1
|
Yamauchi R, Tomita F. Evaluation of dynamic accuracy and latency of a surface-guided radiotherapy system. Radiol Phys Technol 2024:10.1007/s12194-024-00866-y. [PMID: 39609349 DOI: 10.1007/s12194-024-00866-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/09/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
The aim of this study is to evaluate the dynamic accuracy and latency of the surface-guided radiotherapy (SGRT) system using TrueBeam and AlignRT in compliance with SGRT guidelines. Beam characteristics-flatness, symmetry, beam quality, and output-were compared between gated and nongated beams using a two-dimensional ionization chamber array and a Farmer-type chamber. Dynamic accuracy was assessed using a moving platform and breast phantom, with measurements taken for various shift values (5, 10, 30 mm), region-of-interest (ROI) shapes, reference-surface image types (DICOM and capture), surface resolutions, and room illuminations. Latency due to differences in frame rates was evaluated using radiochromic film, calculated from position displacements of profiles at two speeds. Differences in beam characteristics between gated and nongated beams were within 0.1%. Dynamic accuracy showed minimal dependence on settings, with deviations of < 1 mm for a 10-mm shift. A maximum displacement of 1.9 mm was observed with a 30-mm shift at the body ROI. Beam-on latency at 12, 16, 25, and 35 frames per second was 253.2 ± 21.9, 225.7 ± 33.7, 177.1 ± 43.0, and 112.4 ± 29.2 ms, respectively, with similar trends for beam-off latency. This study is the first to evaluate the dynamic accuracy of the TrueBeam and AlignRT system under SGRT-specific settings. While accuracy was generally maintained (< 1 mm), ROI shape significantly impacted results. Latency results indicate that certain frame rates may not meet guideline limits, underscoring the need for careful SGRT system use in clinical applications.
Collapse
Affiliation(s)
- Ryohei Yamauchi
- Department of Radiation Oncology, St. Luke's International Hospital, 9-1 Akashi-Cho, Chuo-Ku, Tokyo, 104-8560, Japan.
| | - Fumihiro Tomita
- Department of Radiation Oncology, St. Luke's International Hospital, 9-1 Akashi-Cho, Chuo-Ku, Tokyo, 104-8560, Japan
| |
Collapse
|
2
|
Dekker J, van het Schip S, Essers M, de Smet M, Kusters M, de Kruijf W. Characterization of the IDENTIFY TM surface scanning system for radiation therapy setup on a closed-bore linac. J Appl Clin Med Phys 2024; 25:e14326. [PMID: 38497554 PMCID: PMC11005961 DOI: 10.1002/acm2.14326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 03/19/2024] Open
Abstract
PURPOSE In radiation therapy, surface guidance can be used for patient setup and intra-fraction motion monitoring. The surface guided radiation therapy (SGRT) system from Varian Medical systems, IDENTIFYTM, consists of three pods, including cameras and a random pattern projector, mounted on the ceiling. The information captured by the cameras is used to make a reconstruction of the surface. The aim of the study was to assess the technical performance of this SGRT system on a closed-bore linac. METHODS Phantom measurements were performed to assess the accuracy, precision, reproducibility and temporal stability of the system, both in align and in load position. Translations of the phantoms in lateral, longitudinal, and vertical direction, and rotations around three axes (pitch, roll and yaw) were performed with an accurate, in-house built, positioning stage. Different phantom geometries and different surface colors were used, and various ambient light intensities were tested. RESULTS The accuracy of the IDENTIFYTM system at the closed-bore linac was 0.07 mm and 0.07 degrees at load position, and 0.06 mm and 0.01 degrees at align position for the white head phantom. The precision was 0.02 mm and 0.02 degrees in load position, and 0.01 mm and 0.02 degrees in align position. The accuracy for the Penta-Guide phantom was comparable to the white head phantom, with 0.06 mm and 0.01 degrees in align position. The system was slightly less accurate for translations of the CIRS lung phantom in align position (0.20 mm, 0.05 degrees). Reproducibility measurements showed a variation of 0.02 mm in load position. Regarding the temporal stability, the maximum drift over 30 min was 0.33 mm and 0.02 degrees in load position. No effect of ambient light level on the accuracy of the IDENTIFYTM system was observed. Regarding different surface colors, the accuracy of the system for a black phantom was slightly worse compared to a white surface, but not clinical relevant. CONCLUSION The IDENTIFYTM system can adequately be used for motion monitoring on a closed-bore linac with submillimeter accuracy. The results of the performed measurements meet the clinical requirements described in the guidelines of the AAPM and the ESTRO.
Collapse
|
3
|
Bolin MC, Falk M, Hedman M, Gagliardi G, Onjukka E. Surface-guided radiotherapy improves rotational accuracy in gynecological cancer patients. Rep Pract Oncol Radiother 2024; 28:764-771. [PMID: 38515814 PMCID: PMC10954265 DOI: 10.5603/rpor.98733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/20/2023] [Indexed: 03/23/2024] Open
Abstract
Background The aim of this study was to determine if rotational uncertainties in gynecological cancer patients can be reduced using surface imaging (SI) compared to aligning three markers on the patient's skin with in-room lasers (marker-laser). Materials and methods Fifty gynecological cancer patients treated with external-beam radiotherapy were retrospectively analyzed; 25 patients were positioned with marker-laser and 25 patients were positioned with SI. The values of rotational (pitch and roll) deviations of the patient positions between the treatment-planning computed tomography (CT) and online cone-beam computed tomography (CBCT) were collected for both subcohorts and all treatment fractions after performing automatic registration between the two image sets. Statistical analysis of the difference between the two set-up methods was performed using the Mann-Whitney U-test. Results The median pitch deviation were 1.5° [interquartile range (IQR): 0.6°-2.6°] and 1.1° (IQR: 0.5°-1.9°) for the marker-laser and SI methods, respectively (p < 0.01). The median roll deviation was 0.5° (IQR: 0.2°-0.9°), and 0.7° (IQR: 0.3°-1.2°) for the marker-laser and SI methods, respectively (p < 0.01). Given the shape of the target, pitch deviations had a greater impact on the uncertainty at the periphery of the target and were considered more relevant. Conclusion By introducing SI as a set-up method in gynecological cancer patients, higher positioning accuracy could be achieved compared with the marker-laser set-up method. This was demonstrated based on residual deviations rather than deviations corrected for by image-guided radiotherapy (IGRT).
Collapse
Affiliation(s)
- Mimmi-Caroline Bolin
- Section of Radiotherapy and Engineering, Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Marianne Falk
- Section of Radiotherapy and Engineering, Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Mattias Hedman
- Department of Radiation Oncology, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Giovanna Gagliardi
- Section of Radiotherapy and Engineering, Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Eva Onjukka
- Section of Radiotherapy and Engineering, Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
4
|
Dürrbeck C, Schulz M, Pflaum L, Kallis K, Geimer T, Abu-Hossin N, Strnad V, Maier A, Fietkau R, Bert C. Estimating follow-up CTs from geometric deformations of catheter implants in interstitial breast brachytherapy: A feasibility study using electromagnetic tracking. Med Phys 2023; 50:5793-5805. [PMID: 37540071 DOI: 10.1002/mp.16659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/20/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Electromagnetic tracking (EMT) systems have been shown to provide valuable information on the geometry of catheter implants in breast cancer patients undergoing interstitial brachytherapy (iBT). In the context of an extended patient-specific, pre-treatment verification, EMT can play a key role in determining the potential need and, if applicable, the appropriate time for treatment adaptation. To detect dosimetric shortcomings the relative position between catheters, and target volume and critical structures must be known. Since EMT cannot provide the anatomical context and standard imaging techniques such as cone-beam CT are not yet available in most brachytherapy suites, it is not possible to detect anatomic changes on a daily or fraction basis, so the need for adaptive planning cannot be identified. PURPOSE The aim of this feasibility study is to develop and evaluate a technique capable of estimating follow-up CTs at any time based on the initial treatment planning CT (PCT) and surrogate information about changes of the implant geometry from an EMT system. METHODS A deformation vector field is calculated from two different implant reconstructions acquired in treatment position through EMT, the first immediately after the PCT and the second at another time point during the course of treatment. The calculation is based on discrete displacement vectors of pairs of control and target points. These are extrapolated by means of different radial basis functions in order to cover the entire CT volume. The adequate parameters for the calculation of the deformation field were identified. By warping the PCT according to the deformation field, one obtains an estimated CT (ECT) that reflects the geometric changes. For the proof of concept, ECTs were computed for the time point of the clinical follow-up CT (FCT) that is embedded in the treatment workflow after the fourth fraction. RESULTS ECT and clinical FCTs of 20 patients were compared to each other quantitatively in terms of absolute Hounsfield unit differences in the planning target volume (PTV) and in a convex hull (CH) enclosing the catheters. The median differences were 31.2 and 29.5 HU for the CH and the PTV, respectively. CONCLUSION The proposed ECT approach was able to approximate the "anatomy of the day" and therefore, in principle, allows a dosimetric appraisal of the treatment plan quality before each fraction. In this way, it can contribute to a more detailed patient-specific quality assurance in iBT of the breast and help to identify the timing for a potential treatment adaptation.
Collapse
Affiliation(s)
- Christopher Dürrbeck
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Moritz Schulz
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Leonie Pflaum
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
- Pattern Recognition Lab, FAU, Erlangen, Germany
| | - Karoline Kallis
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tobias Geimer
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Pattern Recognition Lab, FAU, Erlangen, Germany
| | - Nadin Abu-Hossin
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Vratislav Strnad
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | | | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Christoph Bert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| |
Collapse
|
5
|
Crop F, Laffarguette J, Achag I, Pasquier D, Mirabel X, Cayez R, Lacornerie T. Evaluation of surface image guidance and Deep inspiration Breath Hold technique for breast treatments with Halcyon. Phys Med 2023; 108:102564. [PMID: 36989980 DOI: 10.1016/j.ejmp.2023.102564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/13/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
PURPOSE To evaluate the accuracy/agreement of a three-camera Catalyst Surface Guided Radiation Therapy (SGRT) system on a closed-gantry Halcyon for Free-Breathing (FB) and Deep Inspiration Breath Hold (DIBH) breast-only treatments. METHODS The SGRT positioning agreement with Halcyon couch and cone-beam computed tomography (CBCT) was evaluated on phantom and by evaluation of 2401 FB and 855 DIBH breast-only treatment sessions. The DIBH agreement was evaluated using a programmable moving support. Dose agreement was evaluated for manual SGRT-assisted beam interruption and Halcyon arc beam interruption. RESULTS Geometrical phantom agreement was < 0.4 mm. Couch and SGRT agreement for an anthropomorphic phantom resulted in 95% limits of agreement in Right-Left/Feet-Head/Posterior-Anterior (RL/FH/PA) directions of respectively ± 0.4/0.8/0.5 mm and ± 1.1/1.1/0.6 mm in the virtual and real isocenter. FB-SGRT-assisted patient positioning compared to CBCT positioning resulted in RL/FH/PA systematic differences of -0.1/0.1/2.0 mm with standard deviations of 2.7/2.8/2.4 mm. This mean systematic difference had three origins: a) couch sag/isocenter difference of ≤ 0.5 mm. b) Average reconstructed FB-CBCT images do not visually represent the average respiratory position. c) CBCT-based positioning focused on the inner thoracic interface, which can introduce a mean positioning difference between SGRT and CBCT. Manual SGRT-assisted beam interruption and arc interruptions resulted in mean gamma passing rates > 97% (0.5%/0.5 mm) and mean absolute differences < 0.3%. CONCLUSIONS Accuracy was comparable with breast-only C-arm SGRT techniques, with different tradeoffs. Depending on the patient's morphology, real-time tracking accuracy in the real isocenter can be reduced. This study demonstrates possible discordances between SGRT and CBCT positioning for breast.
Collapse
|
6
|
Sato K, Yamashiro A, Koyama T. [Material Investigation for the Development of Non-rigid Phantoms for CT-MRI Image Registration]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2022; 78:615-624. [PMID: 35569958 DOI: 10.6009/jjrt.2022-1241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE In radiotherapy, deformable image registration (DIR) has been frequently used in different imaging examinations in recent years. However, no phantom has been established for quality assurance for DIR. In order to develop a non-rigid phantom for accuracy control between CT and MRI images, we investigated the suitability of 3D printing materials and gel materials in this study. METHODS We measured CT values, T1 values, T2 values, and the proton densities of 31 3D printer materials-purchased from three manufacturers-and one gel material. The dice coefficient after DIR was calculated for the CT-MRI images using a prototype phantom made of a gel material compatible with CT-MRI. RESULTS The CT number of the 3D printing materials ranged from -6.8 to 146.4 HU. On MRI, T1 values were not measurable in most cases, whereas T2 values were not measurable in all cases; proton density (PD) ranged from 2.51% to 4.9%. The gel material had a CT number of 111.16 HU, T1 value of 813.65 ms, and T2 value of 27.19 ms. The prototype phantom was flexible, and the usefulness of DIR with CT and MRI images was demonstrated using this phantom. CONCLUSION The CT number and T1 and T2 values of the gel material are close to those of the human body and may therefore be developed as a DIR verification phantom between CT and MRI. These findings may contribute to the development of non-rigid phantoms for DIR in the future.
Collapse
Affiliation(s)
- Kazuki Sato
- Department of Radiology, Nagano Red Cross Hospital
| | - Akihiro Yamashiro
- Department of Radiology, Nagano Red Cross Hospital.,Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University
| | - Tomio Koyama
- Department of Radiation Oncology, Nagano Red Cross Hospital
| |
Collapse
|