1
|
Isaksson LJ, Mastroleo F, Vincini MG, Marvaso G, Zaffaroni M, Gola M, Mazzola GC, Bergamaschi L, Gaito S, Alongi F, Doyen J, Fossati P, Haustermans K, Høyer M, Langendijk JA, Matute R, Orlandi E, Schwarz M, Troost EGC, Vondracek V, La Torre D, Curigliano G, Petralia G, Orecchia R, Alterio D, Jereczek-Fossa BA. The emerging role of Artificial Intelligence in proton therapy: A review. Crit Rev Oncol Hematol 2024; 204:104485. [PMID: 39233128 DOI: 10.1016/j.critrevonc.2024.104485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/25/2024] [Indexed: 09/06/2024] Open
Abstract
Artificial intelligence (AI) has made a tremendous impact in the space of healthcare, and proton therapy is not an exception. Proton therapy has witnessed growing popularity in oncology over recent decades, and researchers are increasingly looking to develop AI and machine learning tools to aid in various steps of the treatment planning and delivery processes. This review delves into the emergent role of AI in proton therapy, evaluating its development, advantages, intended clinical contexts, and areas of application. Through the analysis of 76 studies, we aim to underscore the importance of AI applications in advancing proton therapy and to highlight their prospective influence on clinical practices.
Collapse
Affiliation(s)
- Lars Johannes Isaksson
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan 20141, Italy
| | - Federico Mastroleo
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan 20141, Italy
| | - Maria Giulia Vincini
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy.
| | - Giulia Marvaso
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan 20141, Italy.
| | - Mattia Zaffaroni
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Michał Gola
- Department of Human Histology and Embryology, Collegium Medicum, School of Medicine, University of Warmia and Mazury, Olsztyn 10-082, Poland
| | - Giovanni Carlo Mazzola
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Luca Bergamaschi
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Simona Gaito
- Proton Clinical Outcomes Unit, The Christie NHS Proton Beam Therapy Centre, Manchester M20 4BX, UK; Division of Clinical Cancer Science, School of Medical Sciences, The University of Manchester Manchester M13 9PL, UK
| | - Filippo Alongi
- Department of Advanced Radiation Oncology, IRCCS Sacro Cuore Don Calabria, 37024 Negrar-Verona, Italy & DSMC, University of Brescia, Brescia, Italy
| | - Jerome Doyen
- Centre Antoine-Lacassagne, University of Côte d'Azur, Nice 06189, France; University Côte d'Azur, CNRS UMR 7284, INSERM U1081, Centre Antoine Lacassagne, Institute for Research on Cancer and Aging of Nice (IRCAN), 06189 Nice, France, Centre Antoine Lacassagne, Nice 06189, France
| | - Piero Fossati
- EBG MedAustron GmbH, Marie-Curie-Str. 5, Wiener Neustadt 2700, Austria; Department of General and Translational Oncology and Hematology, Karl Landsteiner University of Health Sciences, Krems an der Donau, 3500, Austria
| | - Karin Haustermans
- Department of Radiation Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Morten Høyer
- Aarhus University (AU), Nordre Ringgade 1, Aarhus C 8000, Denmark
| | - Johannes Albertus Langendijk
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Raùl Matute
- Centro de Protonterapia Quironsalud, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Ester Orlandi
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy; Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Marco Schwarz
- Radiation Oncology Department, University of Washington, Seattle, WA 98109, USA
| | - Esther G C Troost
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01309, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden 01307, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01309, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden 01328, Germany
| | - Vladimir Vondracek
- Proton Therapy Centre Czech, Prague, Czech Republic and Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University Prague, Kladno, Czech Republic
| | - Davide La Torre
- Department of Oncology and Hemato-Oncology, University of Milan, Milan 20141, Italy; SKEMA Business School, Université Côte d'Azur, Sophia Antipolis, France
| | - Giuseppe Curigliano
- Department of Oncology and Hemato-Oncology, University of Milan, Milan 20141, Italy; Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Milan 20141, Italy
| | - Giuseppe Petralia
- Department of Oncology and Hemato-Oncology, University of Milan, Milan 20141, Italy; Division of Radiology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Roberto Orecchia
- Scientific Directorate, IEO European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Daniela Alterio
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan 20141, Italy
| |
Collapse
|
2
|
Gao Y, Xie H, Chang CW, Peng J, Pan S, Qiu RL, Wang T, Ghavidel B, Roper J, Zhou J, Yang X. CT-based synthetic iodine map generation using conditional denoising diffusion probabilistic model. Med Phys 2024; 51:6246-6258. [PMID: 38889368 PMCID: PMC11489029 DOI: 10.1002/mp.17258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/17/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Iodine maps, derived from image-processing of contrast-enhanced dual-energy computed tomography (DECT) scans, highlight the differences in tissue iodine intake. It finds multiple applications in radiology, including vascular imaging, pulmonary evaluation, kidney assessment, and cancer diagnosis. In radiation oncology, it can contribute to designing more accurate and personalized treatment plans. However, DECT scanners are not commonly available in radiation therapy centers. Additionally, the use of iodine contrast agents is not suitable for all patients, especially those allergic to iodine agents, posing further limitations to the accessibility of this technology. PURPOSE The purpose of this work is to generate synthetic iodine map images from non-contrast single-energy CT (SECT) images using conditional denoising diffusion probabilistic model (DDPM). METHODS One-hundered twenty-six head-and-neck patients' images were retrospectively investigated in this work. Each patient underwent non-contrast SECT and contrast DECT scans. Ground truth iodine maps were generated from contrast DECT scans using commercial software syngo.via installed in the clinic. A conditional DDPM was implemented in this work to synthesize iodine maps. Three-fold cross-validation was conducted, with each iteration selecting the data from 42 patients as the test dataset and the remainder as the training dataset. Pixel-to-pixel generative adversarial network (GAN) and CycleGAN served as reference methods for evaluating the proposed DDPM method. RESULTS The accuracy of the proposed DDPM was evaluated using three quantitative metrics: mean absolute error (MAE) (1.039 ± 0.345 mg/mL), structural similarity index measure (SSIM) (0.89 ± 0.10) and peak signal-to-noise ratio (PSNR) (25.4 ± 3.5 db) respectively. Compared to the reference methods, the proposed technique showcased superior performance across the evaluated metrics, further validated by the paired two-tailed t-tests. CONCLUSION The proposed conditional DDPM framework has demonstrated the feasibility of generating synthetic iodine map images from non-contrast SECT images. This method presents a potential clinical application, which is providing accurate iodine contrast map in instances where only non-contrast SECT is accessible.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Huiqiao Xie
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Chih-Wei Chang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Junbo Peng
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Shaoyan Pan
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Richard L.J. Qiu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Tonghe Wang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Beth Ghavidel
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Justin Roper
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| |
Collapse
|
3
|
Gao Y, Qiu RLJ, Xie H, Chang CW, Wang T, Ghavidel B, Roper J, Zhou J, Yang X. CT-based synthetic contrast-enhanced dual-energy CT generation using conditional denoising diffusion probabilistic model. Phys Med Biol 2024; 69:165015. [PMID: 39053511 PMCID: PMC11294926 DOI: 10.1088/1361-6560/ad67a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/26/2024] [Accepted: 07/25/2024] [Indexed: 07/27/2024]
Abstract
Objective.The study aimed to generate synthetic contrast-enhanced Dual-energy CT (CE-DECT) images from non-contrast single-energy CT (SECT) scans, addressing the limitations posed by the scarcity of DECT scanners and the health risks associated with iodinated contrast agents, particularly for high-risk patients.Approach.A conditional denoising diffusion probabilistic model (C-DDPM) was utilized to create synthetic images. Imaging data were collected from 130 head-and-neck (HN) cancer patients who had undergone both non-contrast SECT and CE-DECT scans.Main Results.The performance of the C-DDPM was evaluated using Mean Absolute Error (MAE), Structural Similarity Index (SSIM), and Peak Signal-to-Noise Ratio (PSNR). The results showed MAE values of 27.37±3.35 Hounsfield Units (HU) for high-energy CT (H-CT) and 24.57±3.35HU for low-energy CT (L-CT), SSIM values of 0.74±0.22 for H-CT and 0.78±0.22 for L-CT, and PSNR values of 18.51±4.55 decibels (dB) for H-CT and 18.91±4.55 dB for L-CT.Significance.The study demonstrates the efficacy of the deep learning model in producing high-quality synthetic CE-DECT images, which significantly benefits radiation therapy planning. This approach provides a valuable alternative imaging solution for facilities lacking DECT scanners and for patients who are unsuitable for iodine contrast imaging, thereby enhancing the reach and effectiveness of advanced imaging in cancer treatment planning.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Richard L J Qiu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Huiqiao Xie
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Chih-Wei Chang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Tonghe Wang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Beth Ghavidel
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Justin Roper
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| |
Collapse
|
4
|
Gao Y, Chang CW, Mandava S, Marants R, Scholey JE, Goette M, Lei Y, Mao H, Bradley JD, Liu T, Zhou J, Sudhyadhom A, Yang X. MRI-only based material mass density and relative stopping power estimation via deep learning for proton therapy: a preliminary study. Sci Rep 2024; 14:11166. [PMID: 38750148 PMCID: PMC11096170 DOI: 10.1038/s41598-024-61869-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
Magnetic Resonance Imaging (MRI) is increasingly being used in treatment planning due to its superior soft tissue contrast, which is useful for tumor and soft tissue delineation compared to computed tomography (CT). However, MRI cannot directly provide mass density or relative stopping power (RSP) maps, which are required for calculating proton radiotherapy doses. Therefore, the integration of artificial intelligence (AI) into MRI-based treatment planning to estimate mass density and RSP directly from MRI has generated significant interest. A deep learning (DL) based framework was developed to establish a voxel-wise correlation between MR images and mass density as well as RSP. To facilitate the study, five tissue substitute phantoms were created, representing different tissues such as skin, muscle, adipose tissue, 45% hydroxyapatite (HA), and spongiosa bone. The composition of these phantoms was based on information from ICRP reports. Additionally, two animal tissue phantoms, simulating pig brain and liver, were prepared for DL training purposes. The phantom study involved the development of two DL models. The first model utilized clinical T1 and T2 MRI scans as input, while the second model incorporated zero echo time (ZTE) MRI scans. In the patient application study, two more DL models were trained: one using T1 and T2 MRI scans as input, and another model incorporating synthetic dual-energy computed tomography (sDECT) images to provide accurate bone tissue information. The DECT empirical model was used as a reference to evaluate the proposed models in both phantom and patient application studies. The DECT empirical model was selected as the reference for evaluating the proposed models in both phantom and patient application studies. In the phantom study, the DL model based on T1, and T2 MRI scans demonstrated higher accuracy in estimating mass density and RSP for skin, muscle, adipose tissue, brain, and liver. The mean absolute percentage errors (MAPE) were 0.42%, 0.14%, 0.19%, 0.78%, and 0.26% for mass density, and 0.30%, 0.11%, 0.16%, 0.61%, and 0.23% for RSP, respectively. The DL model incorporating ZTE MRI further improved the accuracy of mass density and RSP estimation for 45% HA and spongiosa bone, with MAPE values of 0.23% and 0.09% for mass density, and 0.19% and 0.07% for RSP, respectively. These results demonstrate the feasibility of using an MRI-only approach combined with DL methods for mass density and RSP estimation in proton therapy treatment planning. By employing this approach, it is possible to obtain the necessary information for proton radiotherapy directly from MRI scans, eliminating the need for additional imaging modalities.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30308, USA
| | - Chih-Wei Chang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30308, USA
| | | | - Raanan Marants
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Jessica E Scholey
- Department of Radiation Oncology, The University of California, San Francisco, CA, 94143, USA
| | - Matthew Goette
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30308, USA
| | - Yang Lei
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30308, USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jeffrey D Bradley
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30308, USA
| | - Tian Liu
- Radiation Oncology, Mount Sinai Medical Center, New York, NY, USA
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30308, USA
| | - Atchar Sudhyadhom
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA.
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30308, USA.
| |
Collapse
|
5
|
Gao Y, Chang CW, Pan S, Peng J, Ma C, Patel P, Roper J, Zhou J, Yang X. Deep learning-based synthetic dose-weighted LET map generation for intensity modulated proton therapy. Phys Med Biol 2024; 69:025004. [PMID: 38091613 PMCID: PMC10767225 DOI: 10.1088/1361-6560/ad154b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024]
Abstract
The advantage of proton therapy as compared to photon therapy stems from the Bragg peak effect, which allows protons to deposit most of their energy directly at the tumor while sparing healthy tissue. However, even with such benefits, proton therapy does present certain challenges. The biological effectiveness differences between protons and photons are not fully incorporated into clinical treatment planning processes. In current clinical practice, the relative biological effectiveness (RBE) between protons and photons is set as constant 1.1. Numerous studies have suggested that the RBE of protons can exhibit significant variability. Given these findings, there is a substantial interest in refining proton therapy treatment planning to better account for the variable RBE. Dose-average linear energy transfer (LETd) is a key physical parameter for evaluating the RBE of proton therapy and aids in optimizing proton treatment plans. Calculating precise LETddistributions necessitates the use of intricate physical models and the execution of specialized Monte-Carlo simulation software, which is a computationally intensive and time-consuming progress. In response to these challenges, we propose a deep learning based framework designed to predict the LETddistribution map using the dose distribution map. This approach aims to simplify the process and increase the speed of LETdmap generation in clinical settings. The proposed CycleGAN model has demonstrated superior performance over other GAN-based models. The mean absolute error (MAE), peak signal-to-noise ratio and normalized cross correlation of the LETdmaps generated by the proposed method are 0.096 ± 0.019 keVμm-1, 24.203 ± 2.683 dB, and 0.997 ± 0.002, respectively. The MAE of the proposed method in the clinical target volume, bladder, and rectum are 0.193 ± 0.103, 0.277 ± 0.112, and 0.211 ± 0.086 keVμm-1, respectively. The proposed framework has demonstrated the feasibility of generating synthetic LETdmaps from dose maps and has the potential to improve proton therapy planning by providing accurate LETdinformation.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Chih-Wei Chang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Shaoyan Pan
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
- Department of Biomedical Informatics, Emory University, Atlanta, GA, United States of America
| | - Junbo Peng
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Chaoqiong Ma
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Pretesh Patel
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Justin Roper
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
- Department of Biomedical Informatics, Emory University, Atlanta, GA, United States of America
- Department of Nuclear & Radiological Engineering and Medical Physics, Georgia Institute of Technology, Atlanta, GA, United States of America
| |
Collapse
|
6
|
Boldrini L, D'Aviero A, De Felice F, Desideri I, Grassi R, Greco C, Iorio GC, Nardone V, Piras A, Salvestrini V. Artificial intelligence applied to image-guided radiation therapy (IGRT): a systematic review by the Young Group of the Italian Association of Radiotherapy and Clinical Oncology (yAIRO). LA RADIOLOGIA MEDICA 2024; 129:133-151. [PMID: 37740838 DOI: 10.1007/s11547-023-01708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/16/2023] [Indexed: 09/25/2023]
Abstract
INTRODUCTION The advent of image-guided radiation therapy (IGRT) has recently changed the workflow of radiation treatments by ensuring highly collimated treatments. Artificial intelligence (AI) and radiomics are tools that have shown promising results for diagnosis, treatment optimization and outcome prediction. This review aims to assess the impact of AI and radiomics on modern IGRT modalities in RT. METHODS A PubMed/MEDLINE and Embase systematic review was conducted to investigate the impact of radiomics and AI to modern IGRT modalities. The search strategy was "Radiomics" AND "Cone Beam Computed Tomography"; "Radiomics" AND "Magnetic Resonance guided Radiotherapy"; "Radiomics" AND "on board Magnetic Resonance Radiotherapy"; "Artificial Intelligence" AND "Cone Beam Computed Tomography"; "Artificial Intelligence" AND "Magnetic Resonance guided Radiotherapy"; "Artificial Intelligence" AND "on board Magnetic Resonance Radiotherapy" and only original articles up to 01.11.2022 were considered. RESULTS A total of 402 studies were obtained using the previously mentioned search strategy on PubMed and Embase. The analysis was performed on a total of 84 papers obtained following the complete selection process. Radiomics application to IGRT was analyzed in 23 papers, while a total 61 papers were focused on the impact of AI on IGRT techniques. DISCUSSION AI and radiomics seem to significantly impact IGRT in all the phases of RT workflow, even if the evidence in the literature is based on retrospective data. Further studies are needed to confirm these tools' potential and provide a stronger correlation with clinical outcomes and gold-standard treatment strategies.
Collapse
Affiliation(s)
- Luca Boldrini
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario IRCCS "A. Gemelli", Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea D'Aviero
- Radiation Oncology, Mater Olbia Hospital, Olbia, Sassari, Italy
| | - Francesca De Felice
- Radiation Oncology, Department of Radiological, Policlinico Umberto I, Rome, Italy
- Oncological and Pathological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Isacco Desideri
- Radiation Oncology Unit, Azienda Ospedaliero-Universitaria Careggi, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Roberta Grassi
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Carlo Greco
- Department of Radiation Oncology, Università Campus Bio-Medico di Roma, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | | | - Valerio Nardone
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Antonio Piras
- UO Radioterapia Oncologica, Villa Santa Teresa, Bagheria, Palermo, Italy.
| | - Viola Salvestrini
- Radiation Oncology Unit, Azienda Ospedaliero-Universitaria Careggi, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
- Cyberknife Center, Istituto Fiorentino di Cura e Assistenza (IFCA), 50139, Florence, Italy
| |
Collapse
|
7
|
Tsai P, Tseng YL, Shen B, Ackerman C, Zhai HA, Yu F, Simone CB, Choi JI, Lee NY, Kabarriti R, Lazarev S, Johnson CL, Liu J, Chen CC, Lin H. The Applications and Pitfalls of Cone-Beam Computed Tomography-Based Synthetic Computed Tomography for Adaptive Evaluation in Pencil-Beam Scanning Proton Therapy. Cancers (Basel) 2023; 15:5101. [PMID: 37894469 PMCID: PMC10605451 DOI: 10.3390/cancers15205101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
PURPOSE The study evaluates the efficacy of cone-beam computed tomography (CBCT)-based synthetic CTs (sCT) as a potential alternative to verification CT (vCT) for enhanced treatment monitoring and early adaptation in proton therapy. METHODS Seven common treatment sites were studied. Two sets of sCT per case were generated: direct-deformed (DD) sCT and image-correction (IC) sCT. The image qualities and dosimetric impact of the sCT were compared to the same-day vCT. RESULTS The sCT agreed with vCT in regions of homogeneous tissues such as the brain and breast; however, notable discrepancies were observed in the thorax and abdomen. The sCT outliers existed for DD sCT when there was an anatomy change and for IC sCT in low-density regions. The target coverage exhibited less than a 5% variance in most DD and IC sCT cases when compared to vCT. The Dmax of serial organ-at-risk (OAR) in sCT plans shows greater deviation from vCT than small-volume dose metrics (D0.1cc). The parallel OAR volumetric and mean doses remained consistent, with average deviations below 1.5%. CONCLUSION The use of sCT enables precise treatment and prompt early adaptation for proton therapy. The quality assurance of sCT is mandatory in the early stage of clinical implementation.
Collapse
Affiliation(s)
- Pingfang Tsai
- New York Proton Center, New York, NY 10035, USA; (P.T.); (B.S.); (H.A.Z.); (F.Y.); (C.B.S.II); (J.I.C.); (C.L.J.); (J.L.); (C.-C.C.)
| | - Yu-Lun Tseng
- Proton Center, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Radiation Oncology, Taipei Medical University, Taipei 11031, Taiwan
| | - Brian Shen
- New York Proton Center, New York, NY 10035, USA; (P.T.); (B.S.); (H.A.Z.); (F.Y.); (C.B.S.II); (J.I.C.); (C.L.J.); (J.L.); (C.-C.C.)
| | | | - Huifang A. Zhai
- New York Proton Center, New York, NY 10035, USA; (P.T.); (B.S.); (H.A.Z.); (F.Y.); (C.B.S.II); (J.I.C.); (C.L.J.); (J.L.); (C.-C.C.)
| | - Francis Yu
- New York Proton Center, New York, NY 10035, USA; (P.T.); (B.S.); (H.A.Z.); (F.Y.); (C.B.S.II); (J.I.C.); (C.L.J.); (J.L.); (C.-C.C.)
| | - Charles B. Simone
- New York Proton Center, New York, NY 10035, USA; (P.T.); (B.S.); (H.A.Z.); (F.Y.); (C.B.S.II); (J.I.C.); (C.L.J.); (J.L.); (C.-C.C.)
| | - J. Isabelle Choi
- New York Proton Center, New York, NY 10035, USA; (P.T.); (B.S.); (H.A.Z.); (F.Y.); (C.B.S.II); (J.I.C.); (C.L.J.); (J.L.); (C.-C.C.)
| | - Nancy Y. Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Rafi Kabarriti
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY 10467, USA;
| | - Stanislav Lazarev
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Casey L. Johnson
- New York Proton Center, New York, NY 10035, USA; (P.T.); (B.S.); (H.A.Z.); (F.Y.); (C.B.S.II); (J.I.C.); (C.L.J.); (J.L.); (C.-C.C.)
| | - Jiayi Liu
- New York Proton Center, New York, NY 10035, USA; (P.T.); (B.S.); (H.A.Z.); (F.Y.); (C.B.S.II); (J.I.C.); (C.L.J.); (J.L.); (C.-C.C.)
| | - Chin-Cheng Chen
- New York Proton Center, New York, NY 10035, USA; (P.T.); (B.S.); (H.A.Z.); (F.Y.); (C.B.S.II); (J.I.C.); (C.L.J.); (J.L.); (C.-C.C.)
| | - Haibo Lin
- New York Proton Center, New York, NY 10035, USA; (P.T.); (B.S.); (H.A.Z.); (F.Y.); (C.B.S.II); (J.I.C.); (C.L.J.); (J.L.); (C.-C.C.)
| |
Collapse
|
8
|
Li C, Zhou L, Deng J, Wu H, Wang R, Wang F, Yao K, Chen C, Niu T, Zhang Y. A generalizable new figure of merit for dose optimization in dual energy cone beam CT scanning protocols. Phys Med Biol 2023; 68:185021. [PMID: 37619587 DOI: 10.1088/1361-6560/acf3cd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/24/2023] [Indexed: 08/26/2023]
Abstract
Objective. This study proposes and evaluates a new figure of merit (FOMn) for dose optimization of Dual-energy cone-beam CT (DE-CBCT) scanning protocols based on size-dependent modeling of radiation dose and multi-scale image quality.Approach. FOMn was defined using Z-score normalization and was proportional to the dose efficiency providing better multi-scale image quality, including comprehensive contrast-to-noise ratio (CCNR) and electron density (CED) for CatPhan604 inserts of various materials. Acrylic annuluses were combined with CatPhan604 to create four phantom sizes (diameters of the long axis are 200 mm, 270 mm, 350 mm, and 380 mm, respectively). DE-CBCT was decomposed using image-domain iterative methods based on Varian kV-CBCT images acquired using 25 protocols (100 kVp and 140 kVp combined with 5 tube currents).Main results. The accuracy of CED was approximately 1% for all protocols, but degraded monotonically with the increased phantom sizes. Combinations of lower voltage + higher current and higher voltage + lower current were optimal protocols balancing CCNR and dose. The most dose-efficient protocols for CED and CCNR were inconsistent, underlining the necessity of including multi-scale image quality in the evaluation and optimization of DE-CBCT. Pediatric and adult anthropomorphic phantom tests confirmed dose-efficiency of FOMn-recommended protocols.Significance. FOMn is a comprehensive metric that collectively evaluates radiation dose and multi-scale image quality for DE-CBCT. The models and data can also serve as lookup tables, suggesting personalized dose-efficient protocols for specific clinical imaging purposes.
Collapse
Affiliation(s)
- Chenguang Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, People's Republic of China
- Department of Physics and Astronomy, University of British Columbia, 325-6224 Agricultural Road, Vancouver, BC V6T1Z1, Canada
| | - Li Zhou
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, People's Republic of China
| | - Jun Deng
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510, United States of America
| | - Hao Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, People's Republic of China
| | - Ruoxi Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, People's Republic of China
| | - Fei Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, People's Republic of China
| | - Kaining Yao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, People's Republic of China
| | - Chen Chen
- School of Electronics, Peking University, Beijing, 100871, People's Republic of China
| | - Tianye Niu
- Shenzhen Bay Laboratory, Shenzhen, 518118, People's Republic of China
| | - Yibao Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, People's Republic of China
| |
Collapse
|
9
|
Uh J, Wang C, Jordan JA, Pirlepesov F, Becksfort JB, Ates O, Krasin MJ, Hua CH. A hybrid method of correcting CBCT for proton range estimation with deep learning and deformable image registration. Phys Med Biol 2023; 68:10.1088/1361-6560/ace754. [PMID: 37442128 PMCID: PMC10846632 DOI: 10.1088/1361-6560/ace754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/13/2023] [Indexed: 07/15/2023]
Abstract
Objective. This study aimed to develop a novel method for generating synthetic CT (sCT) from cone-beam CT (CBCT) of the abdomen/pelvis with bowel gas pockets to facilitate estimation of proton ranges.Approach. CBCT, the same-day repeat CT, and the planning CT (pCT) of 81 pediatric patients were used for training (n= 60), validation (n= 6), and testing (n= 15) of the method. The proposed method hybridizes unsupervised deep learning (CycleGAN) and deformable image registration (DIR) of the pCT to CBCT. The CycleGAN and DIR are respectively applied to generate the geometry-weighted (high spatial-frequency) and intensity-weighted (low spatial-frequency) components of the sCT, thereby each process deals with only the component weighted toward its strength. The resultant sCT is further improved in bowel gas regions and other tissues by iteratively feeding back the sCT to adjust incorrect DIR and by increasing the contribution of the deformed pCT in regions of accurate DIR.Main results. The hybrid sCT was more accurate than deformed pCT and CycleGAN-only sCT as indicated by the smaller mean absolute error in CT numbers (28.7 ± 7.1 HU versus 38.8 ± 19.9 HU/53.2 ± 5.5 HU;P≤ 0.012) and higher Dice similarity of the internal gas regions (0.722 ± 0.088 versus 0.180 ± 0.098/0.659 ± 0.129;P≤ 0.002). Accordingly, the hybrid method resulted in more accurate proton range for the beams intersecting gas pockets (11 fields in 6 patients) than the individual methods (the 90th percentile error in 80% distal fall-off, 1.8 ± 0.6 mm versus 6.5 ± 7.8 mm/3.7 ± 1.5 mm;P≤ 0.013). The gamma passing rates also showed a significant dosimetric advantage by the hybrid method (99.7 ± 0.8% versus 98.4 ± 3.1%/98.3 ± 1.8%;P≤ 0.007).Significance. The hybrid method significantly improved the accuracy of sCT and showed promises in CBCT-based proton range verification and adaptive replanning of abdominal/pelvic proton therapy even when gas pockets are present in the beam path.
Collapse
Affiliation(s)
- Jinsoo Uh
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, United States of America
| | - Chuang Wang
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, United States of America
| | - Jacob A Jordan
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, United States of America
- College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Fakhriddin Pirlepesov
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, United States of America
| | - Jared B Becksfort
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, United States of America
| | - Ozgur Ates
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, United States of America
| | - Matthew J Krasin
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, United States of America
| | - Chia-Ho Hua
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, United States of America
| |
Collapse
|
10
|
Reiners K, Dagan R, Holtzman A, Bryant C, Andersson S, Nilsson R, Hong L, Johnson P, Zhang Y. CBCT-Based Dose Monitoring and Adaptive Planning Triggers in Head and Neck PBS Proton Therapy. Cancers (Basel) 2023; 15:3881. [PMID: 37568697 PMCID: PMC10417147 DOI: 10.3390/cancers15153881] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
PURPOSE To investigate the feasibility of using cone-beam computed tomography (CBCT)-derived synthetic CTs to monitor the daily dose and trigger a plan review for adaptive proton therapy (APT) in head and neck cancer (HNC) patients. METHODS For 84 HNC patients treated with proton pencil-beam scanning (PBS), same-day CBCT and verification CT (vfCT) pairs were retrospectively collected. The ground truth CT (gtCT) was created by deforming the vfCT to the same-day CBCT, and it was then used as a dosimetric baseline and for establishing plan review trigger recommendations. Two different synthetic CT algorithms were tested; the corrected CBCT (corrCBCT) was created using an iterative image correction method and the virtual CT (virtCT) was created by deforming the planning CT to the CBCT, followed by a low-density masking process. Clinical treatment plans were recalculated on the image sets for evaluation. RESULTS Plan review trigger criteria for adaptive therapy were established after closely reviewing the cohort data. Compared to the vfCT, the corrCBCT and virtCT reliably produced dosimetric data more similar to the gtCT. The average discrepancy in D99 for high-risk clinical target volumes (CTV) was 1.1%, 0.7%, and 0.4% and for standard-risk CTVs was 1.8%, 0.5%, and 0.5% for the vfCT, corrCBCT, and virtCT, respectively. CONCLUSION Streamlined APT has been achieved with the proposed plan review criteria and CBCT-based synthetic CT workflow.
Collapse
Affiliation(s)
- Keaton Reiners
- University of Florida Health Proton Therapy Institute, Jacksonville, FL 32206, USA; (K.R.); (R.D.); (C.B.); (P.J.)
- Medical Physics Graduate Program, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Roi Dagan
- University of Florida Health Proton Therapy Institute, Jacksonville, FL 32206, USA; (K.R.); (R.D.); (C.B.); (P.J.)
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Adam Holtzman
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Curtis Bryant
- University of Florida Health Proton Therapy Institute, Jacksonville, FL 32206, USA; (K.R.); (R.D.); (C.B.); (P.J.)
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | - Rasmus Nilsson
- RaySearch Laboratories, SE-103 65 Stockholm, Sweden; (S.A.); (R.N.)
| | - Liu Hong
- Ion Beam Applications S.A., 1348 Louvain-la-Neuve, Belgium;
| | - Perry Johnson
- University of Florida Health Proton Therapy Institute, Jacksonville, FL 32206, USA; (K.R.); (R.D.); (C.B.); (P.J.)
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Yawei Zhang
- University of Florida Health Proton Therapy Institute, Jacksonville, FL 32206, USA; (K.R.); (R.D.); (C.B.); (P.J.)
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
11
|
Franzese C, Dei D, Lambri N, Teriaca MA, Badalamenti M, Crespi L, Tomatis S, Loiacono D, Mancosu P, Scorsetti M. Enhancing Radiotherapy Workflow for Head and Neck Cancer with Artificial Intelligence: A Systematic Review. J Pers Med 2023; 13:946. [PMID: 37373935 DOI: 10.3390/jpm13060946] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Head and neck cancer (HNC) is characterized by complex-shaped tumors and numerous organs at risk (OARs), inducing challenging radiotherapy (RT) planning, optimization, and delivery. In this review, we provided a thorough description of the applications of artificial intelligence (AI) tools in the HNC RT process. METHODS The PubMed database was queried, and a total of 168 articles (2016-2022) were screened by a group of experts in radiation oncology. The group selected 62 articles, which were subdivided into three categories, representing the whole RT workflow: (i) target and OAR contouring, (ii) planning, and (iii) delivery. RESULTS The majority of the selected studies focused on the OARs segmentation process. Overall, the performance of AI models was evaluated using standard metrics, while limited research was found on how the introduction of AI could impact clinical outcomes. Additionally, papers usually lacked information about the confidence level associated with the predictions made by the AI models. CONCLUSIONS AI represents a promising tool to automate the RT workflow for the complex field of HNC treatment. To ensure that the development of AI technologies in RT is effectively aligned with clinical needs, we suggest conducting future studies within interdisciplinary groups, including clinicians and computer scientists.
Collapse
Affiliation(s)
- Ciro Franzese
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Damiano Dei
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Nicola Lambri
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Maria Ausilia Teriaca
- IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Marco Badalamenti
- IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Leonardo Crespi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy
- Centre for Health Data Science, Human Technopole, 20157 Milan, Italy
| | - Stefano Tomatis
- IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Daniele Loiacono
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy
| | - Pietro Mancosu
- IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Marta Scorsetti
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, Rozzano, 20089 Milan, Italy
| |
Collapse
|
12
|
Yang P, Ge X, Tsui T, Liang X, Xie Y, Hu Z, Niu T. Four-Dimensional Cone Beam CT Imaging Using a Single Routine Scan via Deep Learning. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:1495-1508. [PMID: 37015393 DOI: 10.1109/tmi.2022.3231461] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A novel method is proposed to obtain four-dimensional (4D) cone-beam computed tomography (CBCT) images from a routine scan in patients with upper abdominal cancer. The projections are sorted according to the location of the lung diaphragm before being reconstructed to phase-sorted data. A multiscale-discriminator generative adversarial network (MSD-GAN) is proposed to alleviate the severe streaking artifacts in the original images. The MSD-GAN is trained using simulated CBCT datasets from patient planning CT images. The enhanced images are further used to estimate the deformable vector field (DVF) among breathing phases using a deformable image registration method. The estimated DVF is then applied in the motion-compensated ordered-subset simultaneous algebraic reconstruction approach to generate 4D CBCT images. The proposed MSD-GAN is compared with U-Net on the performance of image enhancement. Results show that the proposed method significantly outperforms the total variation regularization-based iterative reconstruction approach and the method using only MSD-GAN to enhance original phase-sorted images in simulation and patient studies on 4D reconstruction quality. The MSD-GAN also shows higher accuracy than the U-Net. The proposed method enables a practical way for 4D-CBCT imaging from a single routine scan in upper abdominal cancer treatment including liver and pancreatic tumors.
Collapse
|
13
|
Sheikh K, Liu D, Li H, Acharya S, Ladra MM, Hrinivich WT. Dosimetric evaluation of cone-beam CT-based synthetic CTs in pediatric patients undergoing intensity-modulated proton therapy. J Appl Clin Med Phys 2022; 23:e13604. [PMID: 35413144 PMCID: PMC9194971 DOI: 10.1002/acm2.13604] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/10/2022] [Accepted: 03/21/2022] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To evaluate dosimetric changes detected using synthetic computed tomography (sCT) derived from online cone-beam CTs (CBCT) in pediatric patients treated using intensity-modulated proton therapy (IMPT). METHODS Ten pediatric patients undergoing IMPT and aligned daily using proton gantry-mounted CBCT were identified for retrospective analysis with treated anatomical sites fully encompassed in the CBCT field of view. Dates were identified when the patient received both a CBCT and a quality assurance CT (qCT) for routine dosimetric evaluation. sCTs were generated based on a deformable registration between the initial plan CT (pCT) and CBCT. The clinical IMPT plans were re-computed on the same day qCT and sCT, and dosimetric changes due to tissue change or response from the initial plan were computed using each image. Linear regression analysis was performed to determine the correlation between dosimetric changes detected using the qCT and the sCT. Gamma analysis was also used to compare the dose distributions computed on the qCT and sCT. RESULTS The correlation coefficients (p-values) between qCTs and sCTs for changes detected in target coverage, overall maximum dose, and organ at risk dose were 0.97 (< .001), 0.84 (.002) and 0.91 (< .001), respectively. Mean ± SD gamma pass rates of the sCT-based dose compared to the qCT-based dose at 3%/3 mm, 3%/2 mm, and 2%/2 mm criteria were 96.5%±4.5%, 93.2%±6.3%, and 91.3%±7.8%, respectively. Pass rates tended to be lower for targets near lung. CONCLUSION While insufficient for re-planning, sCTs provide approximate dosimetry without administering additional imaging dose in pediatric patients undergoing IMPT. Dosimetric changes detected using sCTs are correlated with changes detected using clinically-standard qCTs; however, residual differences in dosimetry remain a limitation. Further improvements in sCT image quality may both improve online dosimetric evaluation and reduce imaging dose for pediatric patients by reducing the need for routine qCTs.
Collapse
Affiliation(s)
- Khadija Sheikh
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dezhi Liu
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Heng Li
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sahaja Acharya
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matthew M Ladra
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - William T Hrinivich
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Pakela JM, Knopf A, Dong L, Rucinski A, Zou W. Management of Motion and Anatomical Variations in Charged Particle Therapy: Past, Present, and Into the Future. Front Oncol 2022; 12:806153. [PMID: 35356213 PMCID: PMC8959592 DOI: 10.3389/fonc.2022.806153] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/04/2022] [Indexed: 12/14/2022] Open
Abstract
The major aim of radiation therapy is to provide curative or palliative treatment to cancerous malignancies while minimizing damage to healthy tissues. Charged particle radiotherapy utilizing carbon ions or protons is uniquely suited for this task due to its ability to achieve highly conformal dose distributions around the tumor volume. For these treatment modalities, uncertainties in the localization of patient anatomy due to inter- and intra-fractional motion present a heightened risk of undesired dose delivery. A diverse range of mitigation strategies have been developed and clinically implemented in various disease sites to monitor and correct for patient motion, but much work remains. This review provides an overview of current clinical practices for inter and intra-fractional motion management in charged particle therapy, including motion control, current imaging and motion tracking modalities, as well as treatment planning and delivery techniques. We also cover progress to date on emerging technologies including particle-based radiography imaging, novel treatment delivery methods such as tumor tracking and FLASH, and artificial intelligence and discuss their potential impact towards improving or increasing the challenge of motion mitigation in charged particle therapy.
Collapse
Affiliation(s)
- Julia M. Pakela
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| | - Antje Knopf
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department I of Internal Medicine, Center for Integrated Oncology Cologne, University Hospital of Cologne, Cologne, Germany
| | - Lei Dong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| | - Antoni Rucinski
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
15
|
Paganetti H, Botas P, Sharp GC, Winey B. Adaptive proton therapy. Phys Med Biol 2021; 66:10.1088/1361-6560/ac344f. [PMID: 34710858 PMCID: PMC8628198 DOI: 10.1088/1361-6560/ac344f] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/28/2021] [Indexed: 12/25/2022]
Abstract
Radiation therapy treatments are typically planned based on a single image set, assuming that the patient's anatomy and its position relative to the delivery system remains constant during the course of treatment. Similarly, the prescription dose assumes constant biological dose-response over the treatment course. However, variations can and do occur on multiple time scales. For treatment sites with significant intra-fractional motion, geometric changes happen over seconds or minutes, while biological considerations change over days or weeks. At an intermediate timescale, geometric changes occur between daily treatment fractions. Adaptive radiation therapy is applied to consider changes in patient anatomy during the course of fractionated treatment delivery. While traditionally adaptation has been done off-line with replanning based on new CT images, online treatment adaptation based on on-board imaging has gained momentum in recent years due to advanced imaging techniques combined with treatment delivery systems. Adaptation is particularly important in proton therapy where small changes in patient anatomy can lead to significant dose perturbations due to the dose conformality and finite range of proton beams. This review summarizes the current state-of-the-art of on-line adaptive proton therapy and identifies areas requiring further research.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pablo Botas
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Foundation 29 of February, Pozuelo de Alarcón, Madrid, Spain
| | - Gregory C Sharp
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brian Winey
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
16
|
Spadea MF, Maspero M, Zaffino P, Seco J. Deep learning based synthetic-CT generation in radiotherapy and PET: A review. Med Phys 2021; 48:6537-6566. [PMID: 34407209 DOI: 10.1002/mp.15150] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/06/2021] [Accepted: 07/13/2021] [Indexed: 01/22/2023] Open
Abstract
Recently,deep learning (DL)-based methods for the generation of synthetic computed tomography (sCT) have received significant research attention as an alternative to classical ones. We present here a systematic review of these methods by grouping them into three categories, according to their clinical applications: (i) to replace computed tomography in magnetic resonance (MR) based treatment planning, (ii) facilitate cone-beam computed tomography based image-guided adaptive radiotherapy, and (iii) derive attenuation maps for the correction of positron emission tomography. Appropriate database searching was performed on journal articles published between January 2014 and December 2020. The DL methods' key characteristics were extracted from each eligible study, and a comprehensive comparison among network architectures and metrics was reported. A detailed review of each category was given, highlighting essential contributions, identifying specific challenges, and summarizing the achievements. Lastly, the statistics of all the cited works from various aspects were analyzed, revealing the popularity and future trends and the potential of DL-based sCT generation. The current status of DL-based sCT generation was evaluated, assessing the clinical readiness of the presented methods.
Collapse
Affiliation(s)
- Maria Francesca Spadea
- Department Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, 88100, Italy
| | - Matteo Maspero
- Division of Imaging & Oncology, Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan, Utrecht, The Netherlands.,Computational Imaging Group for MR Diagnostics & Therapy, Center for Image Sciences, University Medical Center Utrecht, Heidelberglaan, Utrecht, The Netherlands
| | - Paolo Zaffino
- Department Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, 88100, Italy
| | - Joao Seco
- Division of Biomedical Physics in Radiation Oncology, DKFZ German Cancer Research Center, Heidelberg, Germany.,Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
17
|
A deep transfer learning approach for the detection and diagnosis of maxillary sinusitis on panoramic radiographs. Odontology 2021; 109:941-948. [PMID: 34023953 DOI: 10.1007/s10266-021-00615-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
To investigate the use of transfer learning when applying a deep learning source model from one institution (institution A) to another institution (institution B) for creating effective models (target models) for the detection of maxillary sinuses and diagnosis of maxillary sinusitis on panoramic radiographs. In addition, to determine appropriate numbers of training data for the transfer learning. Source model was created using 350 panoramic radiographs from institution A as training data. Transfer learning was performed by adding 25, 50, 100, 150, or 225 panoramic radiographs as training data from institution B to the source model; this yielded the target models T25, T50, T100, T150 and T225. Each model was then evaluated using test data that comprised 40 images from institution A, 30 images from institution B. The performance indices (recall, precision and F1 score) for detecting the maxillary sinuses by the source model exceeded 0.98 when using test data A from institution A, but they deteriorated when using test data B from institution B. In the evaluation of target models using test data B, model T25 showed improved detection performance (recall of 0.967). The diagnostic performance of model T50 for maxillary sinusitis exceeded 0.9 in sensitivity. Transfer learning, which involves applying a small amount of data to the source model, yielded high performances in detecting the maxillary sinuses and diagnosing the maxillary sinusitis on panoramic radiographs. This study serves as a reference when adapting source models to other institutions.
Collapse
|
18
|
Training a deep neural network coping with diversities in abdominal and pelvic images of children and young adults for CBCT-based adaptive proton therapy. Radiother Oncol 2021; 160:250-258. [PMID: 33992626 DOI: 10.1016/j.radonc.2021.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE To train a deep neural network for correcting abdominal and pelvic cone-beam computed tomography (CBCT) of children and young adults in the presence of diverse patient size, anatomic extent, and scan parameters. MATERIALS AND METHODS Pretreatment CBCT and planning/repeat CT image pairs from 64 children and young adults treated with proton therapy (aged 1-23 years) were analyzed. To evaluate the impact of anatomic extent in CBCT and data size in the training data, we compared the performance of three cycle-consistent generative adversarial network models that were separately trained by three datasets comprising abdominal (n = 21), pelvic (n = 29), and combined abdominal-pelvic image pairs (n = 50), respectively. The maximum body width of each patient was normalized to a fixed width before training and model application to reduce the impact of variations in body size. The corrected CBCT images by the three models were comparatively evaluated against the repeat CT closest in time to the CBCT (median gap, 0 days; range, 0-6 days) in HU accuracy, estimated dose distribution, and proton range. RESULTS The network model trained by the combined dataset significantly outperformed the abdomen and pelvis models in mean absolute HU error of the corrected CBCT from 14 testing patients (47 ± 7 HU versus 51 ± 8 HU; paired Wilcoxon signed-rank test, P < 0.01). The larger error (60 ± 7 HU) without the body-size normalization confirmed the efficacy of the preprocessing. The model trained with the combined dataset resulted in gamma passing rates of 98.5 ± 1.9% (2%/2 mm criterion) and the range (80% distal fall-off) differences from the reference within ±3 mm for 91.2 ± 11.5% beamlets. CONCLUSION Combining data from adjacent anatomic sites and normalizing age-dependent body sizes in children and young adults were beneficial in training a neural network to accurately estimate proton dose from CBCT despite limited training data size and anatomic diversities.
Collapse
|
19
|
Fu Y, Lei Y, Wang T, Curran WJ, Liu T, Yang X. A review of deep learning based methods for medical image multi-organ segmentation. Phys Med 2021; 85:107-122. [PMID: 33992856 PMCID: PMC8217246 DOI: 10.1016/j.ejmp.2021.05.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/12/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
Deep learning has revolutionized image processing and achieved the-state-of-art performance in many medical image segmentation tasks. Many deep learning-based methods have been published to segment different parts of the body for different medical applications. It is necessary to summarize the current state of development for deep learning in the field of medical image segmentation. In this paper, we aim to provide a comprehensive review with a focus on multi-organ image segmentation, which is crucial for radiotherapy where the tumor and organs-at-risk need to be contoured for treatment planning. We grouped the surveyed methods into two broad categories which are 'pixel-wise classification' and 'end-to-end segmentation'. Each category was divided into subgroups according to their network design. For each type, we listed the surveyed works, highlighted important contributions and identified specific challenges. Following the detailed review, we discussed the achievements, shortcomings and future potentials of each category. To enable direct comparison, we listed the performance of the surveyed works that used thoracic and head-and-neck benchmark datasets.
Collapse
Affiliation(s)
- Yabo Fu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Yang Lei
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Tonghe Wang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Walter J Curran
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
20
|
Wang T, Lei Y, Harms J, Ghavidel B, Lin L, Beitler JJ, McDonald M, Curran WJ, Liu T, Zhou J, Yang X. Learning-Based Stopping Power Mapping on Dual-Energy CT for Proton Radiation Therapy. Int J Part Ther 2021; 7:46-60. [PMID: 33604415 PMCID: PMC7886267 DOI: 10.14338/ijpt-d-20-00020.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 12/04/2020] [Indexed: 12/30/2022] Open
Abstract
Purpose Dual-energy computed tomography (DECT) has been used to derive relative stopping power (RSP) maps by obtaining the energy dependence of photon interactions. The DECT-derived RSP maps could potentially be compromised by image noise levels and the severity of artifacts when using physics-based mapping techniques. This work presents a noise-robust learning-based method to predict RSP maps from DECT for proton radiation therapy. Materials and Methods The proposed method uses a residual attention cycle-consistent generative adversarial network to bring DECT-to-RSP mapping close to a 1-to-1 mapping by introducing an inverse RSP-to-DECT mapping. To evaluate the proposed method, we retrospectively investigated 20 head-and-neck cancer patients with DECT scans in proton radiation therapy simulation. Ground truth RSP values were assigned by calculation based on chemical compositions and acted as learning targets in the training process for DECT datasets; they were evaluated against results from the proposed method using a leave-one-out cross-validation strategy. Results The predicted RSP maps showed an average normalized mean square error of 2.83% across the whole body volume and an average mean error less than 3% in all volumes of interest. With additional simulated noise added in DECT datasets, the proposed method still maintained a comparable performance, while the physics-based stoichiometric method suffered degraded inaccuracy from increased noise level. The average differences from ground truth in dose volume histogram metrics for clinical target volumes were less than 0.2 Gy for D95% and Dmax with no statistical significance. Maximum difference in dose volume histogram metrics of organs at risk was around 1 Gy on average. Conclusion These results strongly indicate the high accuracy of RSP maps predicted by our machine-learning–based method and show its potential feasibility for proton treatment planning and dose calculation.
Collapse
Affiliation(s)
- Tonghe Wang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Yang Lei
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Joseph Harms
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Beth Ghavidel
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Liyong Lin
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jonathan J Beitler
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Mark McDonald
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Walter J Curran
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|