phantom using 3D printing. FDM technology with only one polylactic acid filament was used. The physical breast phantom was scanned at Siemens SOMATOM Definition CT. Quantitative and qualitative evaluation were carried out to assess the clinical realism of CT slices of the physical breast phantom.Main results. The comparison between selected slices from the computational breast phantom and CT slices of the physical breast phantom shows similar visual x-ray appearance of the four breast tissue structures: adipose, glandular, tumour and skin. The results from the task-based evaluation, which involved three radiologists, showed a high degree of realistic clinical radiological appearance of the modelled breast components. Measured HU values of the printed structures are within the range of HU values used in the computational phantom. Moreover, measured physical parameters of the breast phantom, such as weight and linear dimensions, agreed very well with the corresponding ones of the computational breast model.Significance. The presented approach, based on a single FDM material, was found suitable for manufacturing of a physical breast phantom, which mimics well the 3D spatial distribution of the different breast tissues and their x-ray absorption properties. As such, it could be successfully exploited in advanced x-ray breast imaging research applications.
Collapse
Affiliation(s)
- Nikolay Dukov
- Department of Medical Equipment, Electronic and Information Technologies in Healthcare, Medical University of Varna, Varna, Bulgaria
| | - Kristina Bliznakova
- Department of Medical Equipment, Electronic and Information Technologies in Healthcare, Medical University of Varna, Varna, Bulgaria
| | | | - Tsvetelina Teneva
- Department of Imaging Diagnostics, Interventional Radiology and Radiotherapy, Medical University of Varna, Bulgaria
| | - Elitsa Encheva
- Department of Imaging Diagnostics, Interventional Radiology and Radiotherapy, Medical University of Varna, Bulgaria
| | - Zhivko Bliznakov
- Department of Medical Equipment, Electronic and Information Technologies in Healthcare, Medical University of Varna, Varna, Bulgaria
| |
Collapse
|
15
|
Mei K, Geagan M, Roshkovan L, Litt HI, Gang GJ, Shapira N, Stayman JW, Noël PB. Three-dimensional printing of patient-specific lung phantoms for CT imaging: Emulating lung tissue with accurate attenuation profiles and textures. Med Phys 2021; 49:825-835. [PMID: 34910309 DOI: 10.1002/mp.15407] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Phantoms are a basic tool for assessing and verifying performance in CT research and clinical practice. Patient-based realistic lung phantoms accurately representing textures and densities are essential in developing and evaluating novel CT hardware and software. This study introduces PixelPrint, a 3D printing solution to create patient-based lung phantoms with accurate attenuation profiles and textures. METHODS PixelPrint, a software tool, was developed to convert patient digital imaging and communications in medicine (DICOM) images directly into FDM printer instructions (G-code). Density was modeled as the ratio of filament to voxel volume to emulate attenuation profiles for each voxel, with the filament ratio controlled through continuous modification of the printing speed. A calibration phantom was designed to determine the mapping between filament line width and Hounsfield units (HU) within the range of human lungs. For evaluation of PixelPrint, a phantom based on a single human lung slice was manufactured and scanned with the same CT scanner and protocol used for the patient scan. Density and geometrical accuracy between phantom and patient CT data were evaluated for various anatomical features in the lung. RESULTS For the calibration phantom, measured mean HU show a very high level of linear correlation with respect to the utilized filament line widths, (r > 0.999). Qualitatively, the CT image of the patient-based phantom closely resembles the original CT image both in texture and contrast levels (from -800 to 0 HU), with clearly visible vascular and parenchymal structures. Regions of interest comparing attenuation illustrated differences below 15 HU. Manual size measurements performed by an experienced thoracic radiologist reveal a high degree of geometrical correlation of details between identical patient and phantom features, with differences smaller than the intrinsic spatial resolution of the scans. CONCLUSION The present study demonstrates the feasibility of 3D-printed patient-based lung phantoms with accurate organ geometry, image texture, and attenuation profiles. PixelPrint will enable applications in the research and development of CT technology, including further development in radiomics.
Collapse
Affiliation(s)
- Kai Mei
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael Geagan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Leonid Roshkovan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Harold I Litt
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Grace J Gang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nadav Shapira
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - J Webster Stayman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Peter B Noël
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Diagnostic and Interventional Radiology, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, München, Germany
| |
Collapse
|
16
|
Tino RB, Yeo AU, Brandt M, Leary M, Kron T. A customizable anthropomorphic phantom for dosimetric verification of 3D-printed lung, tissue, and bone density materials. Med Phys 2021; 49:52-69. [PMID: 34796527 DOI: 10.1002/mp.15364] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/26/2021] [Accepted: 10/30/2021] [Indexed: 12/29/2022] Open
Abstract
PURPOSE To design and manufacture a customized thoracic phantom slab utilizing the 3D printing process, also known as additive manufacturing, consisting of different tissue density materials. Here, we demonstrate the 3D-printed phantom's clinical feasibility for imaging and dosimetric verification of volumetric modulated arc radiotherapy (VMAT) plans for lung and spine stereotactic ablative body radiotherapy (SABR) through end-to-end dosimetric verification. METHODS A customizable anthropomorphic phantom slab was designed using the CT dataset of a commercial phantom (adult female ATOM dosimetry phantom, CIRS Inc.). Material extrusion 3D printing was utilized to manufacture the phantom slab consisting of acrylonitrile butadiene styrene material for the lung and the associated lesion, polylactic acid (PLA) material for soft tissue and spinal cord, and both PLA and iron-reinforced PLA materials for bone. CT images were acquired for both the commercial phantom and 3D-printed phantom for HU comparison. VMAT plans were generated for spine and lung SABR scenarios and were delivered as per departmental SABR protocols using a Varian TrueBeam STx linear accelerator. End-to-end dosimetry was implemented with radiochromic films, analyzed with gamma criteria of 5% dose difference, and a distance-to-agreement of 1 mm, at a 10% low-dose threshold by comparing with calculated dose using the Acuros algorithm of the Eclipse treatment planning system (v15.6). RESULTS 3D-printed phantom inserts were observed to produce HU ranging from -750 to 2100. The 3D-printed phantom slab was observed to achieve a similar range of HU from the commercial phantom including a mean HU of -760 for lung tissue, a mean HU of 50 for soft tissue, and a mean HU of 220 and 630 for low- and high-density bone, respectively. Film dosimetry results show 2D-gamma passing rates for lung SABR (internal and superior) and spine SABR (inferior and superior) over 98% and 90%, respectively. CONCLUSIONS The end-to-end testing of VMAT plans for spine and lung SABR suggests the clinical feasibility of the 3D-printed phantom, consisting of different tissue density materials that emulate lung, soft tissue, and bone in kV imaging and megavoltage photon dosimetry. Further investigation of the proposed 3D printing techniques for manufacturability and reproducibility will enable the development of clinical 3D-printed phantoms in radiotherapy.
Collapse
Affiliation(s)
- Rance Bolislis Tino
- RMIT Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, Victoria, Australia.,Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology, Queensland, Brisbane, Australia
| | - Adam Unjin Yeo
- School of Applied Sciences, RMIT University, Melbourne, Victoria, Australia.,Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Milan Brandt
- RMIT Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, Victoria, Australia.,ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology, Queensland, Brisbane, Australia
| | - Martin Leary
- RMIT Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, Victoria, Australia.,ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology, Queensland, Brisbane, Australia
| | - Tomas Kron
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology, Queensland, Brisbane, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
17
|
Shah D, Naik L, Paunipagar B, Rasalkar D, Chaudhary K, Bagaria V. Setting Up 3D Printing Services for Orthopaedic Applications: A Step-by-Step Guide and an Overview of 3DBioSphere. Indian J Orthop 2020; 54:217-227. [PMID: 33194095 PMCID: PMC7609604 DOI: 10.1007/s43465-020-00254-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/03/2020] [Indexed: 02/04/2023]
Abstract
INTRODUCTION 3D printing has widespread applications in orthopaedics including creating biomodels, patient-specific instruments, implants, and developing bioprints. 3DGraphy or printing 3D models enable the surgeon to understand, plan, and simulate different procedures on it. Despite widespread applications in non-healthcare specialties, it has failed to gain traction in healthcare settings. This is perhaps due to perceived capital expenditure cost and the lack of knowledge and skill required to execute the process. PURPOSE This article is written with an aim to provide step-by-step instructions for setting up a cost-efficient 3D printing laboratory in an institution or standalone radiology centre. The article with the help of video modules will explain the key process of segmentation, especially the technique of edge detection and thresholding which are the heart of 3D printing. CONCLUSION This is likely to enable the practising orthopaedician and radiologist to set up a 3D printing unit in their departments or even standalone radiology centres at minimal startup costs. This will enable maximal utilisation of this technology that is likely to bring about a paradigm shift in planning, simulation, and execution of complex surgeries.
Collapse
Affiliation(s)
- Darshil Shah
- grid.465035.1Department of Orthopaedics, Sir HN Reliance Foundation Hospital, Mumbai, India
| | - Lokesh Naik
- grid.465035.1Department of Orthopaedics, Sir HN Reliance Foundation Hospital, Mumbai, India
| | - Bhawan Paunipagar
- Department of Radiology, Akshay PET-CT, Akshay CT, Sai MRI Scans, Sangli, India ,Department of Radiology, Akshay CT and Sai MRI Scans, Sangli, Kolhapur India
| | - Darshana Rasalkar
- Department of Radiology, Akshay PET-CT, Akshay CT, Sai MRI Scans, Sangli, India ,Department of Radiology, Akshay CT and Sai MRI Scans, Sangli, Kolhapur India
| | - Kshitij Chaudhary
- grid.465035.1Department of Orthopaedics, Sir HN Reliance Foundation Hospital, Mumbai, India
| | - Vaibhav Bagaria
- grid.465035.1Department of Orthopaedics, Sir HN Reliance Foundation Hospital, Mumbai, India
| |
Collapse
|
18
|
Zhu X, Li H, Huang L, Zhang M, Fan W, Cui L. 3D printing promotes the development of drugs. Biomed Pharmacother 2020; 131:110644. [PMID: 32853908 DOI: 10.1016/j.biopha.2020.110644] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 12/12/2022] Open
Abstract
3D printing is an emerging field that can be found in medicine, electronics, aviation and other fields. 3D printing, with its personalized and highly customized characteristics, has great potential in the pharmaceutical industry. We were interested in how 3D printing can be used in drug fields. To find out 3D printing's application in drug fields, we collected the literature by combining the keywords "3D printing"/"additive manufacturing" and "drug"/"tablet". We found that 3D printing technology has the following applications in medicine: firstly, it can print pills on demand according to the individual condition of the patient, making the dosage more suitable for each patient's own physical condition; secondly, it can print tablets with specific shape and structure to control the release rate; thirdly, it can precisely control the distribution of cells, extracellular matrix and biomaterials to build organs or organ-on-a-chip for drug testing; finally, it could print loose porous pills to reduce swallowing difficulties, or be used to make transdermal microneedle patches to reduce pain of patients.
Collapse
Affiliation(s)
- Xiao Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang 524023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524023, China
| | - Hongjian Li
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Lianfang Huang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang 524023, China
| | - Ming Zhang
- Department of Physical Medicine and Rehabilitation, Zibo Central Hospital, Shandong University, Zibo 255000, China.
| | - Wenguo Fan
- Department of Anesthesiology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Liao Cui
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China.
| |
Collapse
|
19
|
O'Reilly M, Hoff M, Friedman SD, Jones JFX, Cross NM. Simulating Tissues with 3D-Printed and Castable Materials. J Digit Imaging 2020; 33:1280-1291. [PMID: 32556912 DOI: 10.1007/s10278-020-00358-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Manufacturing technologies continue to be developed and utilized in medical prototyping, simulations, and imaging phantom production. For radiologic image-guided simulation and instruction, models should ideally have similar imaging characteristics and physical properties to the tissues they replicate. Due to the proliferation of different printing technologies and materials, there is a diverse and broad range of approaches and materials to consider before embarking on a project. Although many printed materials' biomechanical parameters have been reported, no manufacturer includes medical imaging properties that are essential for realistic phantom production. We hypothesize that there are now ample materials available to create high-fidelity imaging anthropomorphic phantoms using 3D printing and casting of common commercially available materials. A material database of radiological, physical, manufacturing, and economic properties for 29 castable and 68 printable materials was generated from samples fabricated by the authors or obtained from the manufacturer and scanned with CT at multiple tube voltages. This is the largest study assessing multiple different parameters associated with 3D printing to date. These data are being made freely available on GitHub, thus affording medical simulation experts access to a database of relevant imaging characteristics of common printable and castable materials. Full data available at: https://github.com/nmcross/Material-Imaging-Characteristics .
Collapse
Affiliation(s)
| | - Michael Hoff
- University of Washington, 1959 NE Pacific St., Seattle, WA, USA
| | - Seth D Friedman
- Seattle Children's Hospital, 4800 Sand Point Way NE, Seattle, WA, USA
| | - James F X Jones
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Nathan M Cross
- University of Washington, 1959 NE Pacific St., Seattle, WA, USA.
| |
Collapse
|
20
|
Li H, Fan W, Zhu X. Three‐dimensional printing: The potential technology widely used in medical fields. J Biomed Mater Res A 2020; 108:2217-2229. [DOI: 10.1002/jbm.a.36979] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/30/2020] [Accepted: 04/04/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Hongjian Li
- Southern Marine Science and Engineering Guangdong Laboratory ZhanjiangMarine Medical Research Institute of Guangdong Zhanjiang (GDZJMMRI), Guangdong Medical University Zhanjiang China
| | - Wenguo Fan
- Department of Anesthesiology, Guanghua School of StomatologyHospital of Stomatology, Sun Yat‐sen University Guangzhou China
| | - Xiao Zhu
- Southern Marine Science and Engineering Guangdong Laboratory ZhanjiangMarine Medical Research Institute of Guangdong Zhanjiang (GDZJMMRI), Guangdong Medical University Zhanjiang China
| |
Collapse
|