1
|
Selva A, Bianchi A, Cirrone GAP, Petringa G, Romano F, Schettino G, Conte V. Sensitivity of a mini-TEPC to radiation quality variations in clinical proton beams. Phys Med 2024; 118:103201. [PMID: 38199179 DOI: 10.1016/j.ejmp.2023.103201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/30/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
PURPOSE This work aims at studying the sensitivity of a miniaturized Tissue-Equivalent Proportional Counter to variations of beam quality in clinical radiation fields, to further investigate its performances as radiation quality monitor. METHODS Measurements were taken at the CATANA facility (INFN-LNS, Catania, Italy), in a monoenergetic and an energy-modulated proton beam with the same initial energy of 62 MeV. PMMA layers were placed in front of the detector to measure at different depths along the depth-dose profile. The frequency- and dose-mean lineal energy were compared to the track- and dose-averaged LET calculated by Monte Carlo simulations. A microdosimetric evaluation of the Relative Biological Effectiveness (RBE) was performed and compared with cell survival experiments. RESULTS Microdosimetric distributions measured at identical depths in the two beams show spectral differences reflecting their different radiation quality. Discrepancies are most evident at depths corresponding to the Spread-Out Bragg Peak, while spectra at the entrance and in the dose fall-off regions are similar. This can be explained by the different energy components that compose the pristine and spread-out peaks at each depth. The trend of microdosimetric mean values matches that of calculated LET averages along the entire penetration depth, and the microdosimetric estimation of RBE is consistent with radiobiological data not only at 2 Gy but also at lower dose levels, such as those absorbed by healthy tissues. CONCLUSIONS The mini-TEPC is sensitive to differences in radiation quality resulting from different modulations of the proton beam, confirming its potential for beam quality monitoring in proton therapy.
Collapse
Affiliation(s)
- A Selva
- INFN Laboratori Nazionali di Legnaro, Legnaro, Italy.
| | - A Bianchi
- INFN Laboratori Nazionali di Legnaro, Legnaro, Italy
| | | | - G Petringa
- INFN Laboratori Nazionali del Sud, Catania, Italy
| | - F Romano
- INFN Sezione di Catania, Catania, Italy
| | - G Schettino
- National Physical Laboratory, Medical Radiation Science, Teddington, UK
| | - V Conte
- INFN Laboratori Nazionali di Legnaro, Legnaro, Italy
| |
Collapse
|
2
|
Verona C, Barna S, Georg D, Hamad Y, Magrin G, Marinelli M, Meouchi C, Verona Rinati G. Diamond based integrated detection system for dosimetric and microdosimetric characterization of radiotherapy ion beams. Med Phys 2024; 51:533-544. [PMID: 37656015 DOI: 10.1002/mp.16698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Ion beam therapy allows for a substantial sparing of normal tissues and higher biological efficacy. Synthetic single crystal diamond is a very good material to produce high-spatial-resolution and highly radiation hard detectors for both dosimetry and microdosimetry in ion beam therapy. PURPOSE The aim of this work is the design, fabrication and test of an integrated waterproof detector based on synthetic single crystal diamond able to simultaneously perform dosimetric and microdosimetric characterization of clinical ion beams. METHODS The active elements of the integrated diamond device, that is, dosimeter and microdosimeter, were both realized in a Schottky diode configuration featured by different area, thickness, and shape by means of photolithography technologies for the selective growth of intrinsic and boron-doped CVD diamond. The cross-section of the sensitive volume of the dosimetric element is 4 mm2 and 1 μm-thick, while the microdosimetric one has an active cross-sectional area of 100 × 100 μm2 and a thickness of about 6.2 μm. The dosimetric and microdosimetric performance of the developed device was assessed at different depths in a water phantom at the MedAustron ion beam therapy facility using a monoenergetic uniformly scanned carbon ion beam of 284.7 MeV/u and proton beam of 148.7 MeV. The particle flux in the region of the microdosimeter was 6·107 cm2 /s for both irradiation fields. At each depth, dose and dose distributions in lineal energy were measured simultaneously and the dose mean lineal energy values were then calculated. Monte Carlo simulations were also carried out by using the GATE-Geant4 code to evaluate the relative dose, dose averaged linear energy transfer (LETd ), and microdosimetric spectra at various depths in water for the radiation fields used, by considering the contribution from the secondary particles generated in the ion interaction processes as well. RESULTS Dosimetric and microdosimetric quantities were measured by the developed prototype with relatively low noise (∼2 keV/μm). A good agreement between the measured and simulated dose profiles was found, with discrepancies in the peak to plateau ratio of about 3% and 4% for proton and carbon ion beams respectively, showing a negligible LET dependence of the dosimetric element of the device. The microdosimetric spectra were validated with Monte Carlo simulations and a good agreement between the spectra shapes and positions was found. Dose mean lineal energy values were found to be in close agreement with those reported in the literature for clinical ion beams, showing a sharp increase along the Bragg curve, being also consistent with the calculated LETd for all depths within the experimental error of 10%. CONCLUSIONS The experimental indicate that the proposed device can allow enhanced dosimetry in particle therapy centers, where the absorbed dose measurement is implemented by the microdosimetric characterization of the radiation field, thus providing complementary results. In addition, the proposed device allows for the reduction of the experimental uncertainties associated with detector positioning and could facilitate the partial overcoming of some drawbacks related to the low sensitivity of diamond microdosimeters to low LET radiation.
Collapse
Affiliation(s)
- Claudio Verona
- Dipartimento di Ingegneria Industriale, Università di Roma "Tor Vergata", Sez. INFN-Roma2, Roma, Italia, Italy
| | - Sandra Barna
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Dietmar Georg
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Yasmin Hamad
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Giulio Magrin
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Marco Marinelli
- Dipartimento di Ingegneria Industriale, Università di Roma "Tor Vergata", Sez. INFN-Roma2, Roma, Italia, Italy
| | - Cynthia Meouchi
- Institute of Atomic and Subatomic Physics, Vienna University of Technology, Vienna, Austria
| | - Gianluca Verona Rinati
- Dipartimento di Ingegneria Industriale, Università di Roma "Tor Vergata", Sez. INFN-Roma2, Roma, Italia, Italy
| |
Collapse
|
3
|
Bianchi A, Agosteo S, Bortot D, Cirrone GAP, Colautti P, La Tessa C, Mazzucconi D, Missiaggia M, Petringa G, Rosenfeld AB, Selva A, Tran L, Verona C, Verona Rinati G, Conte V. Microdosimetry of a 62-MeV clinical proton beam with five detectors. RADIATION PROTECTION DOSIMETRY 2023; 199:1968-1972. [PMID: 37819306 DOI: 10.1093/rpd/ncac231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 10/13/2023]
Abstract
In proton therapy, most treatment planning systems (TPS) use a fixed relative biological effectiveness (RBE) of 1.1 all along the depth-dose profile. Innovative TPS are now investigated considering the variability of RBE with radiation quality. New TPS need an experimental verification in the quality assurance (QA) routine in clinics, but RBE data are usually obtained with radiobiological measurements that are time consuming and not suitable for daily QA. Microdosimetry is a useful tool based on physical measurements which can monitor the radiation quality. Several microdosimeters are available in different research institutions, which could potentially be used for the QA in TPS. In this study, the response functions of five detectors in the same 62-MeV proton Spread Out Bragg Peak is compared in terms of spectral distributions and their average values and microdosimetric RBE. Their different response function has been commented and must be considered in the clinical practice.
Collapse
Affiliation(s)
- A Bianchi
- INFN-Laboratori Nazionali di Legnaro, 35020 Legnaro, Italy
| | - S Agosteo
- Politecnico di Milano, Dipartimento di Energia, 20156 Milano, Italy
- INFN-Milano, 20133 Milano, Italy
| | - D Bortot
- Politecnico di Milano, Dipartimento di Energia, 20156 Milano, Italy
- INFN-Milano, 20133 Milano, Italy
| | - G A P Cirrone
- INFN-Laboratori Nazionali del Sud, 95125 Catania, Italy
| | - P Colautti
- INFN-Laboratori Nazionali di Legnaro, 35020 Legnaro, Italy
| | - C La Tessa
- University of Trento, Dipartimento di Fisica, 38123 Povo, Trento, Italy
- Trento Institute of Fundamental Physics and Applications, 38123 Povo, Trento, Italy
| | - D Mazzucconi
- Politecnico di Milano, Dipartimento di Energia, 20156 Milano, Italy
- INFN-Milano, 20133 Milano, Italy
| | - M Missiaggia
- University of Trento, Dipartimento di Fisica, 38123 Povo, Trento, Italy
- Trento Institute of Fundamental Physics and Applications, 38123 Povo, Trento, Italy
| | - G Petringa
- INFN-Laboratori Nazionali del Sud, 95125 Catania, Italy
- ELI Beamlines Center, Institute of Physics, Czech Academy of Sciences, 252 41 Dolní Břežany, Czech Republic
| | - A B Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, 2522 Wollongong, Australia
| | - A Selva
- INFN-Laboratori Nazionali di Legnaro, 35020 Legnaro, Italy
| | - L Tran
- Centre for Medical Radiation Physics, University of Wollongong, 2522 Wollongong, Australia
| | - C Verona
- INFN-Roma2, Dipartimento di Ingegneria Industriale, Università di Roma "Tor Vergata", 00133 Roma, Italy
| | - G Verona Rinati
- INFN-Roma2, Dipartimento di Ingegneria Industriale, Università di Roma "Tor Vergata", 00133 Roma, Italy
| | - V Conte
- INFN-Laboratori Nazionali di Legnaro, 35020 Legnaro, Italy
| |
Collapse
|
4
|
Guardiola C, Bachiller-Perea D, Kole EMM, Fleta C, Quirion D, De Marzi L, Gómez F. First experimental measurements of 2D microdosimetry maps in proton therapy. Med Phys 2023; 50:570-581. [PMID: 36066129 PMCID: PMC10087596 DOI: 10.1002/mp.15945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/08/2022] [Accepted: 08/02/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Empirical data in proton therapy indicate that relative biological effectiveness (RBE) is not constant, and it is directly related to the linear energy transfer (LET). The experimental assessment of LET with high resolution would be a powerful tool for minimizing the LET hot spots in intensity-modulated proton therapy, RBE- or LET-guided evaluation and optimization to achieve biologically optimized proton plans, verifying the theoretical predictions of variable proton RBE models, and so on. This could impact clinical outcomes by reducing toxicities in organs at risk. PURPOSE The present work shows the first 2D LET maps obtained at a proton therapy facility using the double scattering delivery mode in clinical conditions by means of new silicon 3D-cylindrical microdetectors. METHODS The device consists of a matrix of 121 independent silicon-based detectors that have 3D-cylindrical electrodes of 25-µm diameter and 20-µm depth, resulting each one of them in a well-defined micrometric radiation sensitive volume etched inside the silicon. They have been specifically designed for a hadron therapy, improving the performance of current silicon-based microdosimeters. Microdosimetry spectra were obtained at different positions of the Bragg curve by using a water-equivalent phantom along an 89-MeV pristine proton beam generated in the Y1 proton passive scattering beamline of the Orsay Proton Therapy Centre (Institut Curie, France). RESULTS Microdosimetry 2D-maps showing the variation of the lineal energy with depth in the three dimensions were obtained in situ during irradiation at clinical fluence rates (∼108 s-1 cm-2 ) for the first time with a spatial resolution of 200 µm, the highest achieved in the transverse plane so far. The experimental results were cross-checked with Monte Carlo simulations and a good agreement between the spectra shapes was found. The experimental frequency-mean lineal energy values in silicon were 1.858 ± 0.019 keV µm-1 at the entrance, 2.61 ± 0.03 keV µm-1 at the proximal distance, 4.97 ± 0.05 keV µm-1 close to the Bragg peak, and 8.6 ± 0.1 keV µm-1 at the distal edge. They are in good agreement with the expected trends in the literature in clinical proton beams. CONCLUSIONS We present the first 2D microdosimetry maps obtained in situ during irradiation at clinical fluence rates in proton therapy. Our results show that the arrays of 3D-cylindrical microdetectors are a reliable microdosimeter to evaluate LET maps not only in the longitudinal axis of the beam, but also in the transverse plane allowing for LET characterization in three dimensions. This work is a proof of principle showing the capacity of our system to deliver LET 2D maps. This kind of experimental data is needed to validate variable proton RBE models and to optimize LET-guided plans.
Collapse
Affiliation(s)
- Consuelo Guardiola
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France.,Université de Paris, IJCLab, Orsay, France.,Centro Nacional de Microelectrónica (IMB-CNM, CSIC), Bellaterra, Spain
| | - Diana Bachiller-Perea
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France.,Université de Paris, IJCLab, Orsay, France
| | | | - Celeste Fleta
- Centro Nacional de Microelectrónica (IMB-CNM, CSIC), Bellaterra, Spain
| | - David Quirion
- Centro Nacional de Microelectrónica (IMB-CNM, CSIC), Bellaterra, Spain
| | - Ludovic De Marzi
- Department of Radiation Oncology, Institut Curie, PSL Research University, Centre de protonthérapie d'Orsay, Campus Universitaire, bâtiment 101, Orsay, France.,Institut Curie, PSL Research University, Université Paris-Saclay, INSERM LITO, Campus Universitaire, Orsay, France
| | - Faustino Gómez
- Departamento de Física de Partículas, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
5
|
Bianchi A, Selva A, Colautti P, Parisi A, Vanhavere F, Reniers B, Conte V. The effect of different lower detection thresholds in microdosimetric spectra and their mean values. RADIAT MEAS 2021. [DOI: 10.1016/j.radmeas.2021.106626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Kalholm F, Grzanka L, Traneus E, Bassler N. A systematic review on the usage of averaged LET in radiation biology for particle therapy. Radiother Oncol 2021; 161:211-221. [PMID: 33894298 DOI: 10.1016/j.radonc.2021.04.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/20/2022]
Abstract
Linear Energy Transfer (LET) is widely used to express the radiation quality of ion beams, when characterizing the biological effectiveness. However, averaged LET may be defined in multiple ways, and the chosen definition may impact the resulting reported value. We review averaged LET definitions found in the literature, and quantify which impact using these various definitions have for different reference setups. We recorded the averaged LET definitions used in 354 publications quantifying the relative biological effectiveness (RBE) of hadronic beams, and investigated how these various definitions impact the reported averaged LET using a Monte Carlo particle transport code. We find that the kind of averaged LET being applied is, generally, poorly defined. Some definitions of averaged LET may influence the reported averaged LET values up to an order of magnitude. For publications involving protons, most applied dose averaged LET when reporting RBE. The absence of what target medium is used and what secondary particles are included further contributes to an ill-defined averaged LET. We also found evidence of inconsistent usage of averaged LET definitions when deriving LET-based RBE models. To conclude, due to commonly ill-defined averaged LET and to the inherent problems of LET-based RBE models, averaged LET may only be used as a coarse indicator of radiation quality. We propose a more rigorous way of reporting LET values, and suggest that ideally the entire particle fluence spectra should be recorded and provided for future RBE studies, from which any type of averaged LET (or other quantities) may be inferred.
Collapse
Affiliation(s)
- Fredrik Kalholm
- Medical Radiation Physics, Dept. of Physics, Stockholm University, Stockholm, Sweden; Department of Oncology and Pathology, Medical Radiation Physics, Karolinska Institutet, Stockholm, Sweden
| | - Leszek Grzanka
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | | | - Niels Bassler
- Medical Radiation Physics, Dept. of Physics, Stockholm University, Stockholm, Sweden; Department of Oncology and Pathology, Medical Radiation Physics, Karolinska Institutet, Stockholm, Sweden; Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark; Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|