1
|
Deng L, Chen S, Li Y, Huang S, Yang X, Wang J. Synthetic CT generation based on multi-sequence MR using CycleGAN for head and neck MRI-only planning. Biomed Eng Lett 2024; 14:1319-1333. [PMID: 39465105 PMCID: PMC11502648 DOI: 10.1007/s13534-024-00402-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 10/29/2024] Open
Abstract
The purpose of this study is to investigate the influence of different magnetic resonance (MR) sequences on the accuracy of generating computed tomography (sCT) images for nasopharyngeal carcinoma based on CycleGAN. In this study, 143 patients' head and neck MR sequence (T1, T2, T1C, and T1DIXONC) and CT imaging data were acquired. The generator and discriminator of CycleGAN are improved to achieve the purpose of balance confrontation, and a cyclic consistent structure control domain is proposed in terms of loss function. Four different single-sequence MR images and one multi-sequence MR image were used to evaluate the accuracy of sCT. During the model testing phase, five testing scenarios were employed to further assess the mean absolute error, peak signal-to-noise ratio, structural similarity index, and root mean square error between the actual CT images and the sCT images generated by different models. T1 sequence-based sCT achieved better results in single-sequence MR-based sCT. Multi-sequence MR-based sCT achieved better results with T1 sequence-based sCT in terms of evaluation metrics. For metrological evaluation, the global gamma passage rate of sCT based on sequence MR was greater than 95% at 3%/3 mm, except for sCT based on T2 sequence MR. We developed a CycleGAN method to synthesize CT using different MR sequences, this method shows encouraging potential for dosimetric evaluation.
Collapse
Affiliation(s)
- Liwei Deng
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, 150080 Heilongjiang China
- Heilongjiang Provincial Key Laboratory of Complex Intelligent System and Integration, School of Automation, Harbin University of Science and Technology, Harbin, 150080 Heilongjiang China
| | - Songyu Chen
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, 150080 Heilongjiang China
| | - Yunfa Li
- Heilongjiang Provincial Key Laboratory of Complex Intelligent System and Integration, School of Automation, Harbin University of Science and Technology, Harbin, 150080 Heilongjiang China
| | - Sijuan Huang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong China
| | - Xin Yang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong China
| | - Jing Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631 China
| |
Collapse
|
2
|
Podobnik G, Ibragimov B, Tappeiner E, Lee C, Kim JS, Mesbah Z, Modzelewski R, Ma Y, Yang F, Rudecki M, Wodziński M, Peterlin P, Strojan P, Vrtovec T. HaN-Seg: The head and neck organ-at-risk CT and MR segmentation challenge. Radiother Oncol 2024; 198:110410. [PMID: 38917883 DOI: 10.1016/j.radonc.2024.110410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND AND PURPOSE To promote the development of auto-segmentation methods for head and neck (HaN) radiation treatment (RT) planning that exploit the information of computed tomography (CT) and magnetic resonance (MR) imaging modalities, we organized HaN-Seg: The Head and Neck Organ-at-Risk CT and MR Segmentation Challenge. MATERIALS AND METHODS The challenge task was to automatically segment 30 organs-at-risk (OARs) of the HaN region in 14 withheld test cases given the availability of 42 publicly available training cases. Each case consisted of one contrast-enhanced CT and one T1-weighted MR image of the HaN region of the same patient, with up to 30 corresponding reference OAR delineation masks. The performance was evaluated in terms of the Dice similarity coefficient (DSC) and 95-percentile Hausdorff distance (HD95), and statistical ranking was applied for each metric by pairwise comparison of the submitted methods using the Wilcoxon signed-rank test. RESULTS While 23 teams registered for the challenge, only seven submitted their methods for the final phase. The top-performing team achieved a DSC of 76.9 % and a HD95 of 3.5 mm. All participating teams utilized architectures based on U-Net, with the winning team leveraging rigid MR to CT registration combined with network entry-level concatenation of both modalities. CONCLUSION This challenge simulated a real-world clinical scenario by providing non-registered MR and CT images with varying fields-of-view and voxel sizes. Remarkably, the top-performing teams achieved segmentation performance surpassing the inter-observer agreement on the same dataset. These results set a benchmark for future research on this publicly available dataset and on paired multi-modal image segmentation in general.
Collapse
Affiliation(s)
- Gašper Podobnik
- University of Ljubljana, Faculty Electrical Engineering, Tržaška cesta 25, Ljubljana 1000, Slovenia.
| | - Bulat Ibragimov
- University of Ljubljana, Faculty Electrical Engineering, Tržaška cesta 25, Ljubljana 1000, Slovenia; University of Copenhagen, Department of Computer Science, Universitetsparken 1, Copenhagen 2100, Denmark
| | - Elias Tappeiner
- UMIT Tirol - Private University for Health Sciences and Health Technology, Eduard-Wallnöfer-Zentrum 1, Hall in Tirol 6060, Austria
| | - Chanwoong Lee
- Yonsei University, College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea; Yonsei Cancer Center, Department of RadiationOncology, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Jin Sung Kim
- Yonsei University, College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea; Yonsei Cancer Center, Department of RadiationOncology, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul 03722, South Korea; Oncosoft Inc, 37 Myeongmul-gil, Seodaemun-gu, Seoul 03722, South Korea
| | - Zacharia Mesbah
- Henri Becquerel Cancer Center, 1 Rue d'Amiens, Rouen 76000, France; Siemens Healthineers, 6 Rue du Général Audran, CS20146, Courbevoie 92412, France
| | - Romain Modzelewski
- Henri Becquerel Cancer Center, 1 Rue d'Amiens, Rouen 76000, France; Litis UR 4108, 684 Av. de l'Université, Saint- Étienne-du-Rouvray 76800, France
| | - Yihao Ma
- Guizhou Medical University, School of Biology & Engineering, 9FW8+2P3, Ankang Avenue, Gui'an New Area, Guiyang, Guizhou Province 561113, China
| | - Fan Yang
- Guizhou Medical University, School of Biology & Engineering, 9FW8+2P3, Ankang Avenue, Gui'an New Area, Guiyang, Guizhou Province 561113, China
| | - Mikołaj Rudecki
- AGH University of Kraków, Department of Measurement and Electronicsal, Mickiewicza 30, Kraków 30-059, Poland
| | - Marek Wodziński
- AGH University of Kraków, Department of Measurement and Electronicsal, Mickiewicza 30, Kraków 30-059, Poland; University of Applied Sciences Western Switzerland, Information Systems Institute, Rue de la Plaine 2, Sierre 3960, Switzerland
| | - Primož Peterlin
- Institute of Oncology, Ljubljana, Zaloška cesta 2, Ljubljana 1000, Slovenia
| | - Primož Strojan
- Institute of Oncology, Ljubljana, Zaloška cesta 2, Ljubljana 1000, Slovenia
| | - Tomaž Vrtovec
- University of Ljubljana, Faculty Electrical Engineering, Tržaška cesta 25, Ljubljana 1000, Slovenia
| |
Collapse
|
3
|
Villegas F, Dal Bello R, Alvarez-Andres E, Dhont J, Janssen T, Milan L, Robert C, Salagean GAM, Tejedor N, Trnková P, Fusella M, Placidi L, Cusumano D. Challenges and opportunities in the development and clinical implementation of artificial intelligence based synthetic computed tomography for magnetic resonance only radiotherapy. Radiother Oncol 2024; 198:110387. [PMID: 38885905 DOI: 10.1016/j.radonc.2024.110387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Synthetic computed tomography (sCT) generated from magnetic resonance imaging (MRI) can serve as a substitute for planning CT in radiation therapy (RT), thereby removing registration uncertainties associated with multi-modality imaging pairing, reducing costs and patient radiation exposure. CE/FDA-approved sCT solutions are nowadays available for pelvis, brain, and head and neck, while more complex deep learning (DL) algorithms are under investigation for other anatomic sites. The main challenge in achieving a widespread clinical implementation of sCT lies in the absence of consensus on sCT commissioning and quality assurance (QA), resulting in variation of sCT approaches across different hospitals. To address this issue, a group of experts gathered at the ESTRO Physics Workshop 2022 to discuss the integration of sCT solutions into clinics and report the process and its outcomes. This position paper focuses on aspects of sCT development and commissioning, outlining key elements crucial for the safe implementation of an MRI-only RT workflow.
Collapse
Affiliation(s)
- Fernanda Villegas
- Department of Oncology-Pathology, Karolinska Institute, Solna, Sweden; Radiotherapy Physics and Engineering, Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Solna, Sweden
| | - Riccardo Dal Bello
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Emilie Alvarez-Andres
- OncoRay - National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Jennifer Dhont
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Institut Jules Bordet, Department of Medical Physics, Brussels, Belgium; Université Libre De Bruxelles (ULB), Radiophysics and MRI Physics Laboratory, Brussels, Belgium
| | - Tomas Janssen
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lisa Milan
- Medical Physics Unit, Imaging Institute of Southern Switzerland (IIMSI), Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Charlotte Robert
- UMR 1030 Molecular Radiotherapy and Therapeutic Innovations, ImmunoRadAI, Paris-Saclay University, Institut Gustave Roussy, Inserm, Villejuif, France; Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Ghizela-Ana-Maria Salagean
- Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Romania; Department of Radiation Oncology, TopMed Medical Centre, Targu Mures, Romania
| | - Natalia Tejedor
- Department of Medical Physics and Radiation Protection, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Petra Trnková
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Marco Fusella
- Department of Radiation Oncology, Abano Terme Hospital, Italy
| | - Lorenzo Placidi
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Rome, Italy.
| | - Davide Cusumano
- Mater Olbia Hospital, Strada Statale Orientale Sarda 125, Olbia, Sassari, Italy
| |
Collapse
|
4
|
Podobnik G, Ibragimov B, Peterlin P, Strojan P, Vrtovec T. vOARiability: Interobserver and intermodality variability analysis in OAR contouring from head and neck CT and MR images. Med Phys 2024; 51:2175-2186. [PMID: 38230752 DOI: 10.1002/mp.16924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/31/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Accurate and consistent contouring of organs-at-risk (OARs) from medical images is a key step of radiotherapy (RT) cancer treatment planning. Most contouring approaches rely on computed tomography (CT) images, but the integration of complementary magnetic resonance (MR) modality is highly recommended, especially from the perspective of OAR contouring, synthetic CT and MR image generation for MR-only RT, and MR-guided RT. Although MR has been recognized as valuable for contouring OARs in the head and neck (HaN) region, the accuracy and consistency of the resulting contours have not been yet objectively evaluated. PURPOSE To analyze the interobserver and intermodality variability in contouring OARs in the HaN region, performed by observers with different level of experience from CT and MR images of the same patients. METHODS In the final cohort of 27 CT and MR images of the same patients, contours of up to 31 OARs were obtained by a radiation oncology resident (junior observer, JO) and a board-certified radiation oncologist (senior observer, SO). The resulting contours were then evaluated in terms of interobserver variability, characterized as the agreement among different observers (JO and SO) when contouring OARs in a selected modality (CT or MR), and intermodality variability, characterized as the agreement among different modalities (CT and MR) when OARs were contoured by a selected observer (JO or SO), both by the Dice coefficient (DC) and 95-percentile Hausdorff distance (HD95 $_{95}$ ). RESULTS The mean (±standard deviation) interobserver variability was 69.0 ± 20.2% and 5.1 ± 4.1 mm, while the mean intermodality variability was 61.6 ± 19.0% and 6.1 ± 4.3 mm in terms of DC and HD95 $_{95}$ , respectively, across all OARs. Statistically significant differences were only found for specific OARs. The performed MR to CT image registration resulted in a mean target registration error of 1.7 ± 0.5 mm, which was considered as valid for the analysis of intermodality variability. CONCLUSIONS The contouring variability was, in general, similar for both image modalities, and experience did not considerably affect the contouring performance. However, the results indicate that an OAR is difficult to contour regardless of whether it is contoured in the CT or MR image, and that observer experience may be an important factor for OARs that are deemed difficult to contour. Several of the differences in the resulting variability can be also attributed to adherence to guidelines, especially for OARs with poor visibility or without distinctive boundaries in either CT or MR images. Although considerable contouring differences were observed for specific OARs, it can be concluded that almost all OARs can be contoured with a similar degree of variability in either the CT or MR modality, which works in favor of MR images from the perspective of MR-only and MR-guided RT.
Collapse
Affiliation(s)
- Gašper Podobnik
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Bulat Ibragimov
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Tomaž Vrtovec
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
5
|
Podobnik G, Strojan P, Peterlin P, Ibragimov B, Vrtovec T. HaN-Seg: The head and neck organ-at-risk CT and MR segmentation dataset. Med Phys 2023; 50:1917-1927. [PMID: 36594372 DOI: 10.1002/mp.16197] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/17/2022] [Accepted: 12/07/2022] [Indexed: 01/04/2023] Open
Abstract
PURPOSE For the cancer in the head and neck (HaN), radiotherapy (RT) represents an important treatment modality. Segmentation of organs-at-risk (OARs) is the starting point of RT planning, however, existing approaches are focused on either computed tomography (CT) or magnetic resonance (MR) images, while multimodal segmentation has not been thoroughly explored yet. We present a dataset of CT and MR images of the same patients with curated reference HaN OAR segmentations for an objective evaluation of segmentation methods. ACQUISITION AND VALIDATION METHODS The cohort consists of HaN images of 56 patients that underwent both CT and T1-weighted MR imaging for image-guided RT. For each patient, reference segmentations of up to 30 OARs were obtained by experts performing manual pixel-wise image annotation. By maintaining the distribution of patient age and gender, and annotation type, the patients were randomly split into training Set 1 (42 cases or 75%) and test Set 2 (14 cases or 25%). Baseline auto-segmentation results are also provided by training the publicly available deep nnU-Net architecture on Set 1, and evaluating its performance on Set 2. DATA FORMAT AND USAGE NOTES The data are publicly available through an open-access repository under the name HaN-Seg: The Head and Neck Organ-at-Risk CT & MR Segmentation Dataset. Images and reference segmentations are stored in the NRRD file format, where the OAR filenames correspond to the nomenclature recommended by the American Association of Physicists in Medicine, and OAR and demographics information is stored in separate comma-separated value files. POTENTIAL APPLICATIONS The HaN-Seg: The Head and Neck Organ-at-Risk CT & MR Segmentation Challenge is launched in parallel with the dataset release to promote the development of automated techniques for OAR segmentation in the HaN. Other potential applications include out-of-challenge algorithm development and benchmarking, as well as external validation of the developed algorithms.
Collapse
Affiliation(s)
- Gašper Podobnik
- Faculty Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | | | | | - Bulat Ibragimov
- Faculty Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Tomaž Vrtovec
- Faculty Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
Chen S, Peng Y, Qin A, Liu Y, Zhao C, Deng X, Deraniyagala R, Stevens C, Ding X. MR-based synthetic CT image for intensity-modulated proton treatment planning of nasopharyngeal carcinoma patients. Acta Oncol 2022; 61:1417-1424. [DOI: 10.1080/0284186x.2022.2140017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Shupeng Chen
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, USA
| | - Yinglin Peng
- Department of Radiation Oncology, Sun Yat-Sen University, Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, PR China
| | - An Qin
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, USA
| | - Yimei Liu
- Department of Radiation Oncology, Sun Yat-Sen University, Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Chong Zhao
- Department of Radiation Oncology, Sun Yat-Sen University, Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Xiaowu Deng
- Department of Radiation Oncology, Sun Yat-Sen University, Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Rohan Deraniyagala
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, USA
| | - Craig Stevens
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, USA
| | - Xuanfeng Ding
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, USA
| |
Collapse
|