1
|
Yoshida K, Nagayama Y, Funama Y, Ishiuchi S, Motohara T, Masuda T, Nakaura T, Ishiko T, Hirai T, Beppu T. Low tube voltage and deep-learning reconstruction for reducing radiation and contrast medium doses in thin-slice abdominal CT: a prospective clinical trial. Eur Radiol 2024; 34:7386-7396. [PMID: 38753193 DOI: 10.1007/s00330-024-10793-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/23/2024] [Accepted: 04/08/2024] [Indexed: 10/29/2024]
Abstract
OBJECTIVES To investigate the feasibility of low-radiation dose and low iodinated contrast medium (ICM) dose protocol combining low-tube voltage and deep-learning reconstruction (DLR) algorithm in thin-slice abdominal CT. METHODS This prospective study included 148 patients who underwent contrast-enhanced abdominal CT with either 120-kVp (600 mgL/kg, n = 74) or 80-kVp protocol (360 mgL/kg, n = 74). The 120-kVp images were reconstructed using hybrid iterative reconstruction (HIR) (120-kVp-HIR), while 80-kVp images were reconstructed using HIR (80-kVp-HIR) and DLR (80-kVp-DLR) with 0.5 mm thickness. Size-specific dose estimate (SSDE) and iodine dose were compared between protocols. Image noise, CT attenuation, and contrast-to-noise ratio (CNR) were quantified. Noise power spectrum (NPS) and edge rise slope (ERS) were used to evaluate noise texture and edge sharpness, respectively. The subjective image quality was rated on a 4-point scale. RESULTS SSDE and iodine doses of 80-kVp were 40.4% (8.1 ± 0.9 vs. 13.6 ± 2.7 mGy) and 36.3% (21.2 ± 3.9 vs. 33.3 ± 4.3 gL) lower, respectively, than those of 120-kVp (both, p < 0.001). CT attenuation of vessels and solid organs was higher in 80-kVp than in 120-kVp images (all, p < 0.001). Image noise of 80-kVp-HIR and 80-kVp-DLR was higher and lower, respectively than that of 120-kVp-HIR (both p < 0.001). The highest CNR and subjective scores were attained in 80-kVp-DLR (all, p < 0.001). There were no significant differences in average NPS frequency and ERS between 120-kVp-HIR and 80-kVp-DLR (p ≥ 0.38). CONCLUSION Compared with the 120-kVp-HIR protocol, the combined use of 80-kVp and DLR techniques yielded superior subjective and objective image quality with reduced radiation and ICM doses at thin-section abdominal CT. CLINICAL RELEVANCE STATEMENT Scanning at low-tube voltage (80-kVp) combined with the deep-learning reconstruction algorithm may enhance diagnostic efficiency and patient safety by improving image quality and reducing radiation and contrast doses of thin-slice abdominal CT. KEY POINTS Reducing radiation and iodine doses is desirable; however, contrast and noise degradation can be detrimental. The 80-kVp scan with the deep-learning reconstruction technique provided better images with lower radiation and contrast doses. This technique may be efficient for improving diagnostic confidence and patient safety in thin-slice abdominal CT.
Collapse
Affiliation(s)
- Kenichiro Yoshida
- Department of Radiology, Yamaga Medical Center, 511 Yamaga, Kumamoto, 861-0501, Japan
- Graduate School of Health Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuo-ku, Kumamoto, 862-0976, Japan
| | - Yasunori Nagayama
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
| | - Yoshinori Funama
- Department of Medical Radiation Sciences, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuo-ku, Kumamoto, 862-0976, Japan
| | - Soichiro Ishiuchi
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Toshihiko Motohara
- Department of Gastroenterology, Yamaga Medical Center, 511 Yamaga, Kumamoto, 861-0501, Japan
| | - Toshiro Masuda
- Department of Surgery, Yamaga Medical Center, 511 Yamaga, Kumamoto, 861-0501, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Takatoshi Ishiko
- Department of Surgery, Yamaga Medical Center, 511 Yamaga, Kumamoto, 861-0501, Japan
| | - Toshinori Hirai
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Toru Beppu
- Department of Surgery, Yamaga Medical Center, 511 Yamaga, Kumamoto, 861-0501, Japan
| |
Collapse
|
2
|
Fletcher JG, Inoue A, Bratt A, Horst KK, Koo CW, Rajiah PS, Baffour FI, Ko JP, Remy-Jardin M, McCollough CH, Yu L. Photon-counting CT in Thoracic Imaging: Early Clinical Evidence and Incorporation Into Clinical Practice. Radiology 2024; 310:e231986. [PMID: 38501953 DOI: 10.1148/radiol.231986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Photon-counting CT (PCCT) is an emerging advanced CT technology that differs from conventional CT in its ability to directly convert incident x-ray photon energies into electrical signals. The detector design also permits substantial improvements in spatial resolution and radiation dose efficiency and allows for concurrent high-pitch and high-temporal-resolution multienergy imaging. This review summarizes (a) key differences in PCCT image acquisition and image reconstruction compared with conventional CT; (b) early evidence for the clinical benefit of PCCT for high-spatial-resolution diagnostic tasks in thoracic imaging, such as assessment of airway and parenchymal diseases, as well as benefits of high-pitch and multienergy scanning; (c) anticipated radiation dose reduction, depending on the diagnostic task, and increased utility for routine low-dose thoracic CT imaging; (d) adaptations for thoracic imaging in children; (e) potential for further quantitation of thoracic diseases; and (f) limitations and trade-offs. Moreover, important points for conducting and interpreting clinical studies examining the benefit of PCCT relative to conventional CT and integration of PCCT systems into multivendor, multispecialty radiology practices are discussed.
Collapse
Affiliation(s)
- Joel G Fletcher
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| | - Akitoshi Inoue
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| | - Alex Bratt
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| | - Kelly K Horst
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| | - Chi Wan Koo
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| | - Prabhakar Shantha Rajiah
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| | - Francis I Baffour
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| | - Jane P Ko
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| | - Martine Remy-Jardin
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| | - Cynthia H McCollough
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| | - Lifeng Yu
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| |
Collapse
|
3
|
Zhong J, Wu Z, Wang L, Chen Y, Xia Y, Wang L, Li J, Lu W, Shi X, Feng J, Dong H, Zhang H, Yao W. Impacts of Adaptive Statistical Iterative Reconstruction-V and Deep Learning Image Reconstruction Algorithms on Robustness of CT Radiomics Features: Opportunity for Minimizing Radiomics Variability Among Scans of Different Dose Levels. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:123-133. [PMID: 38343265 DOI: 10.1007/s10278-023-00901-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 03/02/2024]
Abstract
This study aims to investigate the influence of adaptive statistical iterative reconstruction-V (ASIR-V) and deep learning image reconstruction (DLIR) on CT radiomics feature robustness. A standardized phantom was scanned under single-energy CT (SECT) and dual-energy CT (DECT) modes at standard and low (20 and 10 mGy) dose levels. Images of SECT 120 kVp and corresponding DECT 120 kVp-like virtual monochromatic images were generated with filtered back-projection (FBP), ASIR-V at 40% (AV-40) and 100% (AV-100) blending levels, and DLIR algorithm at low (DLIR-L), medium (DLIR-M), and high (DLIR-H) strength levels. Ninety-four features were extracted via Pyradiomics. Reproducibility of features was calculated between standard and low dose levels, between reconstruction algorithms in reference to FBP images, and within scan mode, using intraclass correlation coefficient (ICC) and concordance correlation coefficient (CCC). The average percentage of features with ICC > 0.90 and CCC > 0.90 between the two dose levels was 21.28% and 20.75% in AV-40 images, and 39.90% and 35.11% in AV-100 images, respectively, and increased from 15.43 to 45.22% and from 15.43 to 44.15% with an increasing strength level of DLIR. The average percentage of features with ICC > 0.90 and CCC > 0.90 in reference to FBP images was 26.07% and 25.80% in AV-40 images, and 18.88% and 18.62% in AV-100 images, respectively, and decreased from 27.93 to 17.82% and from 27.66 to 17.29% with an increasing strength level of DLIR. DLIR and ASIR-V algorithms showed low reproducibility in reference to FBP images, while the high-strength DLIR algorithm provides an opportunity for minimizing radiomics variability due to dose reduction.
Collapse
Affiliation(s)
- Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Zhiyuan Wu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lingyun Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yong Chen
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yihan Xia
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lan Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jianying Li
- Computed Tomography Research Center, GE Healthcare, Beijing, 100176, China
| | - Wei Lu
- Computed Tomography Research Center, GE Healthcare, Shanghai, 201203, China
| | - Xiaomeng Shi
- Department of Materials, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Jianxing Feng
- Haohua Technology Co., Ltd., Shanghai, 201100, China
| | - Haipeng Dong
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Weiwu Yao
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| |
Collapse
|
6
|
Thor D, Titternes R, Poludniowski G. Spatial resolution, noise properties, and detectability index of a deep learning reconstruction algorithm for dual-energy CT of the abdomen. Med Phys 2023; 50:2775-2786. [PMID: 36774193 DOI: 10.1002/mp.16300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/18/2022] [Accepted: 01/17/2023] [Indexed: 02/13/2023] Open
Abstract
BACKGROUND Iterative reconstruction (IR) has increasingly replaced traditional reconstruction methods in computed tomography (CT). The next paradigm shift in image reconstruction is likely to come from artificial intelligence, with deep learning reconstruction (DLR) solutions already entering the clinic. An enduring disadvantage to IR has been a change in noise texture, which can affect diagnostic confidence. DLR has demonstrated the potential to overcome this issue and has recently become available for dual-energy CT. PURPOSE To evaluate the spatial resolution, noise properties, and detectability index of a commercially available DLR algorithm for dual-energy CT of the abdomen and compare it to single-energy (SE) CT. METHODS An oval 25 cm x 35 cm custom-made phantom was scanned on a GE Revolution CT scanner (GE Healthcare, Waukesha, WI) at two dose levels (13 and 5 mGy) and two iodine concentrations (8 and 2 mg/mL), using three typical abdominal scan protocols: dual-energy (DE), SE 80 kV (SE-80 kV) and SE 120 kV (SE-120 kV). Reconstructions were performed with three strengths of IR (ASiR-V: AR0%, AR50%, AR100%) and three strengths of DLR (TrueFidelity: low, medium, high). The DE acquisitions were reconstructed as mono-energetic images between 40 and 80 keV. The noise power spectrum (NPS), task transfer function (TTF), and detectability index (d') were determined for the reconstructions following the recommendations of AAPM Task Group 233. RESULTS Noise magnitude reductions (relative to AR0%) for the SE protocols were on average (-29%, -21%) for (AR50%, TF-M), while for DE-70 keV were (-28%, -43%). There was less reduction in mean frequency (fav ) for DLR than for IR, with similar results for SE and DE imaging. There was, however, a substantial change in the NPS shape when using DE with DLR, quantifiable by a marked reduction in the peak frequency (fpeak ) that was absent in SE mode. All protocols and reconstructions (including AR0%) exhibited slight to moderate shifts towards lower spatial frequencies at the lower dose (<12% in fav ). Spatial resolution was consistently superior for DLR compared to IR for SE but not for DE. All protocols and reconstructions (including AR0%) showed decreased resolution with reduced dose and iodine concentration, with less decrease for DLR compared to IR. DLR displayed a higher d' than IR. The effect of energy was large: d' increased with lower keV, and SE-80 kV had higher d' than SE-120 kV. Using DE with DLR could provide higher d' than SE-80 kV at the higher dose but not at lower dose. CONCLUSIONS DE imaging with DLR maintained spatial resolution and reduced noise magnitude while displaying less change in noise texture than IR. The d' was also higher with DLR than IR, suggesting superiority in detectability of iodinated contrast. Despite these trends being consistent with those previously established for SE imaging, there were some noteworthy differences. For DE imaging there was no improvement in resolution compared to IR and a change in noise texture. DE imaging with low keV and DLR had superior detectability to SE DLR at the high dose but was not better than SE-80 kV at low dose.
Collapse
Affiliation(s)
- Daniel Thor
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden.,Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Rebecca Titternes
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Gavin Poludniowski
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|