1
|
McGrory MJB, Versteeg E, Sbrizzi A, van den Berg CAT, Klomp D, Siero JCW. Fast and silent MRI using nonlinear gradient fields at the ultrasonic gradient switching frequency of 20 kHz with a Point Spread Function framework reconstruction. Magn Reson Med 2024; 92:2734-2748. [PMID: 39099149 DOI: 10.1002/mrm.30230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/16/2024] [Accepted: 07/09/2024] [Indexed: 08/06/2024]
Abstract
PURPOSE To demonstrate the feasibility of using a nonlinear gradient field for spatial encoding at the ultrasonic switching frequency of 20 kHz and present a framework to reconstruct data acquired in this way. METHODS Nonlinear encoding at 20 kHz was realized by using a single-axis silent gradient insert for imaging in the periphery, that, is the nonlinear region, of the gradient field. The gradient insert induces a rapidly oscillating gradient field in the phase-encode direction, which enables nonlinear encoding when combined with a Cartesian readout from the linear whole-body gradients. Data from a 2D gradient echo sequence were reconstructed using a point spread function (PSF) framework. Accelerated scans were also simulated via retrospective undersampling (R = 1 to R = 8) to determine the effectiveness of the PSF-framework for accelerated imaging. RESULTS Using a nonlinear gradient field switched at 20 kHz and the PSF-framework resulted in images of comparable quality to images from conventional Cartesian linear encoding. At increased acceleration factors (R ≤ 8), the PSF-framework outperformed linear SENSE reconstructions by improved controlling of aliasing artifacts. CONCLUSION Using the PSF-framework, images of comparable quality to conventional SENSE reconstructions are possible via combining traditional linear and ultrasonic oscillating nonlinear encoding fields. Using nonlinear gradient fields relaxes the demand for strictly linear gradient fields, enabling much higher slew rates with a reduced risk of peripheral nerve stimulation or cardiac stimulation, which could aid in extension to ultrasonic whole-body MRI. The lack of aliasing artifacts also highlights the potential of accelerated imaging using the PSF-framework.
Collapse
Affiliation(s)
- Michael J B McGrory
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Edwin Versteeg
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alessandro Sbrizzi
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cornelis A T van den Berg
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis Klomp
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen C W Siero
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
- Spinoza Center for Neuroimaging Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Elsaid NMH, Peters DC, Galiana G, Sinusas AJ. Clinical physiology: the crucial role of MRI in evaluation of peripheral artery disease. Am J Physiol Heart Circ Physiol 2024; 326:H1304-H1323. [PMID: 38517227 PMCID: PMC11381027 DOI: 10.1152/ajpheart.00533.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
Peripheral artery disease (PAD) is a common vascular disease that primarily affects the lower limbs and is defined by the constriction or blockage of peripheral arteries and may involve microvascular dysfunction and tissue injury. Patients with diabetes have more prominent disease of microcirculation and develop peripheral neuropathy, autonomic dysfunction, and medial vascular calcification. Early and accurate diagnosis of PAD and disease characterization are essential for personalized management and therapy planning. Magnetic resonance imaging (MRI) provides excellent soft tissue contrast and multiplanar imaging capabilities and is useful as a noninvasive imaging tool in the comprehensive physiological assessment of PAD. This review provides an overview of the current state of the art of MRI in the evaluation and characterization of PAD, including an analysis of the many applicable MR imaging techniques, describing the advantages and disadvantages of each approach. We also present recent developments, future clinical applications, and future MRI directions in assessing PAD. The development of new MR imaging technologies and applications in preclinical models with translation to clinical research holds considerable potential for improving the understanding of the pathophysiology of PAD and clinical applications for improving diagnostic precision, risk stratification, and treatment outcomes in patients with PAD.
Collapse
Affiliation(s)
- Nahla M H Elsaid
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Dana C Peters
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, United States
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States
| | - Gigi Galiana
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, United States
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States
| | - Albert J Sinusas
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, United States
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
3
|
Tušar K, Serša I. Use of nonlinear pulsed magnetic fields for spatial encoding in magnetic resonance imaging. Sci Rep 2024; 14:7521. [PMID: 38553559 PMCID: PMC10980706 DOI: 10.1038/s41598-024-58229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/26/2024] [Indexed: 04/02/2024] Open
Abstract
This study examines the use of nonlinear magnetic field coils for spatial encoding in magnetic resonance imaging. Existing theories on imaging with such coils share a complex reconstruction process that originates from a suboptimal signal interpretation in the spatial-frequency domain (k-space). In this study, a new solution to this problem is proposed, namely a two-step reconstruction process, in which in the first step, the image signal is converted into a frequency spectrum, and in the second step, the spectrum, which represents the distorted image, is geometrically and intensity corrected to obtain an undistorted image. This theory has been verified by numerical simulations and experimentally using a straight wire as a coil model for an extremely nonlinear magnetic field. The results of this study facilitate the use of simple encoding coil designs that can feature low inductance, allowing for much faster switching times and higher magnetic field gradients.
Collapse
Affiliation(s)
- Kaja Tušar
- Jožef Stefan International Postgraduate School, Jamova 39, 1000, Ljubljana, Slovenia
| | - Igor Serša
- Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Gao J, Jiang M, Erricolo D, Magin RL, Morfini G, Royston T, Larson AC, Li W. Identifying potential imaging markers for diffusion property changes in a mouse model of amyotrophic lateral sclerosis: Application of the continuous time random walk model to ultrahigh b-value diffusion-weighted MR images of spinal cord tissue. NMR IN BIOMEDICINE 2024; 37:e5037. [PMID: 37721118 DOI: 10.1002/nbm.5037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023]
Abstract
Diffusion MRI (dMRI) explores tissue microstructures by analyzing diffusion-weighted signal decay measured at different b-values. While relatively low b-values are used for most dMRI models, high b-value diffusion-weighted imaging (DWI) techniques have gained interest given that the non-Gaussian water diffusion behavior observed at high b-values can yield potentially valuable information. In this study, we investigated anomalous diffusion behaviors associated with degeneration of spinal cord tissue using a continuous time random walk (CTRW) model for DWI data acquired across an extensive range of ultrahigh b-values. The diffusion data were acquired in situ from the lumbar level of spinal cords of wild-type and age-matched transgenic SOD1G93A mice, a well-established animal model of amyotrophic lateral sclerosis (ALS) featuring progressive degeneration of axonal tracts in this tissue. Based on the diffusion decay behaviors at low and ultrahigh b-values, we applied the CTRW model using various combinations of b-values and compared diffusion metrics calculated from the CTRW model between the experimental groups. We found that diffusion-weighted signal decay curves measured with ultrahigh b-values (up to 858,022 s/mm2 in this study) were well represented by the CTRW model. The anomalous diffusion coefficient obtained from lumbar spinal cords was significantly higher in SOD1G93A mice compared with control mice (14.7 × 10-5 ± 5.54 × 10-5 vs. 7.87 × 10-5 ± 2.48 × 10-5 mm2 /s, p = 0.01). We believe this is the first study to illustrate the efficacy of the CTRW model for analyzing anomalous diffusion regimes at ultrahigh b-values. The CTRW modeling of ultrahigh b-value dMRI can potentially present a novel approach for noninvasively evaluating alterations in spinal cord tissue associated with ALS pathology.
Collapse
Affiliation(s)
- Jin Gao
- Department of Electrical and Computer Engineering, University of Illinois Chicago, Chicago, Illinois, USA
- Preclinical Imaging Core, University of Illinois Chicago, Chicago, Illinois, USA
| | - Mingchen Jiang
- Department of Physiology, Northwestern University, Chicago, Illinois, USA
| | - Danilo Erricolo
- Department of Electrical and Computer Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| | - Richard L Magin
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Thomas Royston
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| | - Andrew C Larson
- Department of Radiology, Northwestern University, Chicago, Illinois, USA
| | - Weiguo Li
- Preclinical Imaging Core, University of Illinois Chicago, Chicago, Illinois, USA
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
- Department of Radiology, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
5
|
Rodriguez Y, Elsaid NMH, Keil B, Galiana G. 3D FRONSAC with PSF reconstruction. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 355:107544. [PMID: 37672990 PMCID: PMC10592039 DOI: 10.1016/j.jmr.2023.107544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023]
Abstract
PURPOSE This study extends the Fast ROtary Nonlinear Spatial ACquisition (FRONSAC) method to include 3D acquisitions and reconstructions. It uses a transform domain reconstruction which is needed to make 3D reconstructions practical and provides new insights into how parallel imaging performance is enhanced by FRONSAC encoding. METHODS This work developed the first examples of FRONSAC incorporated into a 3D acquisition. 3D FRONSAC was tested on human subjects with both simple gradient echo and MPRAGE Cartesian acquisitions. The quality of the 3D FRONSAC images was evaluated using structural similarity index measure (SSIM), and normalized root mean square error (NRMSE). RESULTS FRONSAC encoding did not significantly modify the contrast obtained in either sequence, but it substantially improves the image quality of undersampled reconstruction. FRONSAC images have reduced undersampling ghosts and consistently improved SSIM and NRMSE. CONCLUSIONS Acquisition and reconstruction of 3D FRONSAC images are feasible, and the additional FRONSAC encoding improves image quality in highly undersampled images.
Collapse
Affiliation(s)
- Yanitza Rodriguez
- Department of Radiology and Biomedical Imaging. Yale School of Medicine, New Haven, CT, United States
| | - Nahla M H Elsaid
- Department of Radiology and Biomedical Imaging. Yale School of Medicine, New Haven, CT, United States
| | - Boris Keil
- Institute of Medical Physics and Radiation Protection, Department of Life Science Engineering, TH Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Gigi Galiana
- Department of Radiology and Biomedical Imaging. Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
6
|
Gudino N, Littin S. Advancements in Gradient System Performance for Clinical and Research MRI. J Magn Reson Imaging 2023; 57:57-70. [PMID: 36073722 DOI: 10.1002/jmri.28421] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 02/03/2023] Open
Abstract
In magnetic resonance imaging (MRI), spatial field gradients are applied along each axis to encode the location of the nuclear spin in the frequency domain. During recent years, the development of new gradient technologies has been focused on the generation of stronger and faster gradient fields for imaging with higher spatial and temporal resolution. This benefits imaging methods, such as brain diffusion and functional MRI, and enables human imaging at ultra-high field MRI. In addition to improving gradient performance, new technologies have been presented to minimize peripheral nerve stimulation and gradient-related acoustic noise, both generated by the rapid switching of strong gradient fields. This review will provide a general background on the gradient system and update on the state-of-the-art gradient technology. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Natalia Gudino
- MRI Engineering Core, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Sebastian Littin
- Medical Physics, Department of Radiology, Faculty of Medicine, University Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Hernando D, Zhang Y, Pirasteh A. Quantitative diffusion MRI of the abdomen and pelvis. Med Phys 2021; 49:2774-2793. [PMID: 34554579 DOI: 10.1002/mp.15246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/05/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022] Open
Abstract
Diffusion MRI has enormous potential and utility in the evaluation of various abdominal and pelvic disease processes including cancer and noncancer imaging of the liver, prostate, and other organs. Quantitative diffusion MRI is based on acquisitions with multiple diffusion encodings followed by quantitative mapping of diffusion parameters that are sensitive to tissue microstructure. Compared to qualitative diffusion-weighted MRI, quantitative diffusion MRI can improve standardization of tissue characterization as needed for disease detection, staging, and treatment monitoring. However, similar to many other quantitative MRI methods, diffusion MRI faces multiple challenges including acquisition artifacts, signal modeling limitations, and biological variability. In abdominal and pelvic diffusion MRI, technical acquisition challenges include physiologic motion (respiratory, peristaltic, and pulsatile), image distortions, and low signal-to-noise ratio. If unaddressed, these challenges lead to poor technical performance (bias and precision) and clinical outcomes of quantitative diffusion MRI. Emerging and novel technical developments seek to address these challenges and may enable reliable quantitative diffusion MRI of the abdomen and pelvis. Through systematic validation in phantoms, volunteers, and patients, including multicenter studies to assess reproducibility, these emerging techniques may finally demonstrate the potential of quantitative diffusion MRI for abdominal and pelvic imaging applications.
Collapse
Affiliation(s)
- Diego Hernando
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yuxin Zhang
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ali Pirasteh
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|