1
|
Bakas S, Vollmuth P, Galldiks N, Booth TC, Aerts HJWL, Bi WL, Wiestler B, Tiwari P, Pati S, Baid U, Calabrese E, Lohmann P, Nowosielski M, Jain R, Colen R, Ismail M, Rasool G, Lupo JM, Akbari H, Tonn JC, Macdonald D, Vogelbaum M, Chang SM, Davatzikos C, Villanueva-Meyer JE, Huang RY. Artificial Intelligence for Response Assessment in Neuro Oncology (AI-RANO), part 2: recommendations for standardisation, validation, and good clinical practice. Lancet Oncol 2024; 25:e589-e601. [PMID: 39481415 DOI: 10.1016/s1470-2045(24)00315-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 11/02/2024]
Abstract
Technological advancements have enabled the extended investigation, development, and application of computational approaches in various domains, including health care. A burgeoning number of diagnostic, predictive, prognostic, and monitoring biomarkers are continuously being explored to improve clinical decision making in neuro-oncology. These advancements describe the increasing incorporation of artificial intelligence (AI) algorithms, including the use of radiomics. However, the broad applicability and clinical translation of AI are restricted by concerns about generalisability, reproducibility, scalability, and validation. This Policy Review intends to serve as the leading resource of recommendations for the standardisation and good clinical practice of AI approaches in health care, particularly in neuro-oncology. To this end, we investigate the repeatability, reproducibility, and stability of AI in response assessment in neuro-oncology in studies on factors affecting such computational approaches, and in publicly available open-source data and computational software tools facilitating these goals. The pathway for standardisation and validation of these approaches is discussed with the view of trustworthy AI enabling the next generation of clinical trials. We conclude with an outlook on the future of AI-enabled neuro-oncology.
Collapse
Affiliation(s)
- Spyridon Bakas
- Department of Pathology & Laboratory Medicine, Division of Computational Pathology, Indiana University, Indianopolis, IN, USA; Department of Radiology & Imaging Sciences, School of Medicine, Indiana University, Indianapolis, IN, USA; Department of Neurological Surgery, School of Medicine, Indiana University, Indianapolis, IN, USA; Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianopolis, IN, USA; Department of Computer Science, Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, IN, USA.
| | - Philipp Vollmuth
- Division for Computational Radiology and Clinical AI, Clinic for Neuroradiology, University Hospital Bonn, Bonn, Germany; Faculty of Medicine, University of Bonn, Bonn, Germany; Division for Medical Image Computing, German Cancer Research Center, Heidelberg, Germany
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany
| | - Thomas C Booth
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Neuroradiology, King's College Hospital NHS Foundation Trust, London, UK
| | - Hugo J W L Aerts
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Artificial Intelligence in Medicine Program, Mass General Brigham, Harvard Medical School, Boston, MA, USA; Radiology and Nuclear Medicine, Maastricht University, Maastricht, Netherlands
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benedikt Wiestler
- Department of Neuroradiology, University Hospital, Technical University of Munich, Munich, Germany
| | - Pallavi Tiwari
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Sarthak Pati
- Department of Pathology & Laboratory Medicine, Division of Computational Pathology, Indiana University, Indianopolis, IN, USA
| | - Ujjwal Baid
- Department of Pathology & Laboratory Medicine, Division of Computational Pathology, Indiana University, Indianopolis, IN, USA; Department of Radiology & Imaging Sciences, School of Medicine, Indiana University, Indianapolis, IN, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianopolis, IN, USA
| | - Evan Calabrese
- Department of Radiology, School of Medicine, Duke University, Durham, NC, USA
| | - Philipp Lohmann
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Martha Nowosielski
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Rajan Jain
- Department of Radiology and Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Rivka Colen
- Department of Radiology, Neuroradiology Division, Center for Artificial Intelligence Innovation in Medical Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marwa Ismail
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Ghulam Rasool
- Department of Machine Learning, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Hamed Akbari
- Department of Bioengineering, School of Engineering, Santa Clara University, Santa Clara, CA, USA
| | - Joerg C Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany; German Cancer Consortium, Partner Site Munich, Munich, Germany
| | | | - Michael Vogelbaum
- Department of Neuro-Oncology, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA; Department of Neurosurgery, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA; H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Susan M Chang
- Department of Neurological Surgery, Division of Neuro-Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Christos Davatzikos
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Artificial Intelligence for Integrated Diagnostics and Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Garcia-Ruiz A, Pons-Escoda A, Grussu F, Naval-Baudin P, Monreal-Aguero C, Hermann G, Karunamuni R, Ligero M, Lopez-Rueda A, Oleaga L, Berbís MÁ, Cabrera-Zubizarreta A, Martin-Noguerol T, Luna A, Seibert TM, Majos C, Perez-Lopez R. An accessible deep learning tool for voxel-wise classification of brain malignancies from perfusion MRI. Cell Rep Med 2024; 5:101464. [PMID: 38471504 PMCID: PMC10983037 DOI: 10.1016/j.xcrm.2024.101464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/16/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
Noninvasive differential diagnosis of brain tumors is currently based on the assessment of magnetic resonance imaging (MRI) coupled with dynamic susceptibility contrast (DSC). However, a definitive diagnosis often requires neurosurgical interventions that compromise patients' quality of life. We apply deep learning on DSC images from histology-confirmed patients with glioblastoma, metastasis, or lymphoma. The convolutional neural network trained on ∼50,000 voxels from 40 patients provides intratumor probability maps that yield clinical-grade diagnosis. Performance is tested in 400 additional cases and an external validation cohort of 128 patients. The tool reaches a three-way accuracy of 0.78, superior to the conventional MRI metrics cerebral blood volume (0.55) and percentage of signal recovery (0.59), showing high value as a support diagnostic tool. Our open-access software, Diagnosis In Susceptibility Contrast Enhancing Regions for Neuro-oncology (DISCERN), demonstrates its potential in aiding medical decisions for brain tumor diagnosis using standard-of-care MRI.
Collapse
Affiliation(s)
- Alonso Garcia-Ruiz
- Radiomics Group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Albert Pons-Escoda
- Radiology Department, Bellvitge University Hospital, 08907 Barcelona, Spain; Neuro-Oncology Unit, Institut d'Investigacio Biomedica de Bellvitge (IDIBELL), 08907 Barcelona, Spain
| | - Francesco Grussu
- Radiomics Group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Pablo Naval-Baudin
- Radiology Department, Bellvitge University Hospital, 08907 Barcelona, Spain
| | | | - Gretchen Hermann
- Radiation Medicine Department and Applied Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Roshan Karunamuni
- Radiation Medicine Department and Applied Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Marta Ligero
- Radiomics Group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | | | - Laura Oleaga
- Radiology Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - M Álvaro Berbís
- Radiology Department, HT Medica, Hospital San Juan de Dios, 14012 Cordoba, Spain
| | | | | | - Antonio Luna
- Radiology Department, HT Medica, 23008 Jaen, Spain
| | - Tyler M Seibert
- Radiation Medicine Department and Applied Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Radiology Department, University of California, San Diego, La Jolla, CA 92093, USA; Bioengineering Department, University of California, San Diego, La Jolla, CA 92093, USA
| | - Carlos Majos
- Radiology Department, Bellvitge University Hospital, 08907 Barcelona, Spain; Neuro-Oncology Unit, Institut d'Investigacio Biomedica de Bellvitge (IDIBELL), 08907 Barcelona, Spain
| | - Raquel Perez-Lopez
- Radiomics Group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain.
| |
Collapse
|
3
|
Patel KS, Yao J, Cho NS, Sanvito F, Tessema K, Alvarado A, Dudley L, Rodriguez F, Everson R, Cloughesy TF, Salamon N, Liau LM, Kornblum HI, Ellingson BM. pH-Weighted amine chemical exchange saturation transfer echo planar imaging visualizes infiltrating glioblastoma cells. Neuro Oncol 2024; 26:115-126. [PMID: 37591790 PMCID: PMC10768991 DOI: 10.1093/neuonc/noad150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Given the invasive nature of glioblastoma, tumor cells exist beyond the contrast-enhancing (CE) region targeted during treatment. However, areas of non-enhancing (NE) tumors are difficult to visualize and delineate from edematous tissue. Amine chemical exchange saturation transfer echo planar imaging (CEST-EPI) is a pH-sensitive molecular magnetic resonance imaging technique that was evaluated in its ability to identify infiltrating NE tumors and prognosticate survival. METHODS In this prospective study, CEST-EPI was obtained in 30 patients and areas with elevated CEST contrast ("CEST+" based on the asymmetry in magnetization transfer ratio: MTRasym at 3 ppm) within NE regions were quantitated. Median MTRasym at 3 ppm and volume of CEST + NE regions were correlated with progression-free survival (PFS). In 20 samples from 14 patients, image-guided biopsies of these areas were obtained to correlate MTRasym at 3 ppm to tumor and non-tumor cell burden using immunohistochemistry. RESULTS In 15 newly diagnosed and 15 recurrent glioblastoma, higher median MTRasym at 3ppm within CEST + NE regions (P = .007; P = .0326) and higher volumes of CEST + NE tumor (P = .020; P < .001) were associated with decreased PFS. CE recurrence occurred in areas of preoperative CEST + NE regions in 95.4% of patients. MTRasym at 3 ppm was correlated with presence of tumor, cell density, %Ki-67 positivity, and %CD31 positivity (P = .001; P < .001; P < .001; P = .001). CONCLUSIONS pH-weighted amine CEST-EPI allows for visualization of NE tumor, likely through surrounding acidification of the tumor microenvironment. The magnitude and volume of CEST + NE tumor correlates with tumor cell density, degree of proliferating or "active" tumor, and PFS.
Collapse
Affiliation(s)
- Kunal S Patel
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, California, USA
- The Intellectual and Developmental Disabilities Research Center and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Jingwen Yao
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, California, USA
| | - Nicholas S Cho
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, California, USA
| | - Francesco Sanvito
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, California, USA
| | - Kaleab Tessema
- The Intellectual and Developmental Disabilities Research Center and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Alvaro Alvarado
- The Intellectual and Developmental Disabilities Research Center and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Lindsey Dudley
- The Intellectual and Developmental Disabilities Research Center and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Fausto Rodriguez
- Department of Pathology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Richard Everson
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Timothy F Cloughesy
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, California, USA
| | - Linda M Liau
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Harley I Kornblum
- The Intellectual and Developmental Disabilities Research Center and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Benjamin M Ellingson
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, California, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
4
|
Christenson C, Wu C, Hormuth DA, Huang S, Bao A, Brenner A, Yankeelov TE. Predicting the spatio-temporal response of recurrent glioblastoma treated with rhenium-186 labelled nanoliposomes. BRAIN MULTIPHYSICS 2023; 5:100084. [PMID: 38187909 PMCID: PMC10768931 DOI: 10.1016/j.brain.2023.100084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
Rhenium-186 (186Re) labeled nanoliposome (RNL) therapy for recurrent glioblastoma patients has shown promise to improve outcomes by locally delivering radiation to affected areas. To optimize the delivery of RNL, we have developed a framework to predict patient-specific response to RNL using image-guided mathematical models. Methods We calibrated a family of reaction-diffusion type models with multi-modality imaging data from ten patients (NCR01906385) to predict the spatio-temporal dynamics of each patient's tumor. The data consisted of longitudinal magnetic resonance imaging (MRI) and single photon emission computed tomography (SPECT) to estimate tumor burden and local RNL activity, respectively. The optimal model from the family was selected and used to predict future growth. A simplified version of the model was used in a leave-one-out analysis to predict the development of an individual patient's tumor, based on cohort parameters. Results Across the cohort, predictions using patient-specific parameters with the selected model were able to achieve Spearman correlation coefficients (SCC) of 0.98 and 0.93 for tumor volume and total cell number, respectively, when compared to the measured data. Predictions utilizing the leave-one-out method achieved SCCs of 0.89 and 0.88 for volume and total cell number across the population, respectively. Conclusion We have shown that patient-specific calibrations of a biology-based mathematical model can be used to make early predictions of response to RNL therapy. Furthermore, the leave-one-out framework indicates that radiation doses determined by SPECT can be used to assign model parameters to make predictions directly following the conclusion of RNL treatment. Statement of Significance This manuscript explores the application of computational models to predict response to radionuclide therapy in glioblastoma. There are few, to our knowledge, examples of mathematical models used in clinical radionuclide therapy. We have tested a family of models to determine the applicability of different radiation coupling terms for response to the localized radiation delivery. We show that with patient-specific parameter estimation, we can make accurate predictions of future glioblastoma response to the treatment. As a comparison, we have shown that population trends in response can be used to forecast growth from the moment the treatment has been delivered.In addition to the high simulation and prediction accuracy our modeling methods have achieved, the evaluation of a family of models has given insight into the response dynamics of radionuclide therapy. These dynamics, while different than we had initially hypothesized, should encourage future imaging studies involving high dosage radiation treatments, with specific emphasis on the local immune and vascular response.
Collapse
Affiliation(s)
| | - Chengyue Wu
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - David A. Hormuth
- Livestrong Cancer Institutes, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Shiliang Huang
- Department of Oncology, The University of Texas Health Sciences Center at San Antonio, San Antonio, TX 78229, USA
| | - Ande Bao
- Department of Radiation Oncology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Andrew Brenner
- Department of Oncology, The University of Texas Health Sciences Center at San Antonio, San Antonio, TX 78229, USA
| | - Thomas E. Yankeelov
- Departments of Biomedical Engineering, USA
- Departments of Diagnostic Medicine, USA
- Departments of Oncology, USA
- Livestrong Cancer Institutes, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA
- The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
5
|
Cavinato L, Massi MC, Sollini M, Kirienko M, Ieva F. Dual adversarial deconfounding autoencoder for joint batch-effects removal from multi-center and multi-scanner radiomics data. Sci Rep 2023; 13:18857. [PMID: 37914758 PMCID: PMC10620174 DOI: 10.1038/s41598-023-45983-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023] Open
Abstract
Medical imaging represents the primary tool for investigating and monitoring several diseases, including cancer. The advances in quantitative image analysis have developed towards the extraction of biomarkers able to support clinical decisions. To produce robust results, multi-center studies are often set up. However, the imaging information must be denoised from confounding factors-known as batch-effect-like scanner-specific and center-specific influences. Moreover, in non-solid cancers, like lymphomas, effective biomarkers require an imaging-based representation of the disease that accounts for its multi-site spreading over the patient's body. In this work, we address the dual-factor deconfusion problem and we propose a deconfusion algorithm to harmonize the imaging information of patients affected by Hodgkin Lymphoma in a multi-center setting. We show that the proposed model successfully denoises data from domain-specific variability (p-value < 0.001) while it coherently preserves the spatial relationship between imaging descriptions of peer lesions (p-value = 0), which is a strong prognostic biomarker for tumor heterogeneity assessment. This harmonization step allows to significantly improve the performance in prognostic models with respect to state-of-the-art methods, enabling building exhaustive patient representations and delivering more accurate analyses (p-values < 0.001 in training, p-values < 0.05 in testing). This work lays the groundwork for performing large-scale and reproducible analyses on multi-center data that are urgently needed to convey the translation of imaging-based biomarkers into the clinical practice as effective prognostic tools. The code is available on GitHub at this https://github.com/LaraCavinato/Dual-ADAE .
Collapse
Affiliation(s)
- Lara Cavinato
- MOX, Department of Mathematics, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milan, 20133, Italy.
| | - Michela Carlotta Massi
- Health Data Science Centre, Human Technopole, Viale Rita Levi-Montalcini, 1, Milan, 20157, Italy
| | - Martina Sollini
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 4, Pieve Emanuele, 20090, Italy
- Department of Nuclear Medicine, IRCCS Humanitas Research Hospital, Via Alessandro Manzoni, 56, Rozzano, 20089, Italy
| | - Margarita Kirienko
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1, Milan, 20133, Italy
| | - Francesca Ieva
- MOX, Department of Mathematics, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milan, 20133, Italy
- Health Data Science Centre, Human Technopole, Viale Rita Levi-Montalcini, 1, Milan, 20157, Italy
| |
Collapse
|
6
|
Capobianco E, Dominietto M. Assessment of brain cancer atlas maps with multimodal imaging features. J Transl Med 2023; 21:385. [PMID: 37308956 PMCID: PMC10262565 DOI: 10.1186/s12967-023-04222-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/22/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Glioblastoma Multiforme (GBM) is a fast-growing and highly aggressive brain tumor that invades the nearby brain tissue and presents secondary nodular lesions across the whole brain but generally does not spread to distant organs. Without treatment, GBM can result in death in about 6 months. The challenges are known to depend on multiple factors: brain localization, resistance to conventional therapy, disrupted tumor blood supply inhibiting effective drug delivery, complications from peritumoral edema, intracranial hypertension, seizures, and neurotoxicity. MAIN TEXT Imaging techniques are routinely used to obtain accurate detections of lesions that localize brain tumors. Especially magnetic resonance imaging (MRI) delivers multimodal images both before and after the administration of contrast, which results in displaying enhancement and describing physiological features as hemodynamic processes. This review considers one possible extension of the use of radiomics in GBM studies, one that recalibrates the analysis of targeted segmentations to the whole organ scale. After identifying critical areas of research, the focus is on illustrating the potential utility of an integrated approach with multimodal imaging, radiomic data processing and brain atlases as the main components. The templates associated with the outcome of straightforward analyses represent promising inference tools able to spatio-temporally inform on the GBM evolution while being generalizable also to other cancers. CONCLUSIONS The focus on novel inference strategies applicable to complex cancer systems and based on building radiomic models from multimodal imaging data can be well supported by machine learning and other computational tools potentially able to translate suitably processed information into more accurate patient stratifications and evaluations of treatment efficacy.
Collapse
Affiliation(s)
- Enrico Capobianco
- The Jackson Laboratory, 10 Discovery Drive, Farmington, CT, 06032, USA.
| | - Marco Dominietto
- Paul Scherrer Institute (PSI), Forschungsstrasse 111, 5232, Villigen, Switzerland
- Gate To Brain SA, Via Livio 7, 6830, Chiasso, Switzerland
| |
Collapse
|
7
|
Niu J, Tan Q, Zou X, Jin S. Accurate prediction of glioma grades from radiomics using a multi-filter and multi-objective-based method. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:2890-2907. [PMID: 36899563 DOI: 10.3934/mbe.2023136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Radiomics, providing quantitative data extracted from medical images, has emerged as a critical role in diagnosis and classification of diseases such as glioma. One main challenge is how to uncover key disease-relevant features from the large amount of extracted quantitative features. Many existing methods suffer from low accuracy or overfitting. We propose a new method, Multiple-Filter and Multi-Objective-based method (MFMO), to identify predictive and robust biomarkers for disease diagnosis and classification. This method combines a multi-filter feature extraction with a multi-objective optimization-based feature selection model, which identifies a small set of predictive radiomic biomarkers with less redundancy. Taking magnetic resonance imaging (MRI) images-based glioma grading as a case study, we identify 10 key radiomic biomarkers that can accurately distinguish low-grade glioma (LGG) from high-grade glioma (HGG) on both training and test datasets. Using these 10 signature features, the classification model reaches training Area Under the receiving operating characteristic Curve (AUC) of 0.96 and test AUC of 0.95, which shows superior performance over existing methods and previously identified biomarkers.
Collapse
Affiliation(s)
- Jingren Niu
- School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
- Hubei Key Laboratory of Computational Science, Wuhan University, Wuhan 430072, China
| | - Qing Tan
- School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
- Hubei Key Laboratory of Computational Science, Wuhan University, Wuhan 430072, China
| | - Xiufen Zou
- School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
- Hubei Key Laboratory of Computational Science, Wuhan University, Wuhan 430072, China
| | - Suoqin Jin
- School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
- Hubei Key Laboratory of Computational Science, Wuhan University, Wuhan 430072, China
| |
Collapse
|
8
|
Pati S, Baid U, Edwards B, Sheller MJ, Foley P, Reina GA, Thakur S, Sako C, Bilello M, Davatzikos C, Martin J, Shah P, Menze B, Bakas S. The federated tumor segmentation (FeTS) tool: an open-source solution to further solid tumor research. Phys Med Biol 2022; 67:10.1088/1361-6560/ac9449. [PMID: 36137534 PMCID: PMC9592188 DOI: 10.1088/1361-6560/ac9449] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/22/2022] [Indexed: 11/11/2022]
Abstract
Objective.De-centralized data analysis becomes an increasingly preferred option in the healthcare domain, as it alleviates the need for sharing primary patient data across collaborating institutions. This highlights the need for consistent harmonized data curation, pre-processing, and identification of regions of interest based on uniform criteria.Approach.Towards this end, this manuscript describes theFederatedTumorSegmentation (FeTS) tool, in terms of software architecture and functionality.Main results.The primary aim of the FeTS tool is to facilitate this harmonized processing and the generation of gold standard reference labels for tumor sub-compartments on brain magnetic resonance imaging, and further enable federated training of a tumor sub-compartment delineation model across numerous sites distributed across the globe, without the need to share patient data.Significance.Building upon existing open-source tools such as the Insight Toolkit and Qt, the FeTS tool is designed to enable training deep learning models targeting tumor delineation in either centralized or federated settings. The target audience of the FeTS tool is primarily the computational researcher interested in developing federated learning models, and interested in joining a global federation towards this effort. The tool is open sourced athttps://github.com/FETS-AI/Front-End.
Collapse
Affiliation(s)
- Sarthak Pati
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Informatics, Technical University of Munich, Munich, Germany
| | - Ujjwal Baid
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | - Siddhesh Thakur
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chiharu Sako
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michel Bilello
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Bjoern Menze
- Department of Informatics, Technical University of Munich, Munich, Germany
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Spyridon Bakas
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Verma R, Hill VB, Statsevych V, Bera K, Correa R, Leo P, Ahluwalia M, Madabhushi A, Tiwari P. Stable and Discriminatory Radiomic Features from the Tumor and Its Habitat Associated with Progression-Free Survival in Glioblastoma: A Multi-Institutional Study. AJNR Am J Neuroradiol 2022; 43:1115-1123. [PMID: 36920774 PMCID: PMC9575418 DOI: 10.3174/ajnr.a7591] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/13/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Glioblastoma is an aggressive brain tumor, with no validated prognostic biomarkers for survival before surgical resection. Although recent approaches have demonstrated the prognostic ability of tumor habitat (constituting necrotic core, enhancing lesion, T2/FLAIR hyperintensity subcompartments) derived radiomic features for glioblastoma survival on treatment-naive MR imaging scans, radiomic features are known to be sensitive to MR imaging acquisitions across sites and scanners. In this study, we sought to identify the radiomic features that are both stable across sites and discriminatory of poor and improved progression-free survival in glioblastoma tumors. MATERIALS AND METHODS We used 150 treatment-naive glioblastoma MR imaging scans (Gadolinium-T1w, T2w, FLAIR) obtained from 5 sites. For every tumor subcompartment (enhancing tumor, peritumoral FLAIR-hyperintensities, necrosis), a total of 316 three-dimensional radiomic features were extracted. The training cohort constituted studies from 4 sites (n = 93) to select the most stable and discriminatory radiomic features for every tumor subcompartment. These features were used on a hold-out cohort (n = 57) to evaluate their ability to discriminate patients with poor survival from those with improved survival. RESULTS Incorporating the most stable and discriminatory features within a linear discriminant analysis classifier yielded areas under the curve of 0.71, 0.73, and 0.76 on the test set for distinguishing poor and improved survival compared with discriminatory features alone (areas under the curve of 0.65, 0.54, 0.62) from the necrotic core, enhancing tumor, and peritumoral T2/FLAIR hyperintensity, respectively. CONCLUSIONS Incorporating stable and discriminatory radiomic features extracted from tumors and associated habitats across multisite MR imaging sequences may yield robust prognostic classifiers of patient survival in glioblastoma tumors.
Collapse
Affiliation(s)
- R Verma
- From the Department of Biomedical Engineering (R.V., K.B., R.C., P.L.), Case Western Reserve University, Cleveland, Ohio .,Alberta Machine Intelligence Institute (R.V.), Edmonton, Alberta
| | - V B Hill
- Department of Neuroradiology (V.B.H.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - V Statsevych
- Brain Tumor and Neuro-Oncology Center (V.S.), Cleveland Clinic, Cleveland, Ohio
| | - K Bera
- From the Department of Biomedical Engineering (R.V., K.B., R.C., P.L.), Case Western Reserve University, Cleveland, Ohio
| | - R Correa
- From the Department of Biomedical Engineering (R.V., K.B., R.C., P.L.), Case Western Reserve University, Cleveland, Ohio
| | - P Leo
- From the Department of Biomedical Engineering (R.V., K.B., R.C., P.L.), Case Western Reserve University, Cleveland, Ohio
| | - M Ahluwalia
- Miami Cancer Institute (M.A.), Miami, FL and Herbert Wertheim College of Medicine, Florida International University, Florida
| | - A Madabhushi
- Department of Biomedical Engineering (A.M.), Emory University, Atlanta Veterans Administration Medical Center
| | - P Tiwari
- Departments of Radiology and Biomedical Engineering (P.T.), University of Wisconsin Madison, Wisconsin
| |
Collapse
|
10
|
Bakas S, Sako C, Akbari H, Bilello M, Sotiras A, Shukla G, Rudie JD, Santamaría NF, Kazerooni AF, Pati S, Rathore S, Mamourian E, Ha SM, Parker W, Doshi J, Baid U, Bergman M, Binder ZA, Verma R, Lustig RA, Desai AS, Bagley SJ, Mourelatos Z, Morrissette J, Watt CD, Brem S, Wolf RL, Melhem ER, Nasrallah MP, Mohan S, O'Rourke DM, Davatzikos C. The University of Pennsylvania glioblastoma (UPenn-GBM) cohort: advanced MRI, clinical, genomics, & radiomics. Sci Data 2022; 9:453. [PMID: 35906241 PMCID: PMC9338035 DOI: 10.1038/s41597-022-01560-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/12/2022] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma is the most common aggressive adult brain tumor. Numerous studies have reported results from either private institutional data or publicly available datasets. However, current public datasets are limited in terms of: a) number of subjects, b) lack of consistent acquisition protocol, c) data quality, or d) accompanying clinical, demographic, and molecular information. Toward alleviating these limitations, we contribute the "University of Pennsylvania Glioblastoma Imaging, Genomics, and Radiomics" (UPenn-GBM) dataset, which describes the currently largest publicly available comprehensive collection of 630 patients diagnosed with de novo glioblastoma. The UPenn-GBM dataset includes (a) advanced multi-parametric magnetic resonance imaging scans acquired during routine clinical practice, at the University of Pennsylvania Health System, (b) accompanying clinical, demographic, and molecular information, (d) perfusion and diffusion derivative volumes, (e) computationally-derived and manually-revised expert annotations of tumor sub-regions, as well as (f) quantitative imaging (also known as radiomic) features corresponding to each of these regions. This collection describes our contribution towards repeatable, reproducible, and comparative quantitative studies leading to new predictive, prognostic, and diagnostic assessments.
Collapse
Affiliation(s)
- Spyridon Bakas
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chiharu Sako
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hamed Akbari
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michel Bilello
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aristeidis Sotiras
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology and Institute for Informatics, Washington University, School of Medicine, St. Louis, MO, USA
| | - Gaurav Shukla
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiation Oncology, Christiana Care Health System, Philadelphia, PA, USA
| | - Jeffrey D Rudie
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Natali Flores Santamaría
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anahita Fathi Kazerooni
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarthak Pati
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Saima Rathore
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Mamourian
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sung Min Ha
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology and Institute for Informatics, Washington University, School of Medicine, St. Louis, MO, USA
| | - William Parker
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jimit Doshi
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ujjwal Baid
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark Bergman
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
| | - Zev A Binder
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ragini Verma
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert A Lustig
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arati S Desai
- Division of Hematology Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen J Bagley
- Division of Hematology Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zissimos Mourelatos
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer Morrissette
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher D Watt
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven Brem
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ronald L Wolf
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elias R Melhem
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - MacLean P Nasrallah
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Suyash Mohan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Donald M O'Rourke
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA.
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Chitalia R, Pati S, Bhalerao M, Thakur SP, Jahani N, Belenky V, McDonald ES, Gibbs J, Newitt DC, Hylton NM, Kontos D, Bakas S. Expert tumor annotations and radiomics for locally advanced breast cancer in DCE-MRI for ACRIN 6657/I-SPY1. Sci Data 2022; 9:440. [PMID: 35871247 PMCID: PMC9308769 DOI: 10.1038/s41597-022-01555-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 06/29/2022] [Indexed: 11/30/2022] Open
Abstract
Breast cancer is one of the most pervasive forms of cancer and its inherent intra- and inter-tumor heterogeneity contributes towards its poor prognosis. Multiple studies have reported results from either private institutional data or publicly available datasets. However, current public datasets are limited in terms of having consistency in: a) data quality, b) quality of expert annotation of pathology, and c) availability of baseline results from computational algorithms. To address these limitations, here we propose the enhancement of the I-SPY1 data collection, with uniformly curated data, tumor annotations, and quantitative imaging features. Specifically, the proposed dataset includes a) uniformly processed scans that are harmonized to match intensity and spatial characteristics, facilitating immediate use in computational studies, b) computationally-generated and manually-revised expert annotations of tumor regions, as well as c) a comprehensive set of quantitative imaging (also known as radiomic) features corresponding to the tumor regions. This collection describes our contribution towards repeatable, reproducible, and comparative quantitative studies leading to new predictive, prognostic, and diagnostic assessments.
Collapse
Affiliation(s)
- Rhea Chitalia
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sarthak Pati
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Megh Bhalerao
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Siddhesh Pravin Thakur
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nariman Jahani
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vivian Belenky
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Elizabeth S McDonald
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jessica Gibbs
- University of California San Francisco (UCSF), San Francisco, CA, 94115, USA
| | - David C Newitt
- University of California San Francisco (UCSF), San Francisco, CA, 94115, USA
| | - Nola M Hylton
- University of California San Francisco (UCSF), San Francisco, CA, 94115, USA
| | - Despina Kontos
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Spyridon Bakas
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
12
|
Liu Y, Shi Y, Wu M, Liu J, Wu H, Xu C, Chen L. Hypoxia-induced polypoid giant cancer cells in glioma promote the transformation of tumor-associated macrophages to a tumor-supportive phenotype. CNS Neurosci Ther 2022; 28:1326-1338. [PMID: 35762580 PMCID: PMC9344088 DOI: 10.1111/cns.13892] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/28/2022] Open
Abstract
Aims Polypoid giant cancer cells (PGCCs) represent a unique subgroup of stem‐like cells, acting as a critical factor in promoting the recurrence of various solid tumors. The effect of PGCCs on the tumor malignancy of glioma and its immune microenvironment remains unclear. Methods Bioinformatic analysis was performed to investigate the relationship between M2 tumor‐associated macrophages (TAMs) infiltration and survival of glioblastoma (GBM) patients. The spatial location of M2 TAMs in GBM was also investigated using the Ivy Glioblastoma Atlas Project (Ivy GAP) database. PGCCs were quantified in glioma of different grades. CoCl2 was used to induce PGCCs in cultures of A172 cells. PGCCs, and their progeny cells in cultures were further evaluated for morphological features, tumorsphere formation, and TAMs activation. Results The magnitude of M2 TAMs infiltration is significantly correlated with poor survival in GBM patients. M2 TAMs were enriched in the perinecrotic zone (PNZ) of GBM and positively correlated with hypoxic levels. Increased PGCCs were detected in glioma specimens of higher grades. CoCl2 induced hypoxia and the transformation of A172 cultures into PGCCs, producing the progeny cells, PGCCs‐Dau, through asymmetric division. PGCCs and PGCCs‐Dau possessed tumor stem cell‐like features, while PGCCs‐Dau enhanced the polarization of TAMs into an M2 phenotype with relevance to immunosuppression and malignancy in GBM. Conclusions PGCCs promote malignancy and immune‐suppressive microenvironment in GBM. PGCCs or their progeny cells may be a potential therapeutic target for GBM.
Collapse
Affiliation(s)
- Yuyang Liu
- Medical School of Chinese PLA, Beijing, China.,Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Ying Shi
- School of Medicine, University of Electronic science and Technology of China, Chengdu, China.,Integrative Cancer Center& Cancer Clinical Research Center, Sichuan Cancer Hospital, Chengdu, China
| | - Mengwan Wu
- School of Medicine, University of Electronic science and Technology of China, Chengdu, China.,Integrative Cancer Center& Cancer Clinical Research Center, Sichuan Cancer Hospital, Chengdu, China
| | - Jialin Liu
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Hong Wu
- Integrative Cancer Center& Cancer Clinical Research Center, Sichuan Cancer Hospital, Chengdu, China
| | - Chuan Xu
- Integrative Cancer Center& Cancer Clinical Research Center, Sichuan Cancer Hospital, Chengdu, China
| | - Ling Chen
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
13
|
Scalco E, Rizzo G, Mastropietro A. The stability of oncologic MRI radiomic features and the potential role of deep learning: a review. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac60b9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/24/2022] [Indexed: 11/11/2022]
Abstract
Abstract
The use of MRI radiomic models for the diagnosis, prognosis and treatment response prediction of tumors has been increasingly reported in literature. However, its widespread adoption in clinics is hampered by issues related to features stability. In the MRI radiomic workflow, the main factors that affect radiomic features computation can be found in the image acquisition and reconstruction phase, in the image pre-processing steps, and in the segmentation of the region of interest on which radiomic indices are extracted. Deep Neural Networks (DNNs), having shown their potentiality in the medical image processing and analysis field, can be seen as an attractive strategy to partially overcome the issues related to radiomic stability and mitigate their impact. In fact, DNN approaches can be prospectively integrated in the MRI radiomic workflow to improve image quality, obtain accurate and reproducible segmentations and generate standardized images. In this review, DNN methods that can be included in the image processing steps of the radiomic workflow are described and discussed, in the light of a detailed analysis of the literature in the context of MRI radiomic reliability.
Collapse
|
14
|
Ruiz-Garcia H, Middlebrooks EH, Trifiletti DM, Chaichana KL, Quinones-Hinojosa A, Sheehan JP. The Extent of Resection in Gliomas-Evidence-Based Recommendations on Methodological Aspects of Research Design. World Neurosurg 2022; 161:382-395.e3. [PMID: 35505558 DOI: 10.1016/j.wneu.2021.08.140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Modern neurosurgery has established maximal safe resection as a cornerstone in the management of diffuse gliomas. Evaluation of the extent of resection (EOR), and its association with certain outcomes or interventions, heavily depends on an adequate methodology to draw strong conclusions. We aim to identify weaknesses and limitations that may threaten the internal validity and generalizability of studies involving the EOR in patients with glioma and to suggest methodological recommendations that may help mitigate these threats. METHODS A systematic search was performed by querying PubMed, Web of Science, and Scopus since inception to April 30, 2021 using PICOS/PRISMA guidelines. Articles were then screened to identify high-impact studies evaluating the EOR in patients diagnosed with diffuse gliomas in accordance with predefined criteria. We identify common weakness and limitations during the evaluation of the EOR in the selected studies and then delineate potential methodological recommendations for future endeavors dealing with the EOR. RESULTS We identified 31 high-impact studies and found several research design issues including inconsistencies regarding EOR terminology, measurement, data collection, analysis, and reporting. Although some of these issues were related to now outdated reporting standards, many were still present in recent publications and deserve attention in contemporary and future research. CONCLUSIONS There is a current need to focus more attention to the methodological aspects of glioma research. Methodological inconsistencies may introduce weaknesses into the internal validity of the studies and hamper comparative analysis of cohorts from different institutions. We hope our recommendations will eventually help develop stronger methodological designs in future research endeavors.
Collapse
Affiliation(s)
- Henry Ruiz-Garcia
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, Florida, USA; Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida, USA; Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Jacksonville, Florida, USA
| | - Erik H Middlebrooks
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, Florida, USA; Department of Radiology, Mayo Clinic, Jacksonville, Florida, USA
| | - Daniel M Trifiletti
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, Florida, USA; Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida, USA
| | | | | | - Jason P Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|
15
|
Keenan KE, Delfino JG, Jordanova KV, Poorman ME, Chirra P, Chaudhari AS, Baessler B, Winfield J, Viswanath SE, deSouza NM. Challenges in ensuring the generalizability of image quantitation methods for MRI. Med Phys 2022; 49:2820-2835. [PMID: 34455593 PMCID: PMC8882689 DOI: 10.1002/mp.15195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 01/31/2023] Open
Abstract
Image quantitation methods including quantitative MRI, multiparametric MRI, and radiomics offer great promise for clinical use. However, many of these methods have limited clinical adoption, in part due to issues of generalizability, that is, the ability to translate methods and models across institutions. Researchers can assess generalizability through measurement of repeatability and reproducibility, thus quantifying different aspects of measurement variance. In this article, we review the challenges to ensuring repeatability and reproducibility of image quantitation methods as well as present strategies to minimize their variance to enable wider clinical implementation. We present possible solutions for achieving clinically acceptable performance of image quantitation methods and briefly discuss the impact of minimizing variance and achieving generalizability towards clinical implementation and adoption.
Collapse
Affiliation(s)
- Kathryn E. Keenan
- Physical Measurement Laboratory, National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305, USA
| | - Jana G. Delfino
- Center for Devices and Radiological Health, US Food and Drug Administration, 10993 New Hampshire Ave, Silver Spring, MD 20993, USA
| | - Kalina V. Jordanova
- Physical Measurement Laboratory, National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305, USA
| | - Megan E. Poorman
- Physical Measurement Laboratory, National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305, USA
| | - Prathyush Chirra
- Dept of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Akshay S. Chaudhari
- Department of Radiology, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA
- Department of Biomedical Data Science, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA
| | - Bettina Baessler
- University Hospital of Zurich and University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Jessica Winfield
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK
- MRI Unit, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Satish E. Viswanath
- Dept of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Nandita M. deSouza
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK
- MRI Unit, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| |
Collapse
|
16
|
Bone and Soft Tissue Tumors. Radiol Clin North Am 2022; 60:339-358. [DOI: 10.1016/j.rcl.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Haubold J, Hosch R, Parmar V, Glas M, Guberina N, Catalano OA, Pierscianek D, Wrede K, Deuschl C, Forsting M, Nensa F, Flaschel N, Umutlu L. Fully Automated MR Based Virtual Biopsy of Cerebral Gliomas. Cancers (Basel) 2021; 13:cancers13246186. [PMID: 34944806 PMCID: PMC8699054 DOI: 10.3390/cancers13246186] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the diagnostic accuracy of a radiomics analysis based on a fully automated segmentation and a simplified and robust MR imaging protocol to provide a comprehensive analysis of the genetic profile and grading of cerebral gliomas for everyday clinical use. METHODS MRI examinations of 217 therapy-naïve patients with cerebral gliomas, each comprising a non-contrast T1-weighted, FLAIR and contrast-enhanced T1-weighted sequence, were included in the study. In addition, clinical and laboratory parameters were incorporated into the analysis. The BraTS 2019 pretrained DeepMedic network was used for automated segmentation. The segmentations generated by DeepMedic were evaluated with 200 manual segmentations with a DICE score of 0.8082 ± 0.1321. Subsequently, the radiomics signatures were utilized to predict the genetic profile of ATRX, IDH1/2, MGMT and 1p19q co-deletion, as well as differentiating low-grade glioma from high-grade glioma. RESULTS The network provided an AUC (validation/test) for the differentiation between low-grade gliomas vs. high-grade gliomas of 0.981 ± 0.015/0.885 ± 0.02. The best results were achieved for the prediction of the ATRX expression loss with AUCs of 0.979 ± 0.028/0.923 ± 0.045, followed by 0.929 ± 0.042/0.861 ± 0.023 for the prediction of IDH1/2. The prediction of 1p19q and MGMT achieved moderate results, with AUCs of 0.999 ± 0.005/0.711 ± 0.128 for 1p19q and 0.854 ± 0.046/0.742 ± 0.050 for MGMT. CONCLUSION This fully automated approach utilizing simplified MR protocols to predict the genetic profile and grading of cerebral gliomas provides an easy and efficient method for non-invasive tumor decoding.
Collapse
Affiliation(s)
- Johannes Haubold
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, D-45147 Essen, Germany; (R.H.); (V.P.); (C.D.); (M.F.); (F.N.); (N.F.); (L.U.)
- Correspondence: ; Tel.: +49-201-723-84528; Fax: +49-201-723-1548
| | - René Hosch
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, D-45147 Essen, Germany; (R.H.); (V.P.); (C.D.); (M.F.); (F.N.); (N.F.); (L.U.)
| | - Vicky Parmar
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, D-45147 Essen, Germany; (R.H.); (V.P.); (C.D.); (M.F.); (F.N.); (N.F.); (L.U.)
| | - Martin Glas
- Department of Neurology, Division of Clinical Neurooncology, University Hospital Essen, D-45147 Essen, Germany;
| | - Nika Guberina
- Department of Radiotherapy, University Hospital Essen, D-45147 Essen, Germany;
| | - Onofrio Antonio Catalano
- Department of Radiology, Division of Abdominal Imaging, A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard University Medical School, Boston 02114, MA, USA;
| | - Daniela Pierscianek
- Department of Neurosurgery, University Hospital Essen, D-45147 Essen, Germany; (D.P.); (K.W.)
| | - Karsten Wrede
- Department of Neurosurgery, University Hospital Essen, D-45147 Essen, Germany; (D.P.); (K.W.)
| | - Cornelius Deuschl
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, D-45147 Essen, Germany; (R.H.); (V.P.); (C.D.); (M.F.); (F.N.); (N.F.); (L.U.)
| | - Michael Forsting
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, D-45147 Essen, Germany; (R.H.); (V.P.); (C.D.); (M.F.); (F.N.); (N.F.); (L.U.)
| | - Felix Nensa
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, D-45147 Essen, Germany; (R.H.); (V.P.); (C.D.); (M.F.); (F.N.); (N.F.); (L.U.)
| | - Nils Flaschel
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, D-45147 Essen, Germany; (R.H.); (V.P.); (C.D.); (M.F.); (F.N.); (N.F.); (L.U.)
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, D-45147 Essen, Germany; (R.H.); (V.P.); (C.D.); (M.F.); (F.N.); (N.F.); (L.U.)
| |
Collapse
|
18
|
Seo H, Yu L, Ren H, Li X, Shen L, Xing L. Deep Neural Network With Consistency Regularization of Multi-Output Channels for Improved Tumor Detection and Delineation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3369-3378. [PMID: 34048339 PMCID: PMC8692166 DOI: 10.1109/tmi.2021.3084748] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Deep learning is becoming an indispensable tool for imaging applications, such as image segmentation, classification, and detection. In this work, we reformulate a standard deep learning problem into a new neural network architecture with multi-output channels, which reflects different facets of the objective, and apply the deep neural network to improve the performance of image segmentation. By adding one or more interrelated auxiliary-output channels, we impose an effective consistency regularization for the main task of pixelated classification (i.e., image segmentation). Specifically, multi-output-channel consistency regularization is realized by residual learning via additive paths that connect main-output channel and auxiliary-output channels in the network. The method is evaluated on the detection and delineation of lung and liver tumors with public data. The results clearly show that multi-output-channel consistency implemented by residual learning improves the standard deep neural network. The proposed framework is quite broad and should find widespread applications in various deep learning problems.
Collapse
|
19
|
Xue C, Yuan J, Lo GG, Chang ATY, Poon DMC, Wong OL, Zhou Y, Chu WCW. Radiomics feature reliability assessed by intraclass correlation coefficient: a systematic review. Quant Imaging Med Surg 2021; 11:4431-4460. [PMID: 34603997 DOI: 10.21037/qims-21-86] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022]
Abstract
Radiomics research is rapidly growing in recent years, but more concerns on radiomics reliability are also raised. This review attempts to update and overview the current status of radiomics reliability research in the ever expanding medical literature from the perspective of a single reliability metric of intraclass correlation coefficient (ICC). To conduct this systematic review, Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. After literature search and selection, a total of 481 radiomics studies using CT, PET, or MRI, covering a wide range of subject and disease types, were included for review. In these highly heterogeneous studies, feature reliability to image segmentation was much more investigated than reliability to other factors, such as image acquisition, reconstruction, post-processing, and feature quantification. The reported ICCs also suggested high radiomics feature reliability to image segmentation. Image acquisition was found to introduce much more feature variability than image segmentation, in particular for MRI, based on the reported ICC values. Image post-processing and feature quantification yielded different levels of radiomics reliability and might be used to mitigate image acquisition-induced variability. Some common flaws and pitfalls in ICC use were identified, and suggestions on better ICC use were given. Due to the extremely high study heterogeneities and possible risks of bias, the degree of radiomics feature reliability that has been achieved could not yet be safely synthesized or derived in this review. More future researches on radiomics reliability are warranted.
Collapse
Affiliation(s)
- Cindy Xue
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China.,Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jing Yuan
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Gladys G Lo
- Department of Diagnostic & Interventional Radiology, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Amy T Y Chang
- Comprehensive Oncology Centre, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Darren M C Poon
- Comprehensive Oncology Centre, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Oi Lei Wong
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Yihang Zhou
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Winnie C W Chu
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
20
|
Eck B, Chirra PV, Muchhala A, Hall S, Bera K, Tiwari P, Madabhushi A, Seiberlich N, Viswanath SE. Prospective Evaluation of Repeatability and Robustness of Radiomic Descriptors in Healthy Brain Tissue Regions In Vivo Across Systematic Variations in T2-Weighted Magnetic Resonance Imaging Acquisition Parameters. J Magn Reson Imaging 2021; 54:1009-1021. [PMID: 33860966 PMCID: PMC8376104 DOI: 10.1002/jmri.27635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Radiomic descriptors from magnetic resonance imaging (MRI) are promising for disease diagnosis and characterization but may be sensitive to differences in imaging parameters. OBJECTIVE To evaluate the repeatability and robustness of radiomic descriptors within healthy brain tissue regions on prospectively acquired MRI scans; in a test-retest setting, under controlled systematic variations of MRI acquisition parameters, and after postprocessing. STUDY TYPE Prospective. SUBJECTS Fifteen healthy participants. FIELD STRENGTH/SEQUENCE A 3.0 T, axial T2 -weighted 2D turbo spin-echo pulse sequence, 181 scans acquired (2 test/retest reference scans and 12 with systematic variations in contrast weighting, resolution, and acceleration per participant; removing scans with artifacts). ASSESSMENT One hundred and forty-six radiomic descriptors were extracted from a contiguous 2D region of white matter in each scan, before and after postprocessing. STATISTICAL TESTS Repeatability was assessed in a test/retest setting and between manual and automated annotations for the reference scan. Robustness was evaluated between the reference scan and each group of variant scans (contrast weighting, resolution, and acceleration). Both repeatability and robustness were quantified as the proportion of radiomic descriptors that fell into distinct ranges of the concordance correlation coefficient (CCC): excellent (CCC > 0.85), good (0.7 ≤ CCC ≤ 0.85), moderate (0.5 ≤ CCC < 0.7), and poor (CCC < 0.5); for unprocessed and postprocessed scans separately. RESULTS Good to excellent repeatability was observed for 52% of radiomic descriptors between test/retest scans and 48% of descriptors between automated vs. manual annotations, respectively. Contrast weighting (TR/TE) changes were associated with the largest proportion of highly robust radiomic descriptors (21%, after processing). Image resolution changes resulted in the largest proportion of poorly robust radiomic descriptors (97%, before postprocessing). Postprocessing of images with only resolution/acceleration differences resulted in 73% of radiomic descriptors showing poor robustness. DATA CONCLUSIONS Many radiomic descriptors appear to be nonrobust across variations in MR contrast weighting, resolution, and acceleration, as well in test-retest settings, depending on feature formulation and postprocessing. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Brendan Eck
- Dept of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA,Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Prathyush V. Chirra
- Dept of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Avani Muchhala
- Dept of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Sophia Hall
- Dept of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Kaustav Bera
- Dept of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Pallavi Tiwari
- Dept of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Anant Madabhushi
- Dept of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA,Louis Stokes VA Medical Center, Cleveland, OH, USA
| | - Nicole Seiberlich
- Dept of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA,Michigan Institute for Imaging Technology and Translation, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Satish E. Viswanath
- Dept of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
21
|
Kirby J, Prior F, Petrick N, Hadjiski L, Farahani K, Drukker K, Kalpathy-Cramer J, Glide-Hurst C, El Naqa I. Introduction to special issue on datasets hosted in The Cancer Imaging Archive (TCIA). Med Phys 2021; 47:6026-6028. [PMID: 33202038 DOI: 10.1002/mp.14595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 01/19/2023] Open
Affiliation(s)
- Justin Kirby
- Frederick National Laboratory for Cancer Research, Cancer Imaging Informatics Lab, National Institute of Health, Frederick, MD, USA
| | - Fred Prior
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Nicholas Petrick
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Lubomir Hadjiski
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Keyvan Farahani
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, MD, USA
| | | | | | - Carri Glide-Hurst
- Department of Radiation Oncology, University of Wisconsin, Madison, WI, USA
| | - Issam El Naqa
- Department of Machine Learning, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
22
|
Sulman EP, Eisenstat DD. World Cancer Day 2021 - Perspectives in Pediatric and Adult Neuro-Oncology. Front Oncol 2021; 11:659800. [PMID: 34041027 PMCID: PMC8142853 DOI: 10.3389/fonc.2021.659800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Significant advances in our understanding of the molecular genetics of pediatric and adult brain tumors and the resulting rapid expansion of clinical molecular neuropathology have led to improvements in diagnostic accuracy and identified new targets for therapy. Moreover, there have been major improvements in all facets of clinical care, including imaging, surgery, radiation and supportive care. In selected cohorts of patients, targeted and immunotherapies have resulted in improved patient outcomes. Furthermore, adaptations to clinical trial design have facilitated our study of new agents and other therapeutic innovations. However, considerable work remains to be done towards extending survival for all patients with primary brain tumors, especially children and adults with diffuse midline gliomas harboring Histone H3 K27 mutations and adults with isocitrate dehydrogenase (IDH) wild-type, O6 guanine DNA-methyltransferase gene (MGMT) promoter unmethylated high grade gliomas. In addition to improvements in therapy and care, access to the advances in technology, such as particle radiation or biologic therapy, neuroimaging and molecular diagnostics in both developing and developed countries is needed to improve the outcome of patients with brain tumors.
Collapse
Affiliation(s)
- Erik P. Sulman
- Section of Neuro-oncology & Neurosurgical Oncology, Frontiers in Oncology and Frontiers in Neurology, Lausanne, Switzerland
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, NY, United States
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, New York, NY, United States
- NYU Langone Health, New York, NY, United States
| | - David D. Eisenstat
- Section of Neuro-oncology & Neurosurgical Oncology, Frontiers in Oncology and Frontiers in Neurology, Lausanne, Switzerland
- Children’s Cancer Centre, Royal Children’s Hospital, Parkville, VIC, Australia
- Murdoch Children’s Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
23
|
Pati S, Verma R, Akbari H, Bilello M, Hill VB, Sako C, Correa R, Beig N, Venet L, Thakur S, Serai P, Ha SM, Blake GD, Shinohara RT, Tiwari P, Bakas S. Reproducibility analysis of multi-institutional paired expert annotations and radiomic features of the Ivy Glioblastoma Atlas Project (Ivy GAP) dataset. Med Phys 2020; 47:6039-6052. [PMID: 33118182 DOI: 10.1002/mp.14556] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/26/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE The availability of radiographic magnetic resonance imaging (MRI) scans for the Ivy Glioblastoma Atlas Project (Ivy GAP) has opened up opportunities for development of radiomic markers for prognostic/predictive applications in glioblastoma (GBM). In this work, we address two critical challenges with regard to developing robust radiomic approaches: (a) the lack of availability of reliable segmentation labels for glioblastoma tumor sub-compartments (i.e., enhancing tumor, non-enhancing tumor core, peritumoral edematous/infiltrated tissue) and (b) identifying "reproducible" radiomic features that are robust to segmentation variability across readers/sites. ACQUISITION AND VALIDATION METHODS From TCIA's Ivy GAP cohort, we obtained a paired set (n = 31) of expert annotations approved by two board-certified neuroradiologists at the Hospital of the University of Pennsylvania (UPenn) and at Case Western Reserve University (CWRU). For these studies, we performed a reproducibility study that assessed the variability in (a) segmentation labels and (b) radiomic features, between these paired annotations. The radiomic variability was assessed on a comprehensive panel of 11 700 radiomic features including intensity, volumetric, morphologic, histogram-based, and textural parameters, extracted for each of the paired sets of annotations. Our results demonstrated (a) a high level of inter-rater agreement (median value of DICE ≥0.8 for all sub-compartments), and (b) ≈24% of the extracted radiomic features being highly correlated (based on Spearman's rank correlation coefficient) to annotation variations. These robust features largely belonged to morphology (describing shape characteristics), intensity (capturing intensity profile statistics), and COLLAGE (capturing heterogeneity in gradient orientations) feature families. DATA FORMAT AND USAGE NOTES We make publicly available on TCIA's Analysis Results Directory (https://doi.org/10.7937/9j41-7d44), the complete set of (a) multi-institutional expert annotations for the tumor sub-compartments, (b) 11 700 radiomic features, and (c) the associated reproducibility meta-analysis. POTENTIAL APPLICATIONS The annotations and the associated meta-data for Ivy GAP are released with the purpose of enabling researchers toward developing image-based biomarkers for prognostic/predictive applications in GBM.
Collapse
Affiliation(s)
- Sarthak Pati
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ruchika Verma
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Hamed Akbari
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michel Bilello
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Virginia B Hill
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Chiharu Sako
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ramon Correa
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Niha Beig
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ludovic Venet
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Siddhesh Thakur
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Prashant Serai
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Computer Science and Engineering, The Ohio State University, OH, 43210, USA
| | - Sung Min Ha
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Geri D Blake
- University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Russell Taki Shinohara
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA.,Penn Statistical Imaging and Visualization Endeavor (PennSIVE), University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Pallavi Tiwari
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Spyridon Bakas
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|