1
|
Tayebi S, Wise R, Zarghami A, Dabrowski W, Malbrain MLNG, Stiens J. An Introduction to Ventra: A Programmable Abdominal Phantom for Training, Educational, Research, and Development Purposes. SENSORS (BASEL, SWITZERLAND) 2024; 24:5431. [PMID: 39205127 PMCID: PMC11359502 DOI: 10.3390/s24165431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Intra-abdominal pressure (IAP) is a critical parameter in the care of critically ill patients, as elevated IAP can lead to reduced cardiac output and organ perfusion, potentially resulting in multiple organ dysfunction and failure. The current gold standard for measuring IAP is an indirect technique via the bladder. According to the Abdominal Compartment Society's Guidelines, new measurement methods/devices for IAP must be validated against the gold standard. OBJECTIVES This study introduces Ventra, an abdominal phantom designed to simulate different IAP levels, abdominal compliance, respiration-related IAP variations, and bladder dynamics. Ventra aims to facilitate the development and validation of new IAP measurement devices while reducing reliance on animal and cadaveric studies. Additionally, it offers potential applications in training and education for biomedical engineering students. This study provides a thorough explanation on the phantom's design and fabrication, which provides a low-cost solution for advancing IAP measurement research and education. The design concept, technical aspects, and a series of validation experiments determining whether Ventra is a suitable tool for future research are presented in this study. METHODS Ventra's performance was evaluated through a series of validation tests using a pressure gauge and two intra-gastric (Spiegelberg and CiMON) and two intra-bladder (Accuryn and TraumaGuard) pressure measurement devices. The mean and standard deviation of IAP recordings by each device were investigated. Bland-Altman analysis was used to evaluate bias, precision, limits of agreement, and percentage error for each system. Concordance analysis was performed to assess the ability of Ventra in tracking IAP changes. RESULTS The phantom demonstrated excellent agreement with reference pressure measurements, showing an average bias of 0.11 ± 0.49 mmHg. A concordance coefficient of 100% was observed for the phantom as well. Ventra accurately simulated different abdominal compliances, with higher IAP values resulting in lower compliance. Abdominal volume changes showed a bias of 0.08 ± 0.07 L/min, and bladder fill volume measurements showed an average difference of 0.90 ± 4.33 mL for volumes ranging from 50 to 500 mL. CONCLUSION The validation results were in agreement with the research guidelines of the world abdominal society. Ventra is a reliable tool that will facilitate the development and validation of new IAP measurement devices. It is an effective educational tool for biomedical engineering students as well.
Collapse
Affiliation(s)
- Salar Tayebi
- Department of Electronics and Informatics, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium; (A.Z.); (J.S.)
| | - Robert Wise
- Adult Intensive Care, John Radcliffe Hospital, Oxford University Hospitals Trust, Oxford OX3 7LE, UK;
- Discipline of Anaesthesia and Critical Care, School of Clinical Medicine, University of KwaZulu-Natal, Durban 4000, South Africa
- Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Ashkan Zarghami
- Department of Electronics and Informatics, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium; (A.Z.); (J.S.)
| | - Wojciech Dabrowski
- First Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, 20-090 Lublin, Poland; (W.D.); (M.L.N.G.M.)
| | - Manu L. N. G. Malbrain
- First Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, 20-090 Lublin, Poland; (W.D.); (M.L.N.G.M.)
- Medical Data Management, Medaman, 2440 Geel, Belgium
- International Fluid Academy, 3360 Lovenjoel, Belgium
| | - Johan Stiens
- Department of Electronics and Informatics, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium; (A.Z.); (J.S.)
| |
Collapse
|
2
|
Abstract
Magnetic resonance imaging-guided radiation therapy (MRIgRT) has improved soft tissue contrast over computed tomography (CT) based image-guided RT. Superior visualization of the target and surrounding radiosensitive structures has the potential to improve oncological outcomes partly due to safer dose-escalation and adaptive planning. In this review, we highlight the workflow of adaptive MRIgRT planning, which includes simulation imaging, daily MRI, identifying isocenter shifts, contouring, plan optimization, quality control, and delivery. Increased utilization of MRIgRT will depend on addressing technical limitations of this technology, while addressing treatment efficacy, cost-effectiveness, and workflow training.
Collapse
Affiliation(s)
- Cecil M Benitez
- Department of Radiation Oncology, UCLA Medical Center, Los Angeles, CA
| | - Michael D Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida; Miami, FL
| | - Luise A Künzel
- National Center for Tumor Diseases (NCT), Dresden; German Cancer Research Center (DKFZ), Heidelberg; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.; OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden Rossendorf, Dresden, Germany
| | - Daniela Thorwarth
- Department of Radiation Oncology, Section for Biomedical Physics, University of Tübingen, Tübingen, Germany..
| |
Collapse
|
3
|
Stengl C, Panow K, Arbes E, Muñoz ID, Christensen JB, Neelsen C, Dinkel F, Weidner A, Runz A, Johnen W, Liermann J, Echner G, Vedelago J, Jäkel O. A phantom to simulate organ motion and its effect on dose distribution in carbon ion therapy for pancreatic cancer. Phys Med Biol 2023; 68:245013. [PMID: 37918022 DOI: 10.1088/1361-6560/ad0902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023]
Abstract
Objective. Carbon ion radiotherapy is a promising radiation technique for malignancies like pancreatic cancer. However, organs' motion imposes challenges for achieving homogeneous dose delivery. In this study, an anthropomorphicPancreasPhantom forIon-beamTherapy (PPIeT) was developed to simulate breathing and gastrointestinal motion during radiotherapy.Approach. The developed phantom contains a pancreas, two kidneys, a duodenum, a spine and a spinal cord. The shell of the organs was 3D printed and filled with agarose-based mixtures. Hounsfield Units (HU) of PPIeTs' organs were measured by CT. The pancreas motion amplitude in cranial-caudal (CC) direction was evaluated from patients' 4D CT data. Motions within the obtained range were simulated and analyzed in PPIeT using MRI. Additionally, GI motion was mimicked by changing the volume of the duodenum and quantified by MRI. A patient-like treatment plan was calculated for carbon ions, and the phantom was irradiated in a static and moving condition. Dose measurements in the organs were performed using an ionization chamber and dosimetric films.Main results. PPIeT presented tissue equivalent HU and reproducible breathing-induced CC displacements of the pancreas between (3.98 ± 0.36) mm and a maximum of (18.19 ± 0.44) mm. The observed maximum change in distance of (14.28 ± 0.12) mm between pancreas and duodenum was consistent with findings in patients. Carbon ion irradiation revealed homogenous coverage of the virtual tumor at the pancreas in static condition with a 1% deviation from the treatment plan. Instead, the dose delivery during motion with the maximum amplitude yielded an underdosage of 21% at the target and an increased uncertainty by two orders of magnitude.Significance. A dedicated phantom was designed and developed for breathing motion assessment of dose deposition during carbon ion radiotherapy. PPIeT is a unique tool for dose verification in the pancreas and its organs at risk during end-to-end tests.
Collapse
Affiliation(s)
- Christina Stengl
- Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 672, Heidelberg D-69120, Germany
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Kathrin Panow
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Eric Arbes
- Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
- Department for Physics and Astronomy, Heidelberg University, Im Neuenheimer Feld 226, Heidelberg D-69120, Germany
| | - Iván D Muñoz
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Department for Physics and Astronomy, Heidelberg University, Im Neuenheimer Feld 226, Heidelberg D-69120, Germany
| | - Jeppe B Christensen
- Department of Radiation Safety and Security, Paul Scherrer Institute (PSI), Forschungsstrasse 111, Villigen PSI 5232, Switzerland
| | - Christian Neelsen
- Department of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
- Department of Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
- Department of Radiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, Berlin D-10117, Germany
| | - Fabian Dinkel
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Artur Weidner
- Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 672, Heidelberg D-69120, Germany
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Armin Runz
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Wibke Johnen
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Jakob Liermann
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, Heidelberg D-69120, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 450, Heidelberg D-69120, Germany
- National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, D-69120 Heidelberg, Germany
| | - Gernot Echner
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - José Vedelago
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, Heidelberg D-69120, Germany
| | - Oliver Jäkel
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 450, Heidelberg D-69120, Germany
| |
Collapse
|