1
|
Meng K, Gong G, Liu R, Du S, Wang R, Yin Y. Determining the gross tumor volume for hepatocellular carcinoma radiotherapy based on multi-phase contrast-enhanced magnetic resonance imaging. Clin Transl Radiat Oncol 2025; 50:100877. [PMID: 39529652 PMCID: PMC11550759 DOI: 10.1016/j.ctro.2024.100877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose The aim of this study was to quantitatively analyze of the differences in determining the gross tumor volume (GTV) for hepatocellular carcinoma (HCC) radiotherapy using multi-phase contrast-enhanced magnetic resonance imaging (CE-MRI) and provide a reference for determining the GTV for radiotherapy of HCC. Methods This retrospective study analyzed 99 HCC patients (145 lesions) who underwent MR simulation. T1-weighted imaging (T1WI), contrast-enhanced T1WI (CE-T1WI) at 15 s, 45 s, 75 s, 150 s, and 20 min after contrast agent injection were performed, comprising a total of six imaging sequences. The GTVs identified on different sequences were grouped and fused in various combinations. The internal GTV (IGTV), which was the reference structure, was obtained by the fusion of all six sequences. Mean signal intensity (SI), volume, shape, and fibrous capsule (FC) thickness among GTVs were compared. Results (1) The mean SI value of GTV-T1WI, GTV-15s-GTV-20min in patients with transarterial chemoembolization (TACE) was lower by 14.09 % (GTV-T1WI) to 31.31 % (GTV-15s) compared with that in patients without TACE. Except for GTV-T1WI, the differences in SI values between the two groups for other GTVs were statistically significant (p < 0.05). (2) The volumes of GTV-T1WI, GTV-15s-GTV-20min ranged from 32.66-34.99 cm3. The volume differences between GTV-45s and the other GTVs were statistically significant (p < 0.05), excluding the GTV-T1WI. (3) Compared with the IGTV, the change trend of GTV volume reduction rate is consistent with that of dice similarity coefficients (DSC). (4) In the CE-T1WI sequences (except for CE-T1WI-15s), FC measurement was possible in 39.31 % of lesions (57/145), with the largest mean thickness observed at 75 s. Conclusion Although single-phase CE-MRI introduces uncertainty in HCC GTV determination, combining different phases CE-MRI can enhance accuracy. The CE-T1WI-45s should be routinely included as a necessary scanning sequence.
Collapse
Affiliation(s)
- Kangning Meng
- Department of Graduate, Shandong First Medical University, Shandong Academy of Medical Sciences, 250117 Jinan, China
- Department of Radiation Physics, Shandong First Medical University Affiliated Cancer Hospital, Shandong Cancer Hospital and Institute (Shandong Cancer Hospital), 250117 Jinan, China
| | - Guanzhong Gong
- Department of Radiation Physics, Shandong First Medical University Affiliated Cancer Hospital, Shandong Cancer Hospital and Institute (Shandong Cancer Hospital), 250117 Jinan, China
| | - Rui Liu
- Department of Graduate, Shandong First Medical University, Shandong Academy of Medical Sciences, 250117 Jinan, China
- Department of Radiation Physics, Shandong First Medical University Affiliated Cancer Hospital, Shandong Cancer Hospital and Institute (Shandong Cancer Hospital), 250117 Jinan, China
| | - Shanshan Du
- Department of Radiation Physics, Shandong First Medical University Affiliated Cancer Hospital, Shandong Cancer Hospital and Institute (Shandong Cancer Hospital), 250117 Jinan, China
| | - Ruozheng Wang
- Radiotherapy Cencer, Affiliated Cancer Hospital of Xinjiang Medical University, 830011 Urumqi, China
| | - Yong Yin
- Department of Radiation Physics, Shandong First Medical University Affiliated Cancer Hospital, Shandong Cancer Hospital and Institute (Shandong Cancer Hospital), 250117 Jinan, China
| |
Collapse
|
2
|
Wong YL, Li T, Liu C, Lee HFV, Cheung LYA, Hui ESK, Cao P, Cai J. Reconstruction of multi-phase parametric maps in 4D-magnetic resonance fingerprinting (4D-MRF) by optimization of local T1 and T2 sensitivities. Med Phys 2024; 51:4721-4735. [PMID: 38386904 DOI: 10.1002/mp.17001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Time-resolved magnetic resonance fingerprinting (MRF), or 4D-MRF, has been demonstrated its feasibility in motion management in radiotherapy (RT). However, the prohibitive long acquisition time is one of challenges of the clinical implementation of 4D-MRF. The shortening of acquisition time causes data insufficiency in each respiratory phase, leading to poor accuracies and consistencies of the predicted tissues' properties of each phase. PURPOSE To develop a technique for the reconstruction of multi-phase parametric maps in four-dimensional magnetic resonance fingerprinting (4D-MRF) through the optimization of local T1 and T2 sensitivities. METHODS The proposed technique employed an iterative optimization to tailor the data arrangement of each phase by manipulation of inter-phase frames, such that the T1 and T2 sensitivities, which were quantified by the modified Minkowski distance, of the truncated signal evolution curve was maximized. The multi-phase signal evolution curves were modified by sliding window reconstruction and inter-phase frame sharing (SWIFS). Motion correction (MC) and dot product matching were sequentially performed on the modified signal evolution and dictionary to reconstruct the multi-parametric maps. The proposed technique was evaluated by numerical simulations using the extended cardiac-torso (XCAT) phantom with regular and irregular breathing patterns, and by in vivo MRF data of three health volunteers and six liver cancer patients acquired at a 3.0 T scanner. RESULTS In simulation study, the proposed SWIFS approach achieved the overall mean absolute percentage error (MAPE) of 8.62% ± 1.59% and 16.2% ± 3.88% for the eight-phases T1 and T2 maps, respectively, in the sagittal view with irregular breathing patterns. In contrast, the overall MAPE of T1 and T2 maps generated by the conventional approach with multiple MRF repetitions were 22.1% ± 11.0% and 30.8% ± 14.9%, respectively. For in-vivo study, the predicted mean T1 and T2 of liver by the proposed SWIFS approach were 795 ms ± 38.9 ms and 58.3 ms ± 11.7 ms, respectively. CONCLUSIONS Both simulation and in vivo results showed that the approach empowered by T1 and T2 sensitivities optimization and sliding window under the shortened acquisition of MRF had superior performance in the estimation of multi-phase T1 and T2 maps as compared to the conventional approach with oversampling of MRF data.
Collapse
Affiliation(s)
- Yat Lam Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Clinical Oncology, Queen Mary Hospital, Hong Kong, China
| | - Tian Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Chenyang Liu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ho-Fun Victor Lee
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Lai-Yin Andy Cheung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Clinical Oncology, Oncology Center, St. Paul's Hospital, Hong Kong, China
| | - Edward Sai Kam Hui
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Peng Cao
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
3
|
Aljaafari L, Bird D, Buckley DL, Al-Qaisieh B, Speight R. A systematic review of 4D magnetic resonance imaging techniques for abdominal radiotherapy treatment planning. Phys Imaging Radiat Oncol 2024; 31:100604. [PMID: 39071158 PMCID: PMC11283022 DOI: 10.1016/j.phro.2024.100604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Background and purpose Four-dimensional magnetic resonance imaging (4DMRI) has gained interest as an alternative to the current standard for motion management four-dimensional tomography (4DCT) in abdominal radiotherapy treatment planning (RTP). This review aims to assess the 4DMRI literature in abdomen, focusing on technical considerations and the validity of using 4DMRI for patients within radiotherapy protocols. Materials and methods The review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A comprehensive search was performed across the Medline, Embase, Scopus, and Web of Science databases, covering all years up to December 31, 2023. The studies were grouped into two categories: 4DMRI reconstructed from 3DMRI acquisition; and 4DMRI reconstructed from multi-slice 2DMRI acquisition. Results A total of 39 studies met the inclusion criteria and were analysed to provide key findings. Key findings were 4DMRI had the potential to improve abdominal RTP for patients by providing accurate tumour definition and motion assessment compared to 4DCT. 4DMRI reconstructed from 3DMRI acquisition showed promise as a feasible approach for motion management in abdominal RTP regarding spatial resolution. Currently,the slice thickness achieved on 4DMRI reconstructed from multi-slice 2DMRI acquisitions was unsuitable for clinical purposes. Lastly, the current barriers for clinical implementation of 4DMRI were the limited availability of validated commercial solutions and the lack of larger cohort comparative studies to 4DCT for target delineation and plan optimisation. Conclusion 4DMRI showed potential improvements in abdominal RTP, but standards and guidelines for the use of 4DMRI in radiotherapy were required to demonstrate clinical benefits.
Collapse
Affiliation(s)
- Lamyaa Aljaafari
- Leeds Institute of Cardiovascular & Metabolic Medicine (LICAMM), University of Leeds, Woodhouse, Leeds, LS2 9JT, United Kingdom
- Department of Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, LS9 7TF, United Kingdom
- King Saud bin Abdulaziz University for Health Sciences, Department of Diagnostic Radiology Faculty of Applied Medical Sciences, Alahssa, Saudi Arabia
| | - David Bird
- Department of Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, LS9 7TF, United Kingdom
| | - David L. Buckley
- Leeds Institute of Cardiovascular & Metabolic Medicine (LICAMM), University of Leeds, Woodhouse, Leeds, LS2 9JT, United Kingdom
| | - Bashar Al-Qaisieh
- Department of Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, LS9 7TF, United Kingdom
| | - Richard Speight
- Department of Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, LS9 7TF, United Kingdom
| |
Collapse
|
4
|
Zhou Z, Hu P, Qi H. Stop moving: MR motion correction as an opportunity for artificial intelligence. MAGMA (NEW YORK, N.Y.) 2024; 37:397-409. [PMID: 38386151 DOI: 10.1007/s10334-023-01144-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/09/2023] [Accepted: 12/19/2023] [Indexed: 02/23/2024]
Abstract
Subject motion is a long-standing problem of magnetic resonance imaging (MRI), which can seriously deteriorate the image quality. Various prospective and retrospective methods have been proposed for MRI motion correction, among which deep learning approaches have achieved state-of-the-art motion correction performance. This survey paper aims to provide a comprehensive review of deep learning-based MRI motion correction methods. Neural networks used for motion artifacts reduction and motion estimation in the image domain or frequency domain are detailed. Furthermore, besides motion-corrected MRI reconstruction, how estimated motion is applied in other downstream tasks is briefly introduced, aiming to strengthen the interaction between different research areas. Finally, we identify current limitations and point out future directions of deep learning-based MRI motion correction.
Collapse
Affiliation(s)
- Zijian Zhou
- School of Biomedical Engineering, ShanghaiTech University, 4th Floor, BME Building, 393 Middle Huaxia Road, Pudong District, Shanghai, 201210, China
- Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai, China
| | - Peng Hu
- School of Biomedical Engineering, ShanghaiTech University, 4th Floor, BME Building, 393 Middle Huaxia Road, Pudong District, Shanghai, 201210, China.
- Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai, China.
| | - Haikun Qi
- School of Biomedical Engineering, ShanghaiTech University, 4th Floor, BME Building, 393 Middle Huaxia Road, Pudong District, Shanghai, 201210, China.
- Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
5
|
Shao HC, Mengke T, Deng J, Zhang Y. 3D cine-magnetic resonance imaging using spatial and temporal implicit neural representation learning (STINR-MR). Phys Med Biol 2024; 69:095007. [PMID: 38479004 PMCID: PMC11017162 DOI: 10.1088/1361-6560/ad33b7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024]
Abstract
Objective. 3D cine-magnetic resonance imaging (cine-MRI) can capture images of the human body volume with high spatial and temporal resolutions to study anatomical dynamics. However, the reconstruction of 3D cine-MRI is challenged by highly under-sampled k-space data in each dynamic (cine) frame, due to the slow speed of MR signal acquisition. We proposed a machine learning-based framework, spatial and temporal implicit neural representation learning (STINR-MR), for accurate 3D cine-MRI reconstruction from highly under-sampled data.Approach. STINR-MR used a joint reconstruction and deformable registration approach to achieve a high acceleration factor for cine volumetric imaging. It addressed the ill-posed spatiotemporal reconstruction problem by solving a reference-frame 3D MR image and a corresponding motion model that deforms the reference frame to each cine frame. The reference-frame 3D MR image was reconstructed as a spatial implicit neural representation (INR) network, which learns the mapping from input 3D spatial coordinates to corresponding MR values. The dynamic motion model was constructed via a temporal INR, as well as basis deformation vector fields (DVFs) extracted from prior/onboard 4D-MRIs using principal component analysis. The learned temporal INR encodes input time points and outputs corresponding weighting factors to combine the basis DVFs into time-resolved motion fields that represent cine-frame-specific dynamics. STINR-MR was evaluated using MR data simulated from the 4D extended cardiac-torso (XCAT) digital phantom, as well as two MR datasets acquired clinically from human subjects. Its reconstruction accuracy was also compared with that of the model-based non-rigid motion estimation method (MR-MOTUS) and a deep learning-based method (TEMPEST).Main results. STINR-MR can reconstruct 3D cine-MR images with high temporal (<100 ms) and spatial (3 mm) resolutions. Compared with MR-MOTUS and TEMPEST, STINR-MR consistently reconstructed images with better image quality and fewer artifacts and achieved superior tumor localization accuracy via the solved dynamic DVFs. For the XCAT study, STINR reconstructed the tumors to a mean ± SD center-of-mass error of 0.9 ± 0.4 mm, compared to 3.4 ± 1.0 mm of the MR-MOTUS method. The high-frame-rate reconstruction capability of STINR-MR allows different irregular motion patterns to be accurately captured.Significance. STINR-MR provides a lightweight and efficient framework for accurate 3D cine-MRI reconstruction. It is a 'one-shot' method that does not require external data for pre-training, allowing it to avoid generalizability issues typically encountered in deep learning-based methods.
Collapse
Affiliation(s)
- Hua-Chieh Shao
- The Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States of America
| | - Tielige Mengke
- The Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States of America
| | - Jie Deng
- The Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States of America
| | - You Zhang
- The Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States of America
| |
Collapse
|
6
|
Cao YH, Bourbonne V, Lucia F, Schick U, Bert J, Jaouen V, Visvikis D. CT respiratory motion synthesis using joint supervised and adversarial learning. Phys Med Biol 2024; 69:095001. [PMID: 38537289 DOI: 10.1088/1361-6560/ad388a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/27/2024] [Indexed: 04/16/2024]
Abstract
Objective.Four-dimensional computed tomography (4DCT) imaging consists in reconstructing a CT acquisition into multiple phases to track internal organ and tumor motion. It is commonly used in radiotherapy treatment planning to establish planning target volumes. However, 4DCT increases protocol complexity, may not align with patient breathing during treatment, and lead to higher radiation delivery.Approach.In this study, we propose a deep synthesis method to generate pseudo respiratory CT phases from static images for motion-aware treatment planning. The model produces patient-specific deformation vector fields (DVFs) by conditioning synthesis on external patient surface-based estimation, mimicking respiratory monitoring devices. A key methodological contribution is to encourage DVF realism through supervised DVF training while using an adversarial term jointly not only on the warped image but also on the magnitude of the DVF itself. This way, we avoid excessive smoothness typically obtained through deep unsupervised learning, and encourage correlations with the respiratory amplitude.Main results.Performance is evaluated using real 4DCT acquisitions with smaller tumor volumes than previously reported. Results demonstrate for the first time that the generated pseudo-respiratory CT phases can capture organ and tumor motion with similar accuracy to repeated 4DCT scans of the same patient. Mean inter-scans tumor center-of-mass distances and Dice similarity coefficients were 1.97 mm and 0.63, respectively, for real 4DCT phases and 2.35 mm and 0.71 for synthetic phases, and compares favorably to a state-of-the-art technique (RMSim).Significance.This study presents a deep image synthesis method that addresses the limitations of conventional 4DCT by generating pseudo-respiratory CT phases from static images. Although further studies are needed to assess the dosimetric impact of the proposed method, this approach has the potential to reduce radiation exposure in radiotherapy treatment planning while maintaining accurate motion representation. Our training and testing code can be found athttps://github.com/cyiheng/Dynagan.
Collapse
Affiliation(s)
- Y-H Cao
- LaTIM, UMR Inserm 1101, Université de Bretagne Occidentale, IMT Atlantique, Brest, France
| | - V Bourbonne
- LaTIM, UMR Inserm 1101, Université de Bretagne Occidentale, IMT Atlantique, Brest, France
- CHRU Brest University Hospital, Brest, France
| | - F Lucia
- LaTIM, UMR Inserm 1101, Université de Bretagne Occidentale, IMT Atlantique, Brest, France
- CHRU Brest University Hospital, Brest, France
| | - U Schick
- LaTIM, UMR Inserm 1101, Université de Bretagne Occidentale, IMT Atlantique, Brest, France
- CHRU Brest University Hospital, Brest, France
| | - J Bert
- LaTIM, UMR Inserm 1101, Université de Bretagne Occidentale, IMT Atlantique, Brest, France
- CHRU Brest University Hospital, Brest, France
| | - V Jaouen
- LaTIM, UMR Inserm 1101, Université de Bretagne Occidentale, IMT Atlantique, Brest, France
- IMT Atlantique, Brest, France
| | - D Visvikis
- LaTIM, UMR Inserm 1101, Université de Bretagne Occidentale, IMT Atlantique, Brest, France
| |
Collapse
|
7
|
Liu L, Shen L, Johansson A, Balter JM, Cao Y, Vitzthum L, Xing L. Volumetric MRI with sparse sampling for MR-guided 3D motion tracking via sparse prior-augmented implicit neural representation learning. Med Phys 2024; 51:2526-2537. [PMID: 38014764 PMCID: PMC10994763 DOI: 10.1002/mp.16845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/22/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Volumetric reconstruction of magnetic resonance imaging (MRI) from sparse samples is desirable for 3D motion tracking and promises to improve magnetic resonance (MR)-guided radiation treatment precision. Data-driven sparse MRI reconstruction, however, requires large-scale training datasets for prior learning, which is time-consuming and challenging to acquire in clinical settings. PURPOSE To investigate volumetric reconstruction of MRI from sparse samples of two orthogonal slices aided by sparse priors of two static 3D MRI through implicit neural representation (NeRP) learning, in support of 3D motion tracking during MR-guided radiotherapy. METHODS A multi-layer perceptron network was trained to parameterize the NeRP model of a patient-specific MRI dataset, where the network takes 4D data coordinates of voxel locations and motion states as inputs and outputs corresponding voxel intensities. By first training the network to learn the NeRP of two static 3D MRI with different breathing motion states, prior information of patient breathing motion was embedded into network weights through optimization. The prior information was then augmented from two motion states to 31 motion states by querying the optimized network at interpolated and extrapolated motion state coordinates. Starting from the prior-augmented NeRP model as an initialization point, we further trained the network to fit sparse samples of two orthogonal MRI slices and the final volumetric reconstruction was obtained by querying the trained network at 3D spatial locations. We evaluated the proposed method using 5-min volumetric MRI time series with 340 ms temporal resolution for seven abdominal patients with hepatocellular carcinoma, acquired using golden-angle radial MRI sequence and reconstructed through retrospective sorting. Two volumetric MRI with inhale and exhale states respectively were selected from the first 30 s of the time series for prior embedding and augmentation. The remaining 4.5-min time series was used for volumetric reconstruction evaluation, where we retrospectively subsampled each MRI to two orthogonal slices and compared model-reconstructed images to ground truth images in terms of image quality and the capability of supporting 3D target motion tracking. RESULTS Across the seven patients evaluated, the peak signal-to-noise-ratio between model-reconstructed and ground truth MR images was 38.02 ± 2.60 dB and the structure similarity index measure was 0.98 ± 0.01. Throughout the 4.5-min time period, gross tumor volume (GTV) motion estimated by deforming a reference state MRI to model-reconstructed and ground truth MRI showed good consistency. The 95-percentile Hausdorff distance between GTV contours was 2.41 ± 0.77 mm, which is less than the voxel dimension. The mean GTV centroid position difference between ground truth and model estimation was less than 1 mm in all three orthogonal directions. CONCLUSION A prior-augmented NeRP model has been developed to reconstruct volumetric MRI from sparse samples of orthogonal cine slices. Only one exhale and one inhale 3D MRI were needed to train the model to learn prior information of patient breathing motion for sparse image reconstruction. The proposed model has the potential of supporting 3D motion tracking during MR-guided radiotherapy for improved treatment precision and promises a major simplification of the workflow by eliminating the need for large-scale training datasets.
Collapse
Affiliation(s)
- Lianli Liu
- Department of Radiation Oncology, Stanford University, Palo Alto, California, USA
| | - Liyue Shen
- Department of Electrical Engineering, Stanford University, Palo Alto, California, USA
| | - Adam Johansson
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Immunology Genetics and pathology, Uppsala University, Uppsala, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - James M Balter
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yue Cao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lucas Vitzthum
- Department of Radiation Oncology, Stanford University, Palo Alto, California, USA
| | - Lei Xing
- Department of Radiation Oncology, Stanford University, Palo Alto, California, USA
- Department of Electrical Engineering, Stanford University, Palo Alto, California, USA
| |
Collapse
|
8
|
Murray V, Siddiq S, Crane C, El Homsi M, Kim TH, Wu C, Otazo R. Movienet: Deep space-time-coil reconstruction network without k-space data consistency for fast motion-resolved 4D MRI. Magn Reson Med 2024; 91:600-614. [PMID: 37849064 PMCID: PMC10842259 DOI: 10.1002/mrm.29892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023]
Abstract
PURPOSE To develop a novel deep learning approach for 4D-MRI reconstruction, named Movienet, which exploits space-time-coil correlations and motion preservation instead of k-space data consistency, to accelerate the acquisition of golden-angle radial data and enable subsecond reconstruction times in dynamic MRI. METHODS Movienet uses a U-net architecture with modified residual learning blocks that operate entirely in the image domain to remove aliasing artifacts and reconstruct an unaliased motion-resolved 4D image. Motion preservation is enforced by sorting the input image and reference for training in a linear motion order from expiration to inspiration. The input image was collected with a lower scan time than the reference XD-GRASP image used for training. Movienet is demonstrated for motion-resolved 4D MRI and motion-resistant 3D MRI of abdominal tumors on a therapeutic 1.5T MR-Linac (1.5-fold acquisition acceleration) and diagnostic 3T MRI scanners (2-fold and 2.25-fold acquisition acceleration for 4D and 3D, respectively). Image quality was evaluated quantitatively and qualitatively by expert clinical readers. RESULTS The reconstruction time of Movienet was 0.69 s (4 motion states) and 0.75 s (10 motion states), which is substantially lower than iterative XD-GRASP and unrolled reconstruction networks. Movienet enables faster acquisition than XD-GRASP with similar overall image quality and improved suppression of streaking artifacts. CONCLUSION Movienet accelerates data acquisition with respect to compressed sensing and reconstructs 4D images in less than 1 s, which would enable an efficient implementation of 4D MRI in a clinical setting for fast motion-resistant 3D anatomical imaging or motion-resolved 4D imaging.
Collapse
Affiliation(s)
- Victor Murray
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Syed Siddiq
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Christopher Crane
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Maria El Homsi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Tae-Hyung Kim
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Can Wu
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ricardo Otazo
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
9
|
Zhi S, Wang Y, Xiao H, Bai T, Li B, Tang Y, Liu C, Li W, Li T, Ge H, Cai J. Coarse-Super-Resolution-Fine Network (CoSF-Net): A Unified End-to-End Neural Network for 4D-MRI With Simultaneous Motion Estimation and Super-Resolution. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:162-174. [PMID: 37432808 DOI: 10.1109/tmi.2023.3294245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Four-dimensional magnetic resonance imaging (4D-MRI) is an emerging technique for tumor motion management in image-guided radiation therapy (IGRT). However, current 4D-MRI suffers from low spatial resolution and strong motion artifacts owing to the long acquisition time and patients' respiratory variations. If not managed properly, these limitations can adversely affect treatment planning and delivery in IGRT. In this study, we developed a novel deep learning framework called the coarse-super-resolution-fine network (CoSF-Net) to achieve simultaneous motion estimation and super-resolution within a unified model. We designed CoSF-Net by fully excavating the inherent properties of 4D-MRI, with consideration of limited and imperfectly matched training datasets. We conducted extensive experiments on multiple real patient datasets to assess the feasibility and robustness of the developed network. Compared with existing networks and three state-of-the-art conventional algorithms, CoSF-Net not only accurately estimated the deformable vector fields between the respiratory phases of 4D-MRI but also simultaneously improved the spatial resolution of 4D-MRI, enhancing anatomical features and producing 4D-MR images with high spatiotemporal resolution.
Collapse
|
10
|
Xiao H, Han X, Zhi S, Wong YL, Liu C, Li W, Liu W, Wang W, Zhang Y, Wu H, Lee HFV, Cheung LYA, Chang HC, Liao YP, Deng J, Li T, Cai J. Ultra-fast multi-parametric 4D-MRI image reconstruction for real-time applications using a downsampling-invariant deformable registration (D2R) model. Radiother Oncol 2023; 189:109948. [PMID: 37832790 DOI: 10.1016/j.radonc.2023.109948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/12/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND AND PURPOSE Motion estimation from severely downsampled 4D-MRI is essential for real-time imaging and tumor tracking. This simulation study developed a novel deep learning model for simultaneous MR image reconstruction and motion estimation, named the Downsampling-Invariant Deformable Registration (D2R) model. MATERIALS AND METHODS Forty-three patients undergoing radiotherapy for liver tumors were recruited for model training and internal validation. Five prospective patients from another center were recruited for external validation. Patients received 4D-MRI scans and 3D MRI scans. The 4D-MRI was retrospectively down-sampled to simulate real-time acquisition. Motion estimation was performed using the proposed D2R model. The accuracy and robustness of the proposed D2R model and baseline methods, including Demons, Elastix, the parametric total variation (pTV) algorithm, and VoxelMorph, were compared. High-quality (HQ) 4D-MR images were also constructed using the D2R model for real-time imaging feasibility verification. The image quality and motion accuracy of the constructed HQ 4D-MRI were evaluated. RESULTS The D2R model showed significantly superior and robust registration performance than all the baseline methods at downsampling factors up to 500. HQ T1-weighted and T2-weighted 4D-MR images were also successfully constructed with significantly improved image quality, sub-voxel level motion error, and real-time efficiency. External validation demonstrated the robustness and generalizability of the technique. CONCLUSION In this study, we developed a novel D2R model for deformation estimation of downsampled 4D-MR images. HQ 4D-MR images were successfully constructed using the D2R model. This model may expand the clinical implementation of 4D-MRI for real-time motion management during liver cancer treatment.
Collapse
Affiliation(s)
- Haonan Xiao
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China 999077; Department of Radiation Oncology and Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| | - Xinyang Han
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China 999077
| | - Shaohua Zhi
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China 999077
| | - Yat-Lam Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China 999077
| | - Chenyang Liu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China 999077
| | - Wen Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China 999077
| | - Weiwei Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Beijing Cancer Hospital & Institute, Peking University Cancer Hospital & Institute, Beijing 100000, China
| | - Weihu Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Beijing Cancer Hospital & Institute, Peking University Cancer Hospital & Institute, Beijing 100000, China
| | - Yibao Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Beijing Cancer Hospital & Institute, Peking University Cancer Hospital & Institute, Beijing 100000, China
| | - Hao Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Beijing Cancer Hospital & Institute, Peking University Cancer Hospital & Institute, Beijing 100000, China
| | - Ho-Fun Victor Lee
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China 999077
| | - Lai-Yin Andy Cheung
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China 999077
| | - Hing-Chiu Chang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China 999077
| | - Yen-Peng Liao
- Department of Radiation Oncology's Division of Medical Physics & Engineering, University of Texas Southwestern Medical Center, Texas 75390, USA
| | - Jie Deng
- Department of Radiation Oncology's Division of Medical Physics & Engineering, University of Texas Southwestern Medical Center, Texas 75390, USA
| | - Tian Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China 999077.
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China 999077.
| |
Collapse
|
11
|
Chen S, Eldeniz C, Fraum TJ, Ludwig DR, Gan W, Liu J, Kamilov US, Yang D, Gach HM, An H. Respiratory motion management using a single rapid MRI scan for a 0.35 T MRI-Linac system. Med Phys 2023; 50:6163-6176. [PMID: 37184305 DOI: 10.1002/mp.16469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND MRI has a rapidly growing role in radiation therapy (RT) for treatment planning, real-time image guidance, and beam gating (e.g., MRI-Linac). Free-breathing 4D-MRI is desirable in respiratory motion management for therapy. Moreover, high-quality 3D-MRIs without motion artifacts are needed to delineate lesions. Existing MRI methods require multiple scans with lengthy acquisition times or are limited by low spatial resolution, contrast, and signal-to-noise ratio. PURPOSE We developed a novel method to obtain motion-resolved 4D-MRIs and motion-integrated 3D-MRI reconstruction using a single rapid (35-45 s scan on a 0.35 T MRI-Linac. METHODS Golden-angle radial stack-of-stars MRI scans were acquired from a respiratory motion phantom and 12 healthy volunteers (n = 12) on a 0.35 T MRI-Linac. A self-navigated method was employed to detect respiratory motion using 2000 (acquisition time = 5-7 min) and the first 200 spokes (acquisition time = 35-45 s). Multi-coil non-uniform fast Fourier transform (MCNUFFT), compressed sensing (CS), and deep-learning Phase2Phase (P2P) methods were employed to reconstruct motion-resolved 4D-MRI using 2000 spokes (MCNUFFT2000) and 200 spokes (CS200 and P2P200). Deformable motion vector fields (MVFs) were computed from the 4D-MRIs and used to reconstruct motion-corrected 3D-MRIs with the MOtion Transformation Integrated forward-Fourier (MOTIF) method. Image quality was evaluated quantitatively using the structural similarity index measure (SSIM) and the root mean square error (RMSE), and qualitatively in a blinded radiological review. RESULTS Evaluation using the respiratory motion phantom experiment showed that the proposed method reversed the effects of motion blurring and restored edge sharpness. In the human study, P2P200 had smaller inaccuracy in MVFs estimation than CS200. P2P200 had significantly greater SSIMs (p < 0.0001) and smaller RMSEs (p < 0.001) than CS200 in motion-resolved 4D-MRI and motion-corrected 3D-MRI. The radiological review found that MOTIF 3D-MRIs using MCNUFFT2000 exhibited the highest image quality (scoring > 8 out of 10), followed by P2P200 (scoring > 5 out of 10), and then motion-uncorrected (scoring < 3 out of 10) in sharpness, contrast, and artifact-freeness. CONCLUSIONS We have successfully demonstrated a method for respiratory motion management for MRI-guided RT. The method integrated self-navigated respiratory motion detection, deep-learning P2P 4D-MRI reconstruction, and a motion integrated reconstruction (MOTIF) for 3D-MRI using a single rapid MRI scan (35-45 s) on a 0.35 T MRI-Linac system.
Collapse
Affiliation(s)
- Sihao Chen
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Cihat Eldeniz
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Tyler J Fraum
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Daniel R Ludwig
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Weijie Gan
- Department of Computer Science & Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jiaming Liu
- Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ulugbek S Kamilov
- Department of Computer Science & Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Deshan Yang
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| | - H Michael Gach
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Hongyu An
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
12
|
Liu C, Li T, Cao P, Hui ES, Wong YL, Wang Z, Xiao H, Zhi S, Zhou T, Li W, Lam SK, Cheung ALY, Lee VHF, Ying M, Cai J. Respiratory-Correlated 4-Dimensional Magnetic Resonance Fingerprinting for Liver Cancer Radiation Therapy Motion Management. Int J Radiat Oncol Biol Phys 2023; 117:493-504. [PMID: 37116591 DOI: 10.1016/j.ijrobp.2023.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/04/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
PURPOSE The objective of this study was to develop a respiratory-correlated (RC) 4-dimensional (4D) imaging technique based on magnetic resonance fingerprinting (MRF) (RC-4DMRF) for liver tumor motion management in radiation therapy. METHODS AND MATERIALS Thirteen patients with liver cancer were prospectively enrolled in this study. k-space MRF signals of the liver were acquired during free-breathing using the fast acquisition with steady-state precession sequence on a 3T scanner. The signals were binned into 8 respiratory phases based on respiratory surrogates, and interphase displacement vector fields were estimated using a phase-specific low-rank optimization method. Hereafter, the tissue property maps, including T1 and T2 relaxation times, and proton density, were reconstructed using a pyramid motion-compensated method that alternatively optimized interphase displacement vector fields and subspace images. To evaluate the efficacy of RC-4DMRF, amplitude motion differences and Pearson correlation coefficients were determined to assess measurement agreement in tumor motion between RC-4DMRF and cine magnetic resonance imaging (MRI); mean absolute percentage errors of the RC-4DMRF-derived tissue maps were calculated to reveal tissue quantification accuracy using digital human phantom; and tumor-to-liver contrast-to-noise ratio of RC-4DMRF images was compared with that of planning CT and contrast-enhanced MRI (CE-MRI) images. A paired Student t test was used for statistical significance analysis with a P value threshold of .05. RESULTS RC-4DMRF achieved excellent agreement in motion measurement with cine MRI, yielding the mean (± standard deviation) Pearson correlation coefficients of 0.95 ± 0.05 and 0.93 ± 0.09 and amplitude motion differences of 1.48 ± 1.06 mm and 0.81 ± 0.64 mm in the superior-inferior and anterior-posterior directions, respectively. Moreover, RC-4DMRF achieved high accuracy in tissue property quantification, with mean absolute percentage errors of 8.8%, 9.6%, and 5.0% for T1, T2, and proton density, respectively. Notably, the tumor contrast-to-noise ratio in RC-4DMRI-derived T1 maps (6.41 ± 3.37) was found to be the highest among all tissue property maps, approximately equal to that of CE-MRI (6.96 ± 1.01, P = .862), and substantially higher than that of planning CT (2.91 ± 1.97, P = .048). CONCLUSIONS RC-4DMRF demonstrated high accuracy in respiratory motion measurement and tissue properties quantification, potentially facilitating tumor motion management in liver radiation therapy.
Collapse
Affiliation(s)
- Chenyang Liu
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Tian Li
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Peng Cao
- Department of Diagnostic Radiology, University of Hong Kong, Hong Kong SAR, China
| | - Edward S Hui
- Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Hong Kong SAR, China; Department of Psychiatry, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yat-Lam Wong
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Zuojun Wang
- Department of Diagnostic Radiology, University of Hong Kong, Hong Kong SAR, China
| | - Haonan Xiao
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Shaohua Zhi
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Ta Zhou
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Wen Li
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Sai Kit Lam
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Hong Kong SAR, China; Research Institute for Smart Ageing, Hong Kong Polytechnic University, Hong Kong SAR, China
| | | | - Victor Ho-Fun Lee
- Department of Clinical Oncology, University of Hong Kong, Hong Kong SAR, China
| | - Michael Ying
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong SAR, China.
| | - Jing Cai
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong SAR, China; Research Institute for Smart Ageing, Hong Kong Polytechnic University, Hong Kong SAR, China.
| |
Collapse
|
13
|
Li T, Wang J, Yang Y, Glide-Hurst CK, Wen N, Cai J. Multi-parametric MRI for radiotherapy simulation. Med Phys 2023; 50:5273-5293. [PMID: 36710376 PMCID: PMC10382603 DOI: 10.1002/mp.16256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 09/10/2022] [Accepted: 12/06/2022] [Indexed: 01/31/2023] Open
Abstract
Magnetic resonance imaging (MRI) has become an important imaging modality in the field of radiotherapy (RT) in the past decade, especially with the development of various novel MRI and image-guidance techniques. In this review article, we will describe recent developments and discuss the applications of multi-parametric MRI (mpMRI) in RT simulation. In this review, mpMRI refers to a general and loose definition which includes various multi-contrast MRI techniques. Specifically, we will focus on the implementation, challenges, and future directions of mpMRI techniques for RT simulation.
Collapse
Affiliation(s)
- Tian Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jihong Wang
- Department of Radiation Physics, Division of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Yingli Yang
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong Univeristy School of Medicine, Shanghai, China
- SJTU-Ruijing-UIH Institute for Medical Imaging Technology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Carri K Glide-Hurst
- Department of Radiation Oncology, University of Wisconsin, Madison, Wisconsin, USA
| | - Ning Wen
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong Univeristy School of Medicine, Shanghai, China
- SJTU-Ruijing-UIH Institute for Medical Imaging Technology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- The Global Institute of Future Technology, Shanghai Jiaotong University, Shanghai, China
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
14
|
Eidex Z, Ding Y, Wang J, Abouei E, Qiu RL, Liu T, Wang T, Yang X. Deep Learning in MRI-guided Radiation Therapy: A Systematic Review. ARXIV 2023:arXiv:2303.11378v2. [PMID: 36994167 PMCID: PMC10055493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
MRI-guided radiation therapy (MRgRT) offers a precise and adaptive approach to treatment planning. Deep learning applications which augment the capabilities of MRgRT are systematically reviewed. MRI-guided radiation therapy offers a precise, adaptive approach to treatment planning. Deep learning applications which augment the capabilities of MRgRT are systematically reviewed with emphasis placed on underlying methods. Studies are further categorized into the areas of segmentation, synthesis, radiomics, and real time MRI. Finally, clinical implications, current challenges, and future directions are discussed.
Collapse
Affiliation(s)
- Zach Eidex
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Yifu Ding
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Jing Wang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Elham Abouei
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Richard L.J. Qiu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Tian Liu
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tonghe Wang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
15
|
Zhang L, Yin FF, Lu K, Moore B, Han S, Cai J. Improving liver tumor image contrast and synthesizing novel tissue contrasts by adaptive multiparametric MRI fusion. PRECISION RADIATION ONCOLOGY 2022; 6:190-198. [PMID: 36590077 PMCID: PMC9797133 DOI: 10.1002/pro6.1167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/23/2022] [Indexed: 01/05/2023] Open
Abstract
Purpose Multiparametric MRI contains rich and complementary anatomical and functional information, which is often utilized separately. This study aims to propose an adaptive multiparametric MRI (mpMRI) fusion method and examine its capability in improving tumor contrast and synthesizing novel tissue contrasts among liver cancer patients. Methods An adaptive mpMRI fusion method was developed with five components: image pre-processing, fusion algorithm, database, adaptation rules, and fused MRI. Linear-weighted summation algorithm was used for fusion. Weight-driven and feature-driven adaptations were designed for different applications. A clinical-friendly graphic-user-interface (GUI) was developed in Matlab and used for mpMRI fusion. Twelve liver cancer patients and a digital human phantom were included in the study. Synthesis of novel image contrast and enhancement of image signal and contrast were examined in patient cases. Tumor contrast-to-noise ratio (CNR) and liver signal-to-noise ratio (SNR) were evaluated and compared before and after mpMRI fusion. Results The fusion platform was applicable in both XCAT phantom and patient cases. Novel image contrasts, including enhancement of soft-tissue boundary, vertebral body, tumor, and composition of multiple image features in a single image were achieved. Tumor CNR improved from -1.70 ± 2.57 to 4.88 ± 2.28 (p < 0.0001) for T1-w, from 3.39 ± 1.89 to 7.87 ± 3.47 (p < 0.01) for T2-w, and from 1.42 ± 1.66 to 7.69 ± 3.54 (p < 0.001) for T2/T1-w MRI. Liver SNR improved from 2.92 ± 2.39 to 9.96 ± 8.60 (p < 0.05) for DWI. The coefficient of variation (CV) of tumor CNR lowered from 1.57, 0.56, and 1.17 to 0.47, 0.44, and 0.46 for T1-w, T2-w and T2/T1-w MRI, respectively. Conclusion A multiparametric MRI fusion method was proposed and a prototype was developed. The method showed potential in improving clinically relevant features such as tumor contrast and liver signal. Synthesis of novel image contrasts including the composition of multiple image features into single image set was achieved.
Collapse
Affiliation(s)
- Lei Zhang
- Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
- Medical Physics Graduate Program, Duke Kunshan University, Kunshan, Jiangsu, 215316 China
| | - Fang-Fang Yin
- Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
- Medical Physics Graduate Program, Duke Kunshan University, Kunshan, Jiangsu, 215316 China
| | - Ke Lu
- Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Brittany Moore
- Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Silu Han
- Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
16
|
Wong KL, Cheng KH, Lam SK, Liu C, Cai J. Review of functional magnetic resonance imaging in the assessment of nasopharyngeal carcinoma treatment response. PRECISION RADIATION ONCOLOGY 2022. [DOI: 10.1002/pro6.1161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Kwun Lam Wong
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR People's Republic of China
- Department of Radiotherapy Hong Kong Sanatorium & Hospital HKSH Medical Group Hong Kong SAR People's Republic of China
| | - Ka Hei Cheng
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR People's Republic of China
| | - Sai Kit Lam
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR People's Republic of China
| | - Chenyang Liu
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR People's Republic of China
| | - Jing Cai
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR People's Republic of China
| |
Collapse
|
17
|
Wong OL, Law MWK, Poon DMC, Yung RWH, Yu SK, Cheung KY, Yuan J. A pilot study of respiratory motion characterization in the abdomen using a fast volumetric 4D‐MRI for MR‐guided radiotherapy. PRECISION RADIATION ONCOLOGY 2022. [DOI: 10.1002/pro6.1153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Oi Lei Wong
- Research Department Hong Kong Sanatorium & Hospital, Happy Valley Hong Kong Hong Kong SAR China
| | - Max Wai Kong Law
- Medical Physics Department Hong Kong Sanatorium & Hospital, Happy Valley Hong Kong Hong Kong SAR China
| | - Darren Ming Chun Poon
- Comprehensive Oncology Center Hong Kong Sanatorium & Hospital, Happy Valley Hong Kong Hong Kong SAR China
| | - Raymond Wai Hung Yung
- Research Department Hong Kong Sanatorium & Hospital, Happy Valley Hong Kong Hong Kong SAR China
| | - Siu ki Yu
- Medical Physics Department Hong Kong Sanatorium & Hospital, Happy Valley Hong Kong Hong Kong SAR China
| | - Kin yin Cheung
- Medical Physics Department Hong Kong Sanatorium & Hospital, Happy Valley Hong Kong Hong Kong SAR China
| | - Jing Yuan
- Research Department Hong Kong Sanatorium & Hospital, Happy Valley Hong Kong Hong Kong SAR China
| |
Collapse
|