1
|
van Marlen P, van de Water S, Slotman BJ, Dahele M, Verbakel W. Technical note: Dosimetry and FLASH potential of UHDR proton PBS for small lung tumors: Bragg-peak-based delivery versus transmission beam and IMPT. Med Phys 2024; 51:7580-7588. [PMID: 38795376 DOI: 10.1002/mp.17185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/19/2024] [Accepted: 05/04/2024] [Indexed: 05/27/2024] Open
Abstract
BACKGROUND High-energy transmission beams (TBs) are currently the main delivery method for proton pencil beam scanning ultrahigh dose-rate (UHDR) FLASH radiotherapy. TBs place the Bragg-peaks behind the target, outside the patient, making delivery practical and achievement of high dose-rates more likely. However, they lead to higher integral dose compared to conventional intensity-modulated proton therapy (IMPT), in which Bragg-peaks are placed within the tumor. It is hypothesized that, when energy changes are not required and high beam currents are possible, Bragg-peak-based beams can not only achieve more conformal dose distributions than TBs, but also have more FLASH-potential. PURPOSE This works aims to verify this hypothesis by taking three different Bragg-peak-based delivery techniques and comparing them with TB and IMPT-plans in terms of dosimetry and FLASH-potential for single-fraction lung stereotactic body radiotherapy (SBRT). METHODS For a peripherally located lung target of various sizes, five different proton plans were made using "matRad" and inhouse-developed algorithms for spot/energy-layer/beam reduction and minimum monitor unit maximization: (1) IMPT-plan, reference for dosimetry, (2) TB-plan, reference for FLASH-amount, (3) pristine Bragg-peak plan (non-depth-modulated Bragg-peaks), (4) Bragg-peak plan using generic ridge filter, and (5) Bragg-peak plan using 3D range-modulated ridge filter. RESULTS Bragg-peak-based plans are able to achieve sufficient plan quality and high dose-rates. IMPT-plans resulted in lowest OAR-dose and integral dose (also after a FLASH sparing-effect of 30%) compared to both TB-plans and Bragg-peak-based plans. Bragg-peak-based plans vary only slightly between themselves and generally achieve lower integral dose than TB-plans. However, TB-plans nearly always resulted in lower mean lung dose than Bragg-peak-based plans and due to a higher amount of FLASH-dose for TB-plans, this difference increased after including a FLASH sparing-effect. CONCLUSION This work indicates that there is no benefit in using Bragg-peak-based beams instead of TBs for peripherally located, UHDR stereotactic lung radiotherapy, if lung dose is the priority.
Collapse
Affiliation(s)
- Patricia van Marlen
- Department of Radiation Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Steven van de Water
- Department of Radiation Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Ben J Slotman
- Department of Radiation Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Max Dahele
- Department of Radiation Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | | |
Collapse
|
2
|
Lin B, Li Y, Liu B, Fu S, Lin Y, Gao H. Cardinality-constrained plan-quality and delivery-time optimization method for proton therapy. Med Phys 2024; 51:4567-4580. [PMID: 38861654 DOI: 10.1002/mp.17249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/02/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND While minimizing plan delivery time is beneficial for proton therapy in terms of motion management, patient comfort, and treatment throughput, it often poses a tradeoff with optimizing plan quality. A key component of plan delivery time is the energy switching time, which is approximately proportional to the number of energy layers, that is, the cardinality. PURPOSE This work aims to develop a novel optimization method that can efficiently compute the pareto surface between plan quality and energy layer cardinality, for the planner to navigate through this quality-and-efficiency tradeoff and select the appropriate plan of a balanced tradeoff. METHODS A new IMPT method CARD is proposed that (1) explicitly incorporates the minimization of energy layer cardinality as an optimization objective, and (2) automatically generates a set of plans sequentially with a descending order in number of energy layers. The energy layer cardinality is penalized through the l1,0-norm regularization with an upper bound, and the upper bound is monotonically decreased to compute a series of treatment plans with gradually decreased energy layer cardinality on the quality-and-efficiency pareto surface. For any given treatment plan, the plan optimality is enforced using dose-volume planning objectives and the plan deliverability is imposed through minimum-monitor-unit (MMU) constraints, with optimization solution algorithm based on iterative convex relaxation. RESULTS The new method CARD was validated in comparison with the benchmark plan of all energy layers (P0), and a state-of-the-art method called MMSEL, using prostate, head-and-neck (HN), lung, pancreas, liver and brain cases. While labor-intensive and time-consuming manual parameter tuning was needed for MMSEL to generate plans of predefined energy layer cardinality, CARD automatically and efficiently computed all plans with sequentially decreasing predefined energy layer cardinality all at once. With the acceptable plan quality (i.e., no more than 110% of total optimization objective value from P0), CARD achieved the reduction of number of energy layers to 52% (from 77 to 40), 48% (from 135 to 65), 59% (from 85 to 50), 67% (from 52 to 35), 80% (from 50 to 40), and 30% (from 66 to 20), for prostate, HN, lung, pancreas, liver, and brain cases, respectively, compared to P0, with overall better plan quality than MMSEL. Moreover, due to the nonconvexity of the MMU constraint, CARD provided the similar or even smaller optimization objective than P0, at the same time with fewer number of energy layers, that is, 55 versus 77, 85 versus 135, 45 versus 52, and 25 versus 66 for prostate, HN, pancreas, and brain cases, respectively. CONCLUSIONS We have developed a novel optimization algorithm CARD that can efficiently and automatically compute a series of treatment plans of any given energy layer sequentially, which allows the planner to navigate through the plan-quality and energy-layer-cardinality tradeoff and select the appropriate plan of a balanced tradeoff.
Collapse
Affiliation(s)
- Bowen Lin
- Department of Intervention Medicine, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Yuliang Li
- Department of Intervention Medicine, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Bin Liu
- Department of Intervention Medicine, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Shujun Fu
- Department of Intervention Medicine, The Second Hospital of Shandong University, Jinan, Shandong, China
- School of Mathematics, Shandong University, Jinan, Shandong, China
| | - Yuting Lin
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hao Gao
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
3
|
Wang W, Liu X, Yang Z, Liao Y, Li P, Zhao R, Qin B. Improving delivery efficiency using spots and energy layers reduction algorithms based on a large momentum acceptance beamline. Med Phys 2023; 50:5189-5200. [PMID: 37099491 DOI: 10.1002/mp.16420] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Intensity-modulated proton therapy (IMPT) is a well-known delivery method of proton therapy. Besides higher plan quality, reducing the delivery time is also essential to IMPT plans. It can enhance patient comfort, reduce treatment costs, and improve delivery efficiency. From the perspective of treatment efficacy, it contributes to mitigating the intra-fractional motions and improving the accuracy of radiotherapy, especially for moving tumors. PURPOSE However, there is a tradeoff problem between the plan quality and delivery time. We consider the potential of a large momentum acceptance (LMA) beamline and apply the spots and energy layers reduction method to reduce the delivery time. METHODS The delivery time for each field consists of the energy layer switching time, spot traveling time, and dose delivery time. The larger momentum spread and higher intensity beam offered by the LMA beamline contribute to reducing the total delivery time compared to the conventional beamline. In addition to the dose fidelity term, an L1 and logarithm items were added to the objective function to increase the sparsity of the low-weighted spots and energy layers. After that, the low-weighted spots and layers were iteratively excluded in the reduced plan, which reduced the energy layer switching time and spot traveling time. We used the standard, reduced, and LMA-reduced plans to validate the proposed method and tested it on prostate and nasopharyngeal cases. Then, we compared and evaluated the plan quality, treatment time, and plan robustness against delivery uncertainty. RESULTS Compared with the standard plans, the number of spots in the LMA-reduced plans was on average reduced by 13 400 (95.6%) for prostate cases and by 48 300 (80.7%) for nasopharyngeal cases and the number of energy layers was on average reduced by 49 (61.3%) for prostate cases and by 97 (50.5%) for nasopharyngeal cases. And, the delivery time of the LMA-reduced plans was shortened from 34.5 to 8.6 s for prostate cases and from 163.8 to 53.6 s for nasopharyngeal cases. The LMA-reduced plans had comparable robustness to the spot monitor unit (MU) error compared with the standard plans, but the LMA-reduced plans became more sensitive to spot position uncertainty. CONCLUSION The delivery efficiency can be significantly improved using the LMA beamline and spots and energy layers reduction strategies. The method is promising to improve the efficiency of motion mitigation strategies for treating moving tumors.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Liu
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyong Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yicheng Liao
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Peilun Li
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Runxiao Zhao
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Qin
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Maradia V, Colizzi I, Meer D, Weber DC, Lomax AJ, Actis O, Psoroulas S. Universal and dynamic ridge filter for pencil beam scanning particle therapy: a novel concept for ultra-fast treatment delivery. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac9d1f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Abstract
Objective. In pencil beam scanning particle therapy, a short treatment delivery time is paramount for the efficient treatment of moving targets with motion mitigation techniques (such as breath-hold, rescanning, and gating). Energy and spot position change time are limiting factors in reducing treatment time. In this study, we designed a universal and dynamic energy modulator (ridge filter, RF) to broaden the Bragg peak, to reduce the number of energies and spots required to cover the target volume, thus lowering the treatment time. Approach. Our RF unit comprises two identical RFs placed just before the isocenter. Both RFs move relative to each other, changing the Bragg peak’s characteristics dynamically. We simulated different Bragg peak shapes with the RF in Monte Carlo simulation code (TOPAS) and validated them experimentally. We then delivered single-field plans with 1 Gy/fraction to different geometrical targets in water, to measure the dose delivery time using the RF and compare it with the clinical settings. Main results. Aligning the RFs in different positions produces different broadening in the Bragg peak; we achieved a maximum broadening of 2.5 cm. With RF we reduced the number of energies in a field by more than 60%, and the dose delivery time by 50%, for all geometrical targets investigated, without compromising the dose distribution transverse and distal fall-off. Significance. Our novel universal and dynamic RF allows for the adaptation of the Bragg peak broadening for a spot and/or energy layer based on the requirement of dose shaping in the target volume. It significantly reduces the number of energy layers and spots to cover the target volume, and thus the treatment time. This RF design is ideal for ultra-fast treatment delivery within a single breath-hold (5–10 s), efficient delivery of motion mitigation techniques, and small animal irradiation with ultra-high dose rates (FLASH).
Collapse
|
5
|
Maradia V, van de Water S, Meer D, Weber DC, Lomax AJ, Psoroulas S. Ultra-fast pencil beam scanning proton therapy for locally advanced non-small-cell lung cancers: field delivery within a single breath-hold. Radiother Oncol 2022; 174:23-29. [PMID: 35788354 DOI: 10.1016/j.radonc.2022.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/03/2022] [Accepted: 06/22/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE The use of motion mitigation techniques such as breath-hold can reduce the dosimetric uncertainty of lung cancer proton therapy. We studied the feasibility of pencil beam scanning (PBS) proton therapy field delivery within a single breath-hold at PSI's Gantry 2. METHODS In PBS proton therapy, the delivery time for a field is determined by the beam-on time and the dead time between proton spots (the time required to change the energy and/or lateral position). We studied ways to reduce beam-on and lateral scanning time, without sacrificing dosimetric plan quality, aiming at a single field delivery time of 15 seconds at maximum. We tested this approach on 10 lung cases with varying target volumes. To reduce the beam-on time, we increased the beam current at the isocenter by developing new beam optics for PSI's PROSCAN beamline and Gantry 2. To reduce the dead time between the spots, we used spot-reduced plan optimization. RESULTS We found that it is possible to achieve conventional fractionated (2 Gy(RBE)/fraction) and hypofractionated (6 Gy(RBE)/fraction) field delivery times within a single breath-hold (<15 sec) for a variety non-small-cell lung cancer cases. CONCLUSION In summary, the combination of spot reduction and improved beam line transmission is a promising approach for the treatment of mobile tumours within clinically achievable breath-hold durations.
Collapse
Affiliation(s)
- Vivek Maradia
- Paul Scherrer Institute, Switzerland; ETH Zurich, Switzerland.
| | - Steven van de Water
- Paul Scherrer Institute, Switzerland; Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | | | - Damien C Weber
- Paul Scherrer Institute, Switzerland; University Hospital Zurich, Switzerland; University Hospital Bern, University of Bern, Switzerland
| | - Antony J Lomax
- Paul Scherrer Institute, Switzerland; ETH Zurich, Switzerland
| | | |
Collapse
|
6
|
Maradia V, Giovannelli AC, Meer D, Weber DC, Lomax AJ, Schippers JM, Psoroulas S. Increase of the transmission and emittance acceptance through a cyclotron‐based proton therapy gantry. Med Phys 2022; 49:2183-2192. [PMID: 35099067 PMCID: PMC9303721 DOI: 10.1002/mp.15505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/11/2022] [Accepted: 01/26/2022] [Indexed: 11/11/2022] Open
Abstract
Purpose In proton therapy, the gantry, as the final part of the beamline, has a major effect on beam intensity and beam size at the isocenter. Most of the conventional beam optics of cyclotron‐based proton gantries have been designed with an imaging factor between 1 and 2 from the coupling point (CP) at the gantry entrance to the isocenter (patient location) meaning that to achieve a clinically desirable (small) beam size at isocenter, a small beam size is also required at the CP. Here we will show that such imaging factors are limiting the emittance which can be transported through the gantry. We, therefore, propose the use of large beam size and low divergence beam at the CP along with an imaging factor of 0.5 (2:1) in a new design of gantry beam optics to achieve substantial improvements in transmission and thus increase beam intensity at the isocenter. Methods The beam optics of our gantry have been re‐designed to transport higher emittance without the need of any mechanical modifications to the gantry beamline. The beam optics has been designed using TRANSPORT, with the resulting transmissions being calculated using Monte Carlo simulations (BDSIM code). Finally, the new beam optics have been tested with measurements performed on our Gantry 2 at PSI. Results With the new beam optics, we could maximize transmission through the gantry for a fixed emittance value. Additionally, we could transport almost four times higher emittance through the gantry compared to conventional optics, whilst achieving good transmissions through the gantry (>50%) with no increased losses in the gantry. As such, the overall transmission (cyclotron to isocenter) can be increased by almost a factor of 6 for low energies. Additionally, the point‐to‐point imaging inherent to the optics allows adjustment of the beam size at the isocenter by simply changing the beam size at the CP. Conclusion We have developed a new gantry beam optics which, by selecting a large beam size and low divergence at the gantry entrance and using an imaging factor of 0.5 (2:1), increases the emittance acceptance of the gantry, leading to a substantial increase in beam intensity at low energies. We expect that this approach could easily be adapted for most types of existing gantries.
Collapse
Affiliation(s)
- Vivek Maradia
- Center for Proton Therapy Paul Scherrer Institute Villigen Switzerland
- Department of Physics ETH Zurich Villigen Switzerland
| | - Anna Chiara Giovannelli
- Center for Proton Therapy Paul Scherrer Institute Villigen Switzerland
- Department of Physics ETH Zurich Villigen Switzerland
| | - David Meer
- Center for Proton Therapy Paul Scherrer Institute Villigen Switzerland
| | - Damien Charles Weber
- Center for Proton Therapy Paul Scherrer Institute Villigen Switzerland
- Department of Radiation Oncology University Hospital Zurich Zurich Switzerland
- Department of Radiation Oncology University Hospital Bern University of Bern Bern Switzerland
| | - Antony John Lomax
- Center for Proton Therapy Paul Scherrer Institute Villigen Switzerland
- Department of Physics ETH Zurich Villigen Switzerland
| | | | - Serena Psoroulas
- Center for Proton Therapy Paul Scherrer Institute Villigen Switzerland
| |
Collapse
|
7
|
Giovannelli AC, Maradia V, Meer D, Safai S, Psoroulas S, Togno M, Bula C, Weber DC, Lomax AJ, Fattori G. Beam properties within the momentum acceptance of a clinical gantry beamline for proton therapy. Med Phys 2022; 49:1417-1431. [PMID: 35041207 DOI: 10.1002/mp.15449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/08/2021] [Accepted: 12/29/2021] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Energy changes in Pencil Beam Scanning (PBS) proton therapy can be a limiting factor in delivery time, hence limiting patient throughput and the effectiveness of motion mitigation techniques requiring fast irradiation. In this study, we investigate the feasibility of performing fast and continuous energy modulation within the momentum acceptance of a clinical beamline for proton therapy. METHODS The alternative use of a local beam degrader at the gantry coupling point has been compared with a more common upstream regulation. Focusing on clinically relevant parameters, a complete beam properties characterization has been carried out. In particular, the acquired empirical data allowed to model and parametrize the errors in range and beam current to deliver clinical treatment plans. RESULTS For both options, the local and the upstream degrader, depth-dose curves measured in water for off-momentum beams were only marginally distorted (γ(1%,1mm) > 90%) and the errors in the spot position were within the clinical tolerance, even though increasing at the boundaries of the investigated scan range. The impact on the beam size was limited for the upstream degrader while dedicated strategies could be required to tackle the beam broadening through the local degrader. Range correction models were investigated for the upstream regulation. The impaired beam transport required a dedicated strategy for fine range control and compensation of beam intensity losses. Our current parametrization based on empirical data allowed energy modulation within acceptance with range errors (median 0.05 mm) and transmission (median -14%) compatible with clinical operation and remarkably low average 27 ms dead time for small energy changes. The technique, tested for the delivery of a skull glioma treatment, resulted in high gamma pass rates at 1%,1mm compared to conventional deliveries in experimental measurements with about 45% reduction of the energy switching time when regulation could be performed within acceptance. CONCLUSIONS Fast energy modulation within beamline acceptance has potential for clinical applications and, when realized with an upstream degrader, does not require modification in the beamline hardware, therefore being potentially applicable in any running facility. Centers with slow energy switching time can particularly profit from such a technique for reducing dead time during treatment delivery. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Anna Chiara Giovannelli
- Center for Proton Therapy, Paul Scherrer Institut, Switzerland.,Department of Physics, ETH Zürich, Switzerland
| | - Vivek Maradia
- Center for Proton Therapy, Paul Scherrer Institut, Switzerland.,Department of Physics, ETH Zürich, Switzerland
| | - David Meer
- Center for Proton Therapy, Paul Scherrer Institut, Switzerland
| | - Sairos Safai
- Center for Proton Therapy, Paul Scherrer Institut, Switzerland
| | | | - Michele Togno
- Center for Proton Therapy, Paul Scherrer Institut, Switzerland
| | - Christian Bula
- Center for Proton Therapy, Paul Scherrer Institut, Switzerland
| | - Damien Charles Weber
- Center for Proton Therapy, Paul Scherrer Institut, Switzerland.,University Hospital Zürich, Switzerland.,University Hospital Bern, University of Bern, Switzerland
| | - Antony John Lomax
- Center for Proton Therapy, Paul Scherrer Institut, Switzerland.,Department of Physics, ETH Zürich, Switzerland
| | - Giovanni Fattori
- Center for Proton Therapy, Paul Scherrer Institut, Switzerland.,Department of Physics, ETH Zürich, Switzerland
| |
Collapse
|
8
|
Yap J, De Franco A, Sheehy S. Future Developments in Charged Particle Therapy: Improving Beam Delivery for Efficiency and Efficacy. Front Oncol 2021; 11:780025. [PMID: 34956897 PMCID: PMC8697351 DOI: 10.3389/fonc.2021.780025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/16/2021] [Indexed: 01/09/2023] Open
Abstract
The physical and clinical benefits of charged particle therapy (CPT) are well recognized. However, the availability of CPT and complete exploitation of dosimetric advantages are still limited by high facility costs and technological challenges. There are extensive ongoing efforts to improve upon these, which will lead to greater accessibility, superior delivery, and therefore better treatment outcomes. Yet, the issue of cost remains a primary hurdle as utility of CPT is largely driven by the affordability, complexity and performance of current technology. Modern delivery techniques are necessary but limited by extended treatment times. Several of these aspects can be addressed by developments in the beam delivery system (BDS) which determines the overall shaping and timing capabilities enabling high quality treatments. The energy layer switching time (ELST) is a limiting constraint of the BDS and a determinant of the beam delivery time (BDT), along with the accelerator and other factors. This review evaluates the delivery process in detail, presenting the limitations and developments for the BDS and related accelerator technology, toward decreasing the BDT. As extended BDT impacts motion and has dosimetric implications for treatment, we discuss avenues to minimize the ELST and overview the clinical benefits and feasibility of a large energy acceptance BDS. These developments support the possibility of advanced modalities and faster delivery for a greater range of treatment indications which could also further reduce costs. Further work to realize methodologies such as volumetric rescanning, FLASH, arc, multi-ion and online image guided therapies are discussed. In this review we examine how increased treatment efficiency and efficacy could be achieved with improvements in beam delivery and how this could lead to faster and higher quality treatments for the future of CPT.
Collapse
Affiliation(s)
- Jacinta Yap
- School of Physics, University of Melbourne, Melbourne, VIC, Australia
| | - Andrea De Franco
- IFMIF Accelerator Development Group, Rokkasho Fusion Institute, National Institutes for Quantum Science and Technology, Aomori, Japan
| | - Suzie Sheehy
- School of Physics, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|