1
|
Tiwari A, Andriotty M, Agasthya G, Sunderland JJ, Osborne DR, Kapadia AJ. Dosimetric and biological impact of activity extravasation of radiopharmaceuticals in PET imaging. Med Phys 2025; 52:801-813. [PMID: 39565933 DOI: 10.1002/mp.17520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 10/12/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND The increasing use of nuclear medicine and PET imaging has intensified scrutiny of radiotracer extravasation. To our knowledge, this topic is understudied but holds great potential for enhancing our understanding of extravasation in clinical PET imaging. PURPOSE This work aims to (1) quantify the absorbed doses from radiotracer extravasation in PET imaging, both locally at the site of extravasation and with the extravasation location as a source of exposure to bodily organs and (2) assess the biological ramifications within the injection site at the cellular level. METHODS A radiation dosimetry simulation was performed using a whole-body 4D Extended Cardiac-Torso (XCAT) phantom embedded in the GATE Monte Carlo platform. A 10-mCi dose of 18F-FDG was chosen to simulate a typical clinical PET scan scenario, with 10% of the activity extravasated in the antecubital fossa of the right arm of the phantom. The extravasation volume was modeled as a 5.5 mL rectangle in the hypodermal layer of skin. Absorbed dose contributions were calculated for the first two half-lives, assuming biological clearance thereafter. Dose calculations were performed as absorbed doses at the organ and skin levels. Energy deposition was simulated both at the local extravasation site and in multiple organs of interest and converted to absorbed doses based on their respective masses. Each simulation was repeated ten times to estimate Monte Carlo uncertainties. Biological impacts on cells within the extravasated volume were evaluated by randomizing cells and exposing them to a uniform radiation source of 18F and 68Ga. Particle types, their energies, and direction cosines were recorded in phase space files using a separate Geant4 simulation to characterize their entry into the nucleus of the cellular volume. Subsequently, the phase space files were imported into the TOPAS-nBio simulation to assess the extent of DNA damage, including double-strand breaks (DSBs) and single-strand breaks (SSBs). RESULTS Organ-level dosimetric estimations are presented for 18F and 68Ga radionuclides in various organs of interest. With 10% extravasation, the hypodermal layer of the skin received the highest absorbed dose of 1.32 ± 0.01 Gy for 18F and 0.99 ± 0.01 Gy for 68Ga. The epidermal and dermal layers received absorbed doses of 0.07 ± 0.01 Gy and 0.13 ± 0.01 Gy for 18F, and 0.14 ± 0.01 Gy and 0.29 ± 0.01 Gy for 68Ga, respectively. In the extravasated volume, 18F caused an average absorbed dose per nucleus of 0.17 ± 0.01 Gy, estimated to result in 10.58 ± 0.50 DSBs and 268.11 ± 12.43 SSBs per nucleus. For 68Ga, the absorbed dose per nucleus was 0.11 ± 0.01 Gy, leading to an estimated 6.49 ± 0.34 DSBs and 161.24 ± 8.12 SSBs per nucleus. Absorbed doses in other organs were on the order of micro-gray (µGy). CONCLUSION The likelihood of epidermal erythema resulting from extravasation during PET imaging is low, as the simulated absorbed doses to the epidermis remain below the thresholds that trigger such effects. Moreover, the organ-level absorbed doses were found to be clinically insignificant across various simulated organs. The minimal DNA damage at the extravasation site suggests that long-term harm, such as radiation-induced carcinogenesis, is highly unlikely.
Collapse
Affiliation(s)
- Ashok Tiwari
- Advanced Computing for Health Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Matthew Andriotty
- Department of Nuclear & Radiological Engineering & Medical Physics, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Greeshma Agasthya
- Department of Nuclear & Radiological Engineering & Medical Physics, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | - Dustin R Osborne
- Department of Radiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Anuj J Kapadia
- Advanced Computing for Health Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
2
|
Bertinetti A, Garcia T, Palmer B, Rodrigues M, Bradshaw T, Vija AH, Culberson W. Active and passive dosimetry for beta-emitting radiopharmaceutical therapy agents in a custom SPECT/CT compatible phantom. Phys Med Biol 2024; 69:115031. [PMID: 38684165 DOI: 10.1088/1361-6560/ad450c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
Objective. This work introduces a novel approach to performing active and passive dosimetry for beta-emitting radionuclides in solution using common dosimeters. The measurements are compared to absorbed dose to water (Dw) estimates from Monte Carlo (MC) simulations. We present a method for obtaining absorbed dose to water, measured with dosimeters, from beta-emitting radiopharmaceutical agents using a custom SPECT/CT compatible phantom for validation of Monte Carlo based absorbed dose to water estimates.Approach. A cylindrical, acrylic SPECT/CT compatible phantom capable of housing an IBA EFD diode, Exradin A20-375 parallel plate ion chamber, unlaminated EBT3 film, and thin TLD100 microcubes was constructed for the purpose of measuring absorbed dose to water from solutions of common beta-emitting radiopharmaceutical therapy agents. The phantom is equipped with removable detector inserts that allow for multiple configurations and is designed to be used for validation of image-based absorbed dose estimates with detector measurements. Two experiments with131I and one experiment with177Lu were conducted over extended measurement intervals with starting activities of approximately 150-350 MBq. Measurement data was compared to Monte Carlo simulations using the egs_chamber user code in EGSnrc 2019.Main results. Agreement withink= 1 uncertainty between measured and MC predictedDwwas observed for all dosimeters, except the A20-375 ion chamber during the second131I experiment. Despite the agreement, the measured values were generally lower than predicted values by 5%-15%. The uncertainties atk = 1 remain large (5%-30% depending on the dosimeter) relative to other forms of radiation therapy.Significance. Despite high uncertainties, the overall agreement between measured and simulated absorbed doses is promising for the use of dosimeter-based RPT measurements in the validation of MC predictedDw.
Collapse
Affiliation(s)
| | | | - Benjamin Palmer
- University of Wisconsin-Madison, WI, United States of America
| | | | - Tyler Bradshaw
- University of Wisconsin-Madison, WI, United States of America
| | - A Hans Vija
- Siemens Healthineers, United States of America
| | | |
Collapse
|
3
|
Morales-Nizama RA, Gallozzo-Cárdenas MM, Chinchay-Espino HA, Murga-Torres E, Alvarez-Escobedo AM, Nazario-Naveda R. Program for Determining the Dosimetric Contribution of Tc-99m Biokinetics in Estimating the Dose to the Heart of a Male Adult. J Med Phys 2024; 49:1-5. [PMID: 38828064 PMCID: PMC11141756 DOI: 10.4103/jmp.jmp_79_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/31/2024] [Accepted: 02/16/2024] [Indexed: 06/05/2024] Open
Abstract
Purpose To calculate the contribution of absorbed dose by organs in the biokinetics of Tc-99m when used for radiodiagnosis of the adult male heart employing a Matlab program. Methods The absorbed self-dose of the adult male heart and absorbed dose by organs in the biokinetics of the heart when administering Tc-99m are estimated using the MIRD formalism and the Cristy-Eckerman representation, which have been employed to develop the algorithm in Matlab. Results The results indicate that electron capture emissions of 1.446 (mGy/MBq) and Auger electrons of 0.062 (mGy/MBq) are entirely directed towards the target organ (heart) and contribute 29.33% and 1.25% respectively to its total dose. Additionally, the dosimetric contributions of biokinetic organs correspond to characteristic radiation emissions and gamma photons at 2.578 (mGy/MBq) for Tc-99m, representing 52.29% of its total dose. Conclusion These dosimetric contributions are significant in estimating the total absorbed dose by the heart in adult males and should not be disregarded.
Collapse
Affiliation(s)
| | | | | | - Emzon Murga-Torres
- Multidisciplinary Research Laboratory, Antenor Orrego Private University, Trujillo, Peru
| | | | | |
Collapse
|
4
|
Kaiyum R, Schruder CW, Mermut O, Rink A. Investigation of cyanine-based infrared dyes as calibrants in radiochromic films. Med Phys 2023; 50:8034-8043. [PMID: 37633840 DOI: 10.1002/mp.16674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/03/2023] [Accepted: 07/29/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND Radiochromic material such as lithium pentacosa-10,12-diynoate (LiPCDA) has been suggested as the radiation-sensitive material for real-time in vivo fiber-optic dosimetry. In this configuration, micron-thick radiochromic coating would measure the absorbed dose, where a major challenge is the uncertainty in the active material thickness, necessitating calibration. A homogeneously incorporated inert infrared (IR) dye, which must also be stable in ambient conditions and against radiolysis, can be added to the radiochromic film to enable optical calibration. PURPOSE This study investigates four commercial cyanine-based dyes (IR-783, IR-806, IR-868, and IR-880) for use as an optical calibrant in fiber-optic radiochromic dosimeters. METHODS All dyes were dissolved in water to confirm solubility. IR-783 and IR-806 were dissolved in 10% w/w gelatin solution and coated onto a polyester substrate, which were then sandwiched between two layers of adhesives forming IR-783 and IR-806 films. A second batch of IR dyes in gelatin incorporated the LiPCDA, and was coated onto substrate and sandwiched between adhesive to form IR dye + LiPCDA films. The absorbance spectra of the films were measured periodically (176 and 102 days for IR-dye films, and IR dye + LiPCDA, respectively). The average percentage absorbance, normalized to day 1, was fit to either a single or a double exponential decay model to calculate the spectral stability lifetime (τ1 , τ2 ). Films were irradiated using a 6 MV LINAC beam with a standard setup of 100 source to axis distance (SAD), 10 cm × 10 cm field size and 1.5 cm depth. The change in absorbance of the IR-dye + LiPCDA films were measured after they were irradiated to 1, 2, 5, 10, and 20 Gy at 3 Gy/min. RESULTS Only IR-783 and IR-806 were sufficiently water soluble. In gelatin matrix, these dyes demonstrated a decrease in absorbance with time for IR-783 and IR-806 dyes, with IR-783 films having an average τ1 = 73 ± 7 days and IR-806 films τ1 = 7 ± 3 days. When combined with LiPCDA, IR-806 degraded, losing its original peak at ∼820 nm. Similarly, IR-783, combined with LiPCDA, showed signs of degradation; however, its original absorbance peak was still observed at ∼800 nm. In the IR-783 + LiPCDA films, the IR-783 dye had a τ = 4 ± 1 days, an order of magnitude faster than the IR-783 with no LiPCDA films. When exposed to x-ray irradiation, the IR-783 dye in the IR-783 + LiPCDA films showed no change in absorbance with increasing absorbed dose. In contrast, the LiPCDA in the films responded as expected, increasing in optical density with increased absorbed dose. CONCLUSIONS IR-783 and IR-806 dyes were observed to degrade over time following exponential decay curves. IR-806 could not be combined with the LiPCDA without degrading. The combination of IR-783 with LiPCDA demonstrated single exponential decay behavior at a comparatively faster rate than films that did not have LiPCDA. IR-783 was insensitive to ionizing radiation and thus may be suitable for thickness correction, but an alternative manufacturing procedure may need to be developed.
Collapse
Affiliation(s)
- Rohith Kaiyum
- Department of Physics and Astronomy, York University, Toronto, Canada
- TECHNA Institute, University Health Network, Toronto, Canada
| | - Christopher W Schruder
- Department of Physics and Astronomy, York University, Toronto, Canada
- TECHNA Institute, University Health Network, Toronto, Canada
| | - Ozzy Mermut
- Department of Physics and Astronomy, York University, Toronto, Canada
| | - Alexandra Rink
- Department of Medical Physics, Princess Margaret Cancer Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
5
|
Van B, Dewaraja YK, Niedbala JT, Rosebush G, Kazmierski M, Hubers D, Mikell JK, Wilderman SJ. Experimental validation of Monte Carlo dosimetry for therapeutic beta emitters with radiochromic film in a 3D-printed phantom. Med Phys 2023; 50:540-556. [PMID: 35983857 PMCID: PMC10019496 DOI: 10.1002/mp.15926] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/21/2022] [Accepted: 07/31/2022] [Indexed: 01/25/2023] Open
Abstract
PURPOSE Validation of dosimetry software, such as Monte Carlo (MC) radiation transport codes used for patient-specific absorbed dose estimation, is critical prior to their use in clinical decision making. However, direct experimental validation in the clinic is generally not performed for low/medium-energy beta emitters used in radiopharmaceutical therapy (RPT) due to the challenges of measuring energy deposited by short-range particles. Our objective was to design a practical phantom geometry for radiochromic film (RF)-based absorbed dose measurements of beta-emitting radionuclides and perform experiments to directly validate our in-house developed Dose Planning Method (DPM) MC code dedicated to internal dosimetry. METHODS The experimental setup was designed for measuring absorbed dose from beta emitters that have a range sufficiently penetrating to ∼200 μm in water as well as to capture any photon contributions to absorbed dose. Assayed 177 Lu and 90 Y liquid sources, 13-450 MBq estimated to deliver 0.5-10 Gy to the sensitive layer of the RF, were injected into the cavity of two 3D-printed half-cylinders that had been sealed with 12.7 μm or 25.4 μm thick Kapton Tape. A 3.8 × 6 cm strip of GafChromic EBT3 RF was sandwiched between the two taped half-cylinders. After 2-48 h exposures, films were retrieved and wipe tested for contamination. Absorbed dose to the RF was measured using a commercial triple-channel dosimetry optimization method and a calibration generated via 6 MV photon beam. Profiles were analyzed across the central 1 cm2 area of the RF for validation. Eleven experiments were completed with 177 Lu and nine with 90 Y both in saline and a bone equivalent solution. Depth dose curves were generated for 177 Lu and 90 Y stacking multiple RF strips between a single filled half-cylinder and an acrylic backing. All experiments were modeled in DPM to generate voxelized MC absorbed dose estimates. We extended our study to benchmark general purpose MC codes MCNP6 and EGSnrc against the experimental results as well. RESULTS A total of 20 experiments showed that both the 3D-printed phantoms and the final absorbed dose values were reproducible. The agreement between the absorbed dose estimates from the RF measurements and DPM was on average -4.0% (range -10.9% to 3.2%) for all single film 177 Lu experiments and was on average -1.0% (range -2.7% to 0.7%) for all single film 90 Y experiments. Absorbed depth dose estimates by DPM agreed with RF on average 1.2% (range -8.0% to 15.2%) across all depths for 177 Lu and on average 4.0% (range -5.0% to 9.3%) across all depths for 90 Y. DPM absorbed dose estimates agreed with estimates from EGSnrc and MCNP across the board, within 4.7% and within 3.4% for 177 Lu and 90 Y respectively, for all geometries and across all depths. MC showed that absorbed dose to RF from betas was greater than 92% of the total (betas + other radiations) for 177 Lu, indicating measurement of dominant beta contribution with our design. CONCLUSIONS The reproducible results with a RF insert in a simple phantom designed for liquid sources demonstrate that this is a reliable setup for experimentally validating dosimetry algorithms used in therapies with beta-emitting unsealed sources. Absorbed doses estimated with the DPM MC code showed close agreement with RF measurement and with results from two general purpose MC codes, thereby validating the use of this algorithms for clinical RPT dosimetry.
Collapse
Affiliation(s)
- Benjamin Van
- Department of Radiology, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Yuni K Dewaraja
- Department of Radiology, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Jeremy T Niedbala
- Department of Radiology, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Gerrid Rosebush
- Department of Radiology, Michigan Medicine, Ann Arbor, Michigan, USA
| | | | - David Hubers
- Department of Radiology, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Justin K Mikell
- Department of Radiation Oncology, Michigan Medicine, Ann Arbor, Michigan, USA.,Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Scott J Wilderman
- Department of Nuclear Engineering and Radiologic Sciences, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
Tiwari A, Merrick M, Graves SA, Sunderland J. Monte Carlo evaluation of hypothetical long axial field-of-view PET scanner using GE discovery MI PET front-end architecture. Med Phys 2021; 49:1139-1152. [PMID: 34954831 DOI: 10.1002/mp.15422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/11/2022] Open
Abstract
PURPOSE The development of total-body PET scanners is of growing interest in the PET community. Investigation into the imaging properties of a hypothetical extended axial field-of-view (AFOV) GE Healthcare SiPM-based Discovery MI (DMI) system architecture has not yet been performed. In this work, we assessed its potential as a whole-body scanner using Monte Carlo simulations. The aim of this work was to (1) develop and validate a Monte Carlo model of a 4-ring scanner and (2) extend its AFOV up to 2 m to evaluate performance gain through NEMA-based evaluation. METHODS The DMI 4-ring geometry and its pulse digitization scheme were modeled within the GATE Monte Carlo platform using published literature. The GATE scanner model was validated by comparing results against published NEMA performance measurements. Following the validation of the 4-ring model, the model was extended to simulate 8, 20, 30, and 40-ring systems. Spatial resolution, sensitivity, NECR, and scatter fraction were characterized with modified NEMA NU-2 2018 standards; however, the image quality measurements were not acquired due to computational limitations. Spatial resolutions were simulated for all scanner ring configurations using point sources to examine the effects of parallax errors. NEMA count rates were estimated using a standard 70 cm scatter phantom and an extended version of scatter phantom of length 200 cm with (1-800) MBq of 18 F for all scanners. Sensitivity was evaluated using NEMA methods with a 70 cm standard and a 200 cm long line source. RESULTS The average FWHM of the radial/tangential/axial spatial resolution reconstructed with filtered back-projection at 1 and 10 cm from the scanner center were 3.94/4.10/4.41 mm and 5.29/4.89/5.90 mm for the 4-ring scanner. Sensitivity was determined to be 14.86 cps/kBq at the center of the FOV for the 4-ring scanner using a 70 cm line source. Sensitivity enhancement up to 21-fold and 60-fold were observed for 1 m and 2 m AFOV scanners compared to 4-ring scanner using a 200 cm long line source. Spatial resolution simulations in a 2 m AFOV scanner suggest a maximum degradation of ∼23.8% in the axial resolution compared to the 4-ring scanner. However, the transverse resolution was found to be relatively constant when increasing the axial acceptance angle up to ±70°. The peak NECR was 212.92 kcps at 22.70 kBq/mL with a scatter fraction of 38.9% for a 4-ring scanner with a 70 cm scatter phantom. Comparison of peak NECR using the 200 cm long scatter phantom relative to the 4-ring scanner resulted in a NECR gain of 15 for the 20-ring and 28 for the 40-ring geometry. Spatial resolution, sensitivity, and scatter fraction showed an agreement within ∼7% compared with published measured values. CONCLUSIONS The 4-ring DMI scanner simulation was successfully validated against published NEMA measurements. Sensitivity and NECR performance of extended 1 and 2 meters AFOV scanners based upon the DMI architecture were subsequently simulated. Increases in sensitivity and count-rate performance are consistent with prior simulation studies utilizing extensions of the Siemens mCT architecture and published NEMA measurements with the uEXPLORER system. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ashok Tiwari
- Department of Radiology, University of Iowa Hospitals and Clinics, 200 Hawkins Dr., Iowa City, IA, 52242, USA.,Department of Physics and Astronomy, University of Iowa, 203 Van Allen Hall, Iowa City, IA, 52242, USA
| | - Michael Merrick
- Department of Radiology, University of Iowa Hospitals and Clinics, 200 Hawkins Dr., Iowa City, IA, 52242, USA.,Department of Biomedical Engineering, University of Iowa, 5601 Seamans Center, Iowa City, IA, 52242, USA
| | - Stephen A Graves
- Department of Radiology, University of Iowa Hospitals and Clinics, 200 Hawkins Dr., Iowa City, IA, 52242, USA.,Department of Biomedical Engineering, University of Iowa, 5601 Seamans Center, Iowa City, IA, 52242, USA.,Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Dr., Iowa City, IA, 52242, USA
| | - John Sunderland
- Department of Radiology, University of Iowa Hospitals and Clinics, 200 Hawkins Dr., Iowa City, IA, 52242, USA.,Department of Physics and Astronomy, University of Iowa, 203 Van Allen Hall, Iowa City, IA, 52242, USA.,Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Dr., Iowa City, IA, 52242, USA
| |
Collapse
|
7
|
Barati S, Enferadi M, Sarkar S, Geramifar P. The effect of magnetic field strength on the positron range and projected annihilation artifact in integrated PET/MR systems: A GATE Monte Carlo study. Med Phys 2021; 48:7712-7724. [PMID: 34706098 DOI: 10.1002/mp.15313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 09/19/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE With improvements in positron emission tomography/magnetic resonance imaging (PET/MRI) over the last decade, there is a need to investigate the projected annihilation (shine-through) artifact and resolution impact for different PET radiopharmaceuticals, magnetic field (MF) strengths, and tissues. METHODS The GATE Monte Carlo (MC) simulation was used to simulate the annihilation distribution of positrons in different tissues and MFs. The positron distribution was studied in magnetic field (MF) intensities up to 15 T for 11 C, 13 N, 15 O, 18 F, 68 Ga, and 82 Rb. Moreover, the image quality in terms of the occurrence of projected annihilation artifacts was investigated using the 4D anthropomorphic digital extended cardiac-torso (XCAT) phantom. RESULTS Positron ranges were restricted across the directions perpendicular to the MF, but no change along the direction of the MF was detected. The projected annihilation artifacts were observed with the presence of MF in the sagittal and coronal view of PET images prepared from the XCAT phantom. The intensity of artifact was constant in MFs higher than 3 T. The significant effect of the MF on resolution improvement was observed in soft tissue for 68 Ga in 7 T and 82 Rb in 3 and 7 T, while higher MFs have no impact on resolution. The improvement of resolution in the lung tissue was observed for the medium- and high-energy radionuclides in 7 T MF. CONCLUSION The MF can create the projected annihilation artifact in the boundary of air cavities and other tissues for medium- and high-energy radionuclides especially for 68 Ga in clinical studies. In addition, the strength of the MFs more than 3 T was ineffective on the intensity of the projected annihilation artifact. In a clinical PET/MR scanner, MF has remarkable spatial resolution improvement in lung tissue, especially for medium- and high-energy radionuclides, and negligible effect in bone and soft tissue for most radionuclides.
Collapse
Affiliation(s)
- Sepideh Barati
- Department of Nuclear Medicine, Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Enferadi
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Saeed Sarkar
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Parham Geramifar
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|