1
|
Woods H, Leman JK, Meiler J. Modeling membrane geometries implicitly in Rosetta. Protein Sci 2024; 33:e4908. [PMID: 38358133 PMCID: PMC10868433 DOI: 10.1002/pro.4908] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
Interactions between membrane proteins (MPs) and lipid bilayers are critical for many cellular functions. In the Rosetta molecular modeling suite, the implicit membrane energy function is based on a "slab" model, which represent the membrane as a flat bilayer. However, in nature membranes often have a curvature that is important for function and/or stability. Even more prevalent, in structural biology research MPs are reconstituted in model membrane systems such as micelles, bicelles, nanodiscs, or liposomes. Thus, we have modified the existing membrane energy potentials within the RosettaMP framework to allow users to model MPs in different membrane geometries. We show that these modifications can be utilized in core applications within Rosetta such as structure refinement, protein-protein docking, and protein design. For MP structures found in curved membranes, refining these structures in curved, implicit membranes produces higher quality models with structures closer to experimentally determined structures. For MP systems embedded in multiple membranes, representing both membranes results in more favorable scores compared to only representing one of the membranes. Modeling MPs in geometries mimicking the membrane model system used in structure determination can improve model quality and model discrimination.
Collapse
Affiliation(s)
- Hope Woods
- Center of Structural Biology, Vanderbilt UniversityNashvilleTennesseeUSA
- Chemical and Physical Biology ProgramVanderbilt UniversityNashvilleTennesseeUSA
| | | | - Jens Meiler
- Center of Structural Biology, Vanderbilt UniversityNashvilleTennesseeUSA
- Department of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
- Institute for Drug Discovery, Leipzig University Medical SchoolLeipzigGermany
| |
Collapse
|
2
|
Walters SH, Castillo AJ, Develin AM, Labrecque CL, Qu Y, Fuglestad B. Investigating protein-membrane interactions using native reverse micelles constructed from naturally sourced lipids. Protein Sci 2023; 32:e4786. [PMID: 37746759 PMCID: PMC10578115 DOI: 10.1002/pro.4786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Advancing the study of membrane associated proteins and their interactions is dependent on accurate membrane models. While a variety of membrane models for high-resolution membrane protein study exist, most do not reflect the diversity of lipids found within biological membranes. In this work, we have developed native reverse micelles (nRMs) formulated with lipids from multiple eukaryotic sources, which encapsulate proteins and enable them to interact as they would with a biological membrane. Diverse formulations of nRMs using soy lecithin, porcine brain lipids, or bovine heart lipids combined with n-dodecylphosphocholine were developed and characterized by dynamic light scattering and 31 P-NMR. To optimize protein encapsulation, ubiquitin was used as a standard and protein NMR verified minimal changes to its structure. Peripheral membrane proteins, which bind reversibly to membranes, were encapsulated and include glutathione peroxidase 4 (GPx4), phosphatidylethanolamine-binding protein 1 (PEBP1), and fatty acid binding protein 4 (FABP4). All three proteins showed anticipated interactions with the membrane-like inner surface of the nRMs as assessed by protein NMR. The nRM formulations developed here allow for efficient, high-resolution study of membrane interacting proteins up to and beyond ~21 kDa, in a more biologically relevant context compared to other non-native membrane models. The approach outlined here may be applied to a wide range of lipid extracts, allowing study of a variety of membrane associated proteins in their specific biological context.
Collapse
Affiliation(s)
- Sara H. Walters
- Department of ChemistryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Abdul J. Castillo
- Department of ChemistryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Angela M. Develin
- Department of ChemistryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | | | - Yun Qu
- Department of ChemistryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Brian Fuglestad
- Department of ChemistryVirginia Commonwealth UniversityRichmondVirginiaUSA
- Institute for Structural Biology, Drug Discovery and DevelopmentVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
3
|
Zhang J, Kriebel CN, Wan Z, Shi M, Glaubitz C, He X. Automated Fragmentation Quantum Mechanical Calculation of 15N and 13C Chemical Shifts in a Membrane Protein. J Chem Theory Comput 2023; 19:7405-7422. [PMID: 37788419 DOI: 10.1021/acs.jctc.3c00621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
In this work, we developed an accurate and cost-effective automated fragmentation quantum mechanics/molecular mechanics (AF-QM/MM) method to calculate the chemical shifts of 15N and 13C of membrane proteins. The convergence of the AF-QM/MM method was tested using Krokinobacter eikastus rhodopsin 2 as a test case. When the distance threshold of the QM region is equal to or larger than 4.0 Å, the results of the AF-QM/MM calculations are close to convergence. In addition, the effects of selected density functionals, basis sets, and local chemical environment of target atoms on the chemical shift calculations were systematically investigated. Our results demonstrate that the predicted chemical shifts are more accurate when important environmental factors including cross-protomer interactions, lipid molecules, and solvent molecules are taken into consideration, especially for the 15N chemical shift prediction. Furthermore, with the presence of sodium ions in the environment, the chemical shift of residues, retinal, and retinal Schiff base are affected, which is consistent with the results of the solid-state nuclear magnetic resonance (NMR) experiment. Upon comparing the performance of various density functionals (namely, B3LYP, B3PW91, M06-2X, M06-L, mPW1PW91, OB95, and OPBE), the results show that mPW1PW91 is a suitable functional for the 15N and 13C chemical shift prediction of the membrane proteins. Meanwhile, we find that the improved accuracy of the 13Cβ chemical shift calculations can be achieved by the employment of the triple-ζ basis set. However, the employment of the triple-ζ basis set does not improve the accuracy of the 15N and 13Cα chemical shift calculations nor does the addition of a diffuse function improve the overall prediction accuracy of the chemical shifts. Our study also underscores that the AF-QM/MM method has significant advantages in predicting the chemical shifts of key ligands and nonstandard residues in membrane proteins than most widely used empirical models; therefore, it could be an accurate computational tool for chemical shift calculations on various types of biological systems.
Collapse
Affiliation(s)
- Jinhuan Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Clara Nassrin Kriebel
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Zheng Wan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Man Shi
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Clemens Glaubitz
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai 200062, China
| |
Collapse
|
4
|
Singewald K, Wilkinson JA, Hasanbasri Z, Saxena S. Beyond structure: Deciphering site-specific dynamics in proteins from double histidine-based EPR measurements. Protein Sci 2022; 31:e4359. [PMID: 35762707 PMCID: PMC9202549 DOI: 10.1002/pro.4359] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 12/27/2022]
Abstract
Site-specific dynamics in proteins are at the heart of protein function. While electron paramagnetic resonance (EPR) has potential to measure dynamics in large protein complexes, the reliance on flexible nitroxide labels is limitating especially for the accurate measurement of site-specific β-sheet dynamics. Here, we employed EPR spectroscopy to measure site-specific dynamics across the surface of a protein, GB1. Through the use of the double Histidine (dHis) motif, which enables labeling with a Cu(II) - nitrilotriacetic acid (NTA) complex, dynamics information was obtained for both α-helical and β-sheet sites. Spectral simulations of the resulting CW-EPR report unique site-specific fluctuations across the surface of GB1. Additionally, we performed molecular dynamics (MD) simulations to complement the EPR data. The dynamics observed from MD agree with the EPR results. Furthermore, we observe small changes in gǁ values for different sites, which may be due to small differences in coordination geometry and/or local electrostatics of the site. Taken together, this work expands the utility of Cu(II)NTA-based EPR measurements to probe information beyond distance constraints.
Collapse
Affiliation(s)
- Kevin Singewald
- Department of ChemistryUniversity of PittsburghPittsburghPAUSA
| | | | | | - Sunil Saxena
- Department of ChemistryUniversity of PittsburghPittsburghPAUSA
| |
Collapse
|
5
|
Abstract
Membrane proteins (MPs) play essential roles in numerous cellular processes. Because around 70% of the currently marketed drugs target MPs, a detailed understanding of their structure, binding properties, and functional dynamics in a physiologically relevant environment is crucial for a more detailed understanding of this important protein class. We here summarize the benefits of using lipid nanodiscs for NMR structural investigations and provide a detailed overview of the currently used lipid nanodisc systems as well as their applications in solution-state NMR. Despite the increasing use of other structural methods for the structure determination of MPs in lipid nanodiscs, solution NMR turns out to be a versatile tool to probe a wide range of MP features, ranging from the structure determination of small to medium-sized MPs to probing ligand and partner protein binding as well as functionally relevant dynamical signatures in a lipid nanodisc setting. We will expand on these topics by discussing recent NMR studies with lipid nanodiscs and work out a key workflow for optimizing the nanodisc incorporation of an MP for subsequent NMR investigations. With this, we hope to provide a comprehensive background to enable an informed assessment of the applicability of lipid nanodiscs for NMR studies of a particular MP of interest.
Collapse
Affiliation(s)
- Umut Günsel
- Bavarian NMR Center (BNMRZ) at the Department of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Strasse 2, 85748 Garching, Germany
| | - Franz Hagn
- Bavarian NMR Center (BNMRZ) at the Department of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Strasse 2, 85748 Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| |
Collapse
|
6
|
Investigating the Disordered and Membrane-Active Peptide A-Cage-C Using Conformational Ensembles. Molecules 2021; 26:molecules26123607. [PMID: 34204651 PMCID: PMC8231226 DOI: 10.3390/molecules26123607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
The driving forces and conformational pathways leading to amphitropic protein-membrane binding and in some cases also to protein misfolding and aggregation is the subject of intensive research. In this study, a chimeric polypeptide, A-Cage-C, derived from α-Lactalbumin is investigated with the aim of elucidating conformational changes promoting interaction with bilayers. From previous studies, it is known that A-Cage-C causes membrane leakages associated with the sporadic formation of amorphous aggregates on solid-supported bilayers. Here we express and purify double-labelled A-Cage-C and prepare partially deuterated bicelles as a membrane mimicking system. We investigate A-Cage-C in the presence and absence of these bicelles at non-binding (pH 7.0) and binding (pH 4.5) conditions. Using in silico analyses, NMR, conformational clustering, and Molecular Dynamics, we provide tentative insights into the conformations of bound and unbound A-Cage-C. The conformation of each state is dynamic and samples a large amount of overlapping conformational space. We identify one of the clusters as likely representing the binding conformation and conclude tentatively that the unfolding around the central W23 segment and its reorientation may be necessary for full intercalation at binding conditions (pH 4.5). We also see evidence for an overall elongation of A-Cage-C in the presence of model bilayers.
Collapse
|
7
|
Yu CJ, von Kugelgen S, Laorenza DW, Freedman DE. A Molecular Approach to Quantum Sensing. ACS CENTRAL SCIENCE 2021; 7:712-723. [PMID: 34079892 PMCID: PMC8161477 DOI: 10.1021/acscentsci.0c00737] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Indexed: 06/09/2023]
Abstract
The second quantum revolution hinges on the creation of materials that unite atomic structural precision with electronic and structural tunability. A molecular approach to quantum information science (QIS) promises to enable the bottom-up creation of quantum systems. Within the broad reach of QIS, which spans fields ranging from quantum computation to quantum communication, we will focus on quantum sensing. Quantum sensing harnesses quantum control to interrogate the world around us. A broadly applicable class of quantum sensors would feature adaptable environmental compatibility, control over distance from the target analyte, and a tunable energy range of interaction. Molecules enable customizable "designer" quantum sensors with tunable functionality and compatibility across a range of environments. These capabilities offer the potential to bring unmatched sensitivity and spatial resolution to address a wide range of sensing tasks from the characterization of dynamic biological processes to the detection of emergent phenomena in condensed matter. In this Outlook, we outline the concepts and design criteria central to quantum sensors and look toward the next generation of designer quantum sensors based on new classes of molecular sensors.
Collapse
|
8
|
Gimenez D, Phelan A, Murphy CD, Cobb SL. 19F NMR as a tool in chemical biology. Beilstein J Org Chem 2021; 17:293-318. [PMID: 33564338 PMCID: PMC7849273 DOI: 10.3762/bjoc.17.28] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
We previously reviewed the use of 19F NMR in the broad field of chemical biology [Cobb, S. L.; Murphy, C. D. J. Fluorine Chem. 2009, 130, 132-140] and present here a summary of the literature from the last decade that has the technique as the central method of analysis. The topics covered include the synthesis of new fluorinated probes and their incorporation into macromolecules, the application of 19F NMR to monitor protein-protein interactions, protein-ligand interactions, physiologically relevant ions and in the structural analysis of proteins and nucleic acids. The continued relevance of the technique to investigate biosynthesis and biodegradation of fluorinated organic compounds is also described.
Collapse
Affiliation(s)
- Diana Gimenez
- Department of Chemistry, Durham University, South Road, Durham, DH13LE, UK
| | - Aoife Phelan
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Cormac D Murphy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Steven L Cobb
- Department of Chemistry, Durham University, South Road, Durham, DH13LE, UK
| |
Collapse
|
9
|
Rößler P, Mathieu D, Gossert AD. NMR‐Studien an biologischen Makromolekülen (>100 kDa) ohne Notwendigkeit der Deuterierung: Das XL‐ALSOFAST Experiment mit verzögerter Entkopplung. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Philip Rößler
- Institut für Molekularbiologie und Biophysik Department Biologie und Biomolekulare NMR Spektroskopie Plattform Department Biologie ETH Zürich Otto-Stern-Weg 5 8093 Zürich Schweiz
| | - Daniel Mathieu
- Bruker BioSpin GmbH Silberstreifen 4 76287 Rheinstetten Deutschland
| | - Alvar D. Gossert
- Institut für Molekularbiologie und Biophysik Department Biologie und Biomolekulare NMR Spektroskopie Plattform Department Biologie ETH Zürich Otto-Stern-Weg 5 8093 Zürich Schweiz
| |
Collapse
|
10
|
Rößler P, Mathieu D, Gossert AD. Enabling NMR Studies of High Molecular Weight Systems Without the Need for Deuteration: The XL-ALSOFAST Experiment with Delayed Decoupling. Angew Chem Int Ed Engl 2020; 59:19329-19337. [PMID: 32743971 PMCID: PMC7589290 DOI: 10.1002/anie.202007715] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Indexed: 11/30/2022]
Abstract
Current biological research increasingly focusses on large human proteins and their complexes. Such proteins are difficult to study by NMR spectroscopy because they often can only be produced in higher eukaryotic expression systems, where deuteration is hardly feasible. Here, we present the XL-ALSOFAST-[13 C,1 H]-HMQC experiment with much improved sensitivity for fully protonated high molecular weight proteins. For the tested systems ranging from 100 to 240 kDa in size, 3-fold higher sensitivity was obtained on average for fast relaxing signals compared to current state-of-the-art experiments. In the XL-ALSOFAST approach, non-observed magnetisation is optimally exploited and transverse relaxation is minimized by the newly introduced concept of delayed decoupling. The combination of high sensitivity and superior artefact suppression makes it ideal for studying inherently unstable membrane proteins or for analysing therapeutic antibodies at natural 13 C abundance. The XL-ALSOFAST and delayed decoupling will therefore expand the range of biomolecular systems accessible to NMR spectroscopy.
Collapse
Affiliation(s)
- Philip Rößler
- Institute of Molecular Biology and BiophysicsDepartment of Biology and Biomolecular NMR Spectroscopy PlatformDepartment of BiologyETH ZürichOtto-Stern-Weg 58093ZürichSwitzerland
| | - Daniel Mathieu
- Bruker BioSpin GmbHSilberstreifen 476287RheinstettenGermany
| | - Alvar D. Gossert
- Institute of Molecular Biology and BiophysicsDepartment of Biology and Biomolecular NMR Spectroscopy PlatformDepartment of BiologyETH ZürichOtto-Stern-Weg 58093ZürichSwitzerland
| |
Collapse
|
11
|
Gravel AE, Arnold AA, Fillion M, Auger M, Warschawski DE, Marcotte I. Magnetically-orientable Tween-based model membranes for NMR studies of proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183379. [DOI: 10.1016/j.bbamem.2020.183379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 11/16/2022]
|
12
|
Li Q, Kang C. A Practical Perspective on the Roles of Solution NMR Spectroscopy in Drug Discovery. Molecules 2020; 25:molecules25132974. [PMID: 32605297 PMCID: PMC7411973 DOI: 10.3390/molecules25132974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/21/2020] [Accepted: 06/26/2020] [Indexed: 11/26/2022] Open
Abstract
Solution nuclear magnetic resonance (NMR) spectroscopy is a powerful tool to study structures and dynamics of biomolecules under physiological conditions. As there are numerous NMR-derived methods applicable to probe protein–ligand interactions, NMR has been widely utilized in drug discovery, especially in such steps as hit identification and lead optimization. NMR is frequently used to locate ligand-binding sites on a target protein and to determine ligand binding modes. NMR spectroscopy is also a unique tool in fragment-based drug design (FBDD), as it is able to investigate target-ligand interactions with diverse binding affinities. NMR spectroscopy is able to identify fragments that bind weakly to a target, making it valuable for identifying hits targeting undruggable sites. In this review, we summarize the roles of solution NMR spectroscopy in drug discovery. We describe some methods that are used in identifying fragments, understanding the mechanism of action for a ligand, and monitoring the conformational changes of a target induced by ligand binding. A number of studies have proven that 19F-NMR is very powerful in screening fragments and detecting protein conformational changes. In-cell NMR will also play important roles in drug discovery by elucidating protein-ligand interactions in living cells.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou 510316, China
- Correspondence: (Q.L.); (C.K.); Tel.: +86-020-84168436 (Q.L.); +65-64070602 (C.K.)
| | - CongBao Kang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, Chromos, #05-01, Singapore 138670, Singapore
- Correspondence: (Q.L.); (C.K.); Tel.: +86-020-84168436 (Q.L.); +65-64070602 (C.K.)
| |
Collapse
|
13
|
Ciudad S, Puig E, Botzanowski T, Meigooni M, Arango AS, Do J, Mayzel M, Bayoumi M, Chaignepain S, Maglia G, Cianferani S, Orekhov V, Tajkhorshid E, Bardiaux B, Carulla N. Aβ(1-42) tetramer and octamer structures reveal edge conductivity pores as a mechanism for membrane damage. Nat Commun 2020; 11:3014. [PMID: 32541820 PMCID: PMC7296003 DOI: 10.1038/s41467-020-16566-1] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 05/01/2020] [Indexed: 12/20/2022] Open
Abstract
Formation of amyloid-beta (Aβ) oligomer pores in the membrane of neurons has been proposed to explain neurotoxicity in Alzheimer's disease (AD). Here, we present the three-dimensional structure of an Aβ oligomer formed in a membrane mimicking environment, namely an Aβ(1-42) tetramer, which comprises a six stranded β-sheet core. The two faces of the β-sheet core are hydrophobic and surrounded by the membrane-mimicking environment while the edges are hydrophilic and solvent-exposed. By increasing the concentration of Aβ(1-42) in the sample, Aβ(1-42) octamers are also formed, made by two Aβ(1-42) tetramers facing each other forming a β-sandwich structure. Notably, Aβ(1-42) tetramers and octamers inserted into lipid bilayers as well-defined pores. To establish oligomer structure-membrane activity relationships, molecular dynamics simulations were carried out. These studies revealed a mechanism of membrane disruption in which water permeation occurred through lipid-stabilized pores mediated by the hydrophilic residues located on the core β-sheets edges of the oligomers.
Collapse
Affiliation(s)
- Sonia Ciudad
- University of Bordeaux, CBMN (UMR 5248)-CNRS-IPB, Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600, Pessac, France
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Eduard Puig
- University of Bordeaux, CBMN (UMR 5248)-CNRS-IPB, Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600, Pessac, France
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028, Barcelona, Spain
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franqués 1, 08028, Barcelona, Spain
| | - Thomas Botzanowski
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS UMR7178, IPHC, Strasbourg, France
| | - Moeen Meigooni
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Andres S Arango
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jimmy Do
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Maxim Mayzel
- Swedish NMR Centre, University of Gothenburg, Box 465, 405 30, Gothenburg, Sweden
| | - Mariam Bayoumi
- Biochemistry, Molecular and Structural Biology Section, University of Leuven, Celestijnenlaan 200G, 3001, Leuven, Belgium
| | - Stéphane Chaignepain
- University of Bordeaux, CBMN (UMR 5248)-CNRS-IPB, Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600, Pessac, France
| | - Giovanni Maglia
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Sarah Cianferani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS UMR7178, IPHC, Strasbourg, France
| | - Vladislav Orekhov
- Swedish NMR Centre, University of Gothenburg, Box 465, 405 30, Gothenburg, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 465, 405 30, Gothenburg, Sweden
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Benjamin Bardiaux
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur; CNRS UMR3528; CNRS USR3756, Paris, France
| | - Natàlia Carulla
- University of Bordeaux, CBMN (UMR 5248)-CNRS-IPB, Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600, Pessac, France.
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028, Barcelona, Spain.
| |
Collapse
|
14
|
Danmaliki GI, Hwang PM. Solution NMR spectroscopy of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183356. [PMID: 32416193 DOI: 10.1016/j.bbamem.2020.183356] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 02/06/2023]
Abstract
Integral membrane proteins (IMPs) perform unique and indispensable functions in the cell, making them attractive targets for fundamental research and drug discovery. Developments in protein production, isotope labeling, sample preparation, and pulse sequences have extended the utility of solution NMR spectroscopy for studying IMPs with multiple transmembrane segments. Here we review some recent applications of solution NMR for studying structure, dynamics, and interactions of polytopic IMPs, emphasizing strategies used to overcome common technical challenges.
Collapse
Affiliation(s)
- Gaddafi I Danmaliki
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Peter M Hwang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada; Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
15
|
Rieth MD, Root KT, Glover KJ. Reconstitution of full-length human caveolin-1 into phospholipid bicelles: Validation by analytical ultracentrifugation. Biophys Chem 2020; 259:106339. [PMID: 32145579 PMCID: PMC8571804 DOI: 10.1016/j.bpc.2020.106339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/31/2020] [Accepted: 02/24/2020] [Indexed: 11/26/2022]
Abstract
A significant hurdle in obtaining biophysical information on membrane proteins is developing a successful strategy for their reconstitution into a suitable membrane mimic. In particular, utilization of the more 'native-like' membrane mimics such as bicelles is generally more challenging than simple micellar solubilization. Caveolin-1, an integral membrane protein involved in membrane curvature, endocytosis, mechano-protection, and signal transduction, has been shown to be particularly recalcitrant to standard reconstitution protocols due to its highly hydrophobic characteristics. Herein we describe a robust method to incorporate recombinantly produced full-length caveolin-1 into bicelles at levels needed for biophysical experimentation. The benchmark of successful reconstitution is the obtainment of protein in a homogeneous state; therefore, we developed a validation procedure to monitor the success of the reconstitution using analytical ultracentrifugation of density-matched bicelles. Our findings indicated that our protocol produces a very homogeneous preparation of caveolin-1 associated with bicelles, and that caveolin-1 is highly α-helical (by circular dichroism spectroscopy). We believe that this methodology will serve as a general strategy to facilitate biophysical studies on membrane proteins.
Collapse
Affiliation(s)
- Monica D Rieth
- Department of Chemistry, Lehigh University, 6 E Packer Ave, Bethlehem, PA, USA
| | - Kyle T Root
- Department of Chemistry, Lehigh University, 6 E Packer Ave, Bethlehem, PA, USA
| | | |
Collapse
|
16
|
Munusamy S, Conde R, Bertrand B, Munoz-Garay C. Biophysical approaches for exploring lipopeptide-lipid interactions. Biochimie 2020; 170:173-202. [PMID: 31978418 PMCID: PMC7116911 DOI: 10.1016/j.biochi.2020.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
In recent years, lipopeptides (LPs) have attracted a lot of attention in the pharmaceutical industry due to their broad-spectrum of antimicrobial activity against a variety of pathogens and their unique mode of action. This class of compounds has enormous potential for application as an alternative to conventional antibiotics and for pest control. Understanding how LPs work from a structural and biophysical standpoint through investigating their interaction with cell membranes is crucial for the rational design of these biomolecules. Various analytical techniques have been developed for studying intramolecular interactions with high resolution. However, these tools have been barely exploited in lipopeptide-lipid interactions studies. These biophysical approaches would give precise insight on these interactions. Here, we reviewed these state-of-the-art analytical techniques. Knowledge at this level is indispensable for understanding LPs activity and particularly their potential specificity, which is relevant information for safe application. Additionally, the principle of each analytical technique is presented and the information acquired is discussed. The key challenges, such as the selection of the membrane model are also been briefly reviewed.
Collapse
Affiliation(s)
- Sathishkumar Munusamy
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Renaud Conde
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Brandt Bertrand
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Carlos Munoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico.
| |
Collapse
|
17
|
F Dudás E, Wacha A, Bóta A, Bodor A. Peptide-bicelle interaction: Following variations in size and morphology by a combined NMR-SAXS approach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183095. [PMID: 31672542 DOI: 10.1016/j.bbamem.2019.183095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/25/2019] [Accepted: 10/16/2019] [Indexed: 10/25/2022]
Abstract
Changes in membrane properties occurring upon protein interaction are key questions in understanding membrane protein function. To report on the occurring size and shape variation we present here a combined NMR-SAXS method performed under physiological conditions using the same samples, enabling determination of a global parameter, the hydration radius (rH) and estimating the bicelle shape. We use zwitterionic (DMPC/DHPC) and negatively charged (DMPC/DHPC/DMPG) bicelles and investigate the interaction with model transmembrane and surface active peptides (KALP23 and melittin). 1H NMR measurements based mostly on the translational diffusion coefficient D determination are used to characterize cmc values of DHPC micelles under the investigated conditions, to describe DHPC distribution with exact determination of the q (long chain/short chain) lipid ratio, to estimate aggregation numbers and effective rH values. The scattering curve is used to fit a lenticular core-shell model enabling us to describe the bicelle shape in terms of ellipsoidal axis length parameters. For all studied systems formation of oblate ellipsoids is found. Even though the rG/rH ratio would be an elegant way to characterize shape variations, we show that changes occurring upon peptide-bicelle interaction in the "effective" size and in the measure on the anisometry - morphology - of the objects can be described by using rH and the simplistic ellipsoidal core-shell model. While the influence of the transmembrane KALP peptide is significant, effects upon addition of surface active melittin peptide seem negligible. This synergy of techniques under controlled conditions can provide information about bicellar shape modulation occurring during peptide-bicelle interactions.
Collapse
Affiliation(s)
- E F Dudás
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - A Wacha
- Institute for Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - A Bóta
- Institute for Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - A Bodor
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary.
| |
Collapse
|
18
|
Chill JH, Qasim A, Sher I, Gross R. NMR Perspectives of the KcsA Potassium Channel in the Membrane Environment. Isr J Chem 2019. [DOI: 10.1002/ijch.201900107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jordan H. Chill
- Department of ChemistryBar Ilan University Ramat Gan 52900 Israel
| | - Arwa Qasim
- Department of ChemistryBar Ilan University Ramat Gan 52900 Israel
| | - Inbal Sher
- Department of ChemistryBar Ilan University Ramat Gan 52900 Israel
| | - Renana Gross
- Department of ChemistryBar Ilan University Ramat Gan 52900 Israel
| |
Collapse
|
19
|
Xue D, Xu T, Wang H, Wu M, Yuan Y, Wang W, Tan Q, Zhao F, Zhou F, Hu T, Jiang Z, Liu Z, Zhao S, Liu D, Wüthrich K, Tao H. Disulfide‐Containing Detergents (DCDs) for the Structural Biology of Membrane Proteins. Chemistry 2019; 25:11635-11640. [DOI: 10.1002/chem.201903190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Dongxiang Xue
- iHuman Institute ShanghaiTech University Ren Building 393 Middle Huaxia Road Pudong New District Shanghai 201210 China
- Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
- University of Chinese Academy of Sciences No. 19A, Yuquan Road Beijing 100049 China
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Tiandan Xu
- iHuman Institute ShanghaiTech University Ren Building 393 Middle Huaxia Road Pudong New District Shanghai 201210 China
- University of Chinese Academy of Sciences No. 19A, Yuquan Road Beijing 100049 China
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
- CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences Shanghai 200031 China
| | - Huixia Wang
- iHuman Institute ShanghaiTech University Ren Building 393 Middle Huaxia Road Pudong New District Shanghai 201210 China
- University of Chinese Academy of Sciences No. 19A, Yuquan Road Beijing 100049 China
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
- CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences Shanghai 200031 China
| | - Meng Wu
- iHuman Institute ShanghaiTech University Ren Building 393 Middle Huaxia Road Pudong New District Shanghai 201210 China
- University of Chinese Academy of Sciences No. 19A, Yuquan Road Beijing 100049 China
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
- CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences Shanghai 200031 China
| | - Ya Yuan
- iHuman Institute ShanghaiTech University Ren Building 393 Middle Huaxia Road Pudong New District Shanghai 201210 China
| | - Wei Wang
- Hubei Province Engineering and Technology Research Center, for Fluorinated Pharmaceuticals School of Pharmaceutical Sciences Wuhan University Wuhan 430071 China
| | - Qiwen Tan
- iHuman Institute ShanghaiTech University Ren Building 393 Middle Huaxia Road Pudong New District Shanghai 201210 China
| | - Fei Zhao
- iHuman Institute ShanghaiTech University Ren Building 393 Middle Huaxia Road Pudong New District Shanghai 201210 China
| | - Fang Zhou
- iHuman Institute ShanghaiTech University Ren Building 393 Middle Huaxia Road Pudong New District Shanghai 201210 China
- Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
- University of Chinese Academy of Sciences No. 19A, Yuquan Road Beijing 100049 China
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Tao Hu
- iHuman Institute ShanghaiTech University Ren Building 393 Middle Huaxia Road Pudong New District Shanghai 201210 China
- University of Chinese Academy of Sciences No. 19A, Yuquan Road Beijing 100049 China
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
- CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences Shanghai 200031 China
| | - Zhongxing Jiang
- Hubei Province Engineering and Technology Research Center, for Fluorinated Pharmaceuticals School of Pharmaceutical Sciences Wuhan University Wuhan 430071 China
| | - Zhi‐Jie Liu
- iHuman Institute ShanghaiTech University Ren Building 393 Middle Huaxia Road Pudong New District Shanghai 201210 China
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Suwen Zhao
- iHuman Institute ShanghaiTech University Ren Building 393 Middle Huaxia Road Pudong New District Shanghai 201210 China
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Dongsheng Liu
- iHuman Institute ShanghaiTech University Ren Building 393 Middle Huaxia Road Pudong New District Shanghai 201210 China
| | - Kurt Wüthrich
- iHuman Institute ShanghaiTech University Ren Building 393 Middle Huaxia Road Pudong New District Shanghai 201210 China
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Houchao Tao
- iHuman Institute ShanghaiTech University Ren Building 393 Middle Huaxia Road Pudong New District Shanghai 201210 China
| |
Collapse
|
20
|
Serra-Batiste M, Ninot-Pedrosa M, Puig E, Ciudad S, Gairí M, Carulla N. Preparation of a Well-Defined and Stable β-Barrel Pore-Forming Aβ42 Oligomer. Methods Mol Biol 2019; 1779:13-22. [PMID: 29886524 DOI: 10.1007/978-1-4939-7816-8_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The formation of amyloid-β peptide (Aβ) oligomers at the cellular membrane is considered a crucial process that underlies neurotoxicity in Alzheimer's disease (AD). To obtain structural information on this type of oligomers, we were inspired by membrane protein approaches used to stabilize, characterize, and analyze the function of such proteins. Using these approaches, we developed conditions under which Aβ42, the Aβ variant most strongly linked to the aetiology of AD, assembles into an oligomer that inserts into lipid bilayers as a well-defined pore and adopts a specific structure with characteristics of a β-barrel arrangement. We named this oligomer β-barrel Pore-Forming Aβ42 Oligomer (βPFOAβ42). Here, we describe detailed protocols for its preparation and characterization. We expect βPFOAβ42 to be useful in establishing the involvement of membrane-associated Aβ oligomers in AD.
Collapse
Affiliation(s)
- Montserrat Serra-Batiste
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute Science and Technology, Barcelona, Spain
| | - Martí Ninot-Pedrosa
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute Science and Technology, Barcelona, Spain.,CBMN (UMR 5248), University of Bordeaux-CNRS-IPB, Institut Européen de Chimie et Biologie, Pessac, France
| | - Eduard Puig
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute Science and Technology, Barcelona, Spain.,CBMN (UMR 5248), University of Bordeaux-CNRS-IPB, Institut Européen de Chimie et Biologie, Pessac, France
| | - Sonia Ciudad
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute Science and Technology, Barcelona, Spain.,CBMN (UMR 5248), University of Bordeaux-CNRS-IPB, Institut Européen de Chimie et Biologie, Pessac, France
| | - Margarida Gairí
- NMR Facility, Scientific and Technological Centers, University of Barcelona (CCiTUB), Barcelona, Spain
| | - Natàlia Carulla
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute Science and Technology, Barcelona, Spain. .,CBMN (UMR 5248), University of Bordeaux-CNRS-IPB, Institut Européen de Chimie et Biologie, Pessac, France.
| |
Collapse
|
21
|
Ehsan M, Kumar A, Mortensen JS, Du Y, Hariharan P, Kumar KK, Ha B, Byrne B, Guan L, Kobilka BK, Loland CJ, Chae PS. Self-Assembly Behaviors of a Penta-Phenylene Maltoside and Its Application for Membrane Protein Study. Chem Asian J 2019; 14:1926-1931. [PMID: 30969484 PMCID: PMC7239035 DOI: 10.1002/asia.201900224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/22/2019] [Indexed: 01/07/2023]
Abstract
We prepared an amphiphile with a penta-phenylene lipophilic group and a branched trimaltoside head group. This new agent, designated penta-phenylene maltoside (PPM), showed a marked tendency to self-assembly into micelles via strong aromatic-aromatic interactions in aqueous media, as evidenced by 1 H NMR spectroscopy and fluorescence studies. When utilized for membrane protein studies, this new agent was superior to DDM, a gold standard conventional detergent, in stabilizing multiple proteins long term. The ability of this agent to form aromatic-aromatic interactions is likely responsible for enhanced protein stabilization when associated with a target membrane protein.
Collapse
Affiliation(s)
- Muhammad Ehsan
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea
- Current address: Department of Chemistry, Mirpur University of Science&Technology (MUST), Mirpur-, 10250 (AJK), Pakistan
| | - Ashwani Kumar
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea
| | - Jonas S Mortensen
- Department of Neuroscience, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Yang Du
- Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center Lubbock, TX, 79430, USA
| | - Kaavya K Kumar
- Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA
| | - Betty Ha
- Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center Lubbock, TX, 79430, USA
| | - Brian K Kobilka
- Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA
| | - Claus J Loland
- Department of Neuroscience, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea
| |
Collapse
|
22
|
Applications of In-Cell NMR in Structural Biology and Drug Discovery. Int J Mol Sci 2019; 20:ijms20010139. [PMID: 30609728 PMCID: PMC6337603 DOI: 10.3390/ijms20010139] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/24/2018] [Accepted: 12/29/2018] [Indexed: 01/23/2023] Open
Abstract
In-cell nuclear magnetic resonance (NMR) is a method to provide the structural information of a target at an atomic level under physiological conditions and a full view of the conformational changes of a protein caused by ligand binding, post-translational modifications or protein⁻protein interactions in living cells. Previous in-cell NMR studies have focused on proteins that were overexpressed in bacterial cells and isotopically labeled proteins injected into oocytes of Xenopus laevis or delivered into human cells. Applications of in-cell NMR in probing protein modifications, conformational changes and ligand bindings have been carried out in mammalian cells by monitoring isotopically labeled proteins overexpressed in living cells. The available protocols and successful examples encourage wide applications of this technique in different fields such as drug discovery. Despite the challenges in this method, progress has been made in recent years. In this review, applications of in-cell NMR are summarized. The successful applications of this method in mammalian and bacterial cells make it feasible to play important roles in drug discovery, especially in the step of target engagement.
Collapse
|
23
|
Abstract
Fourier transform infrared (FTIR) spectroscopy has become one of the major techniques of structural characterization of proteins, peptides, and protein-membrane interactions. While the method does not have the capability of providing the precise, atomic-resolution molecular structure, it is exquisitely sensitive to conformational changes occurring in proteins upon functional transitions or intermolecular interactions. The sensitivity of vibrational frequencies to atomic masses has led to development of "isotope-edited" FTIR spectroscopy, where structural effects in two proteins, one unlabeled and the other labeled with a heavier stable isotope, such as 13C, are resolved simultaneously based on spectral downshift (separation) of the amide I band of the labeled protein. The same isotope effect is used to identify site-specific conformational changes in proteins by site-directed or segmental isotope labeling. Negligible light scattering in the infrared region provides an opportunity to study intermolecular interactions between large protein complexes, interactions of proteins and peptides with lipid vesicles, or protein-nucleic acid interactions without light scattering problems often encountered in ultraviolet spectroscopy. Attenuated total reflection FTIR (ATR-FTIR) is a surface-sensitive version of infrared spectroscopy that has proved useful in studying membrane proteins and lipids, protein-membrane interactions, mechanisms of interfacial enzymes, the structural features of membrane pore forming proteins and peptides, and much more. The purpose of this chapter was to provide a practical guide to analyze protein structure and protein-membrane interactions by FTIR and ATR-FTIR techniques, including procedures of sample preparation, measurements, and data analysis. Basic background information on FTIR spectroscopy, as well as some relatively new developments in structural and functional characterization of proteins and peptides in lipid membranes, is also presented.
Collapse
Affiliation(s)
- Suren A Tatulian
- Department of Physics, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
24
|
Design and structural characterisation of monomeric water-soluble α-helix and β-hairpin peptides: State-of-the-art. Arch Biochem Biophys 2019; 661:149-167. [DOI: 10.1016/j.abb.2018.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/06/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023]
|
25
|
Henrich E, Löhr F, Mezhyrova J, Laguerre A, Bernhard F, Dötsch V. Synthetic Biology-Based Solution NMR Studies on Membrane Proteins in Lipid Environments. Methods Enzymol 2018; 614:143-185. [PMID: 30611423 DOI: 10.1016/bs.mie.2018.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although membrane proteins are in the focus of biochemical research for many decades the general knowledge of this important class is far behind soluble proteins. Despite several recent technical developments, the most challenging feature still is the generation of high-quality samples in environments suitable for the selected application. Reconstitution of membrane proteins into lipid bilayers will generate the most native-like environment and is therefore commonly desired. However, it poses tremendous problems to solution-state NMR analysis due to the dramatic increase in particle size resulting in high rotational correlation times. Nevertheless, a few promising strategies for the solution NMR analysis of membrane inserted proteins are emerging and will be discussed in this chapter. We focus on the generation of membrane protein samples in nanodisc membranes by cell-free systems and will describe the characteristic advantages of that platform in providing tailored protein expression and folding environments. We indicate frequent problems that have to be overcome in cell-free synthesis, nanodisc preparation, and customization for samples dedicated for solution-state NMR. Detailed instructions for sample preparation are given, and solution NMR approaches suitable for membrane proteins in bilayers are compiled. We further discuss the current strategies applied for signal detection from such difficult samples and describe the type of information that can be extracted from the various experiments. In summary, a comprehensive guideline for the analysis of membrane proteins in native-like membrane environments by solution-state NMR techniques will be provided.
Collapse
Affiliation(s)
- Erik Henrich
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Frank Löhr
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Julija Mezhyrova
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Aisha Laguerre
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany.
| |
Collapse
|
26
|
Fuglestad B, Marques BS, Jorge C, Kerstetter NE, Valentine KG, Wand AJ. Reverse Micelle Encapsulation of Proteins for NMR Spectroscopy. Methods Enzymol 2018; 615:43-75. [PMID: 30638537 PMCID: PMC6487188 DOI: 10.1016/bs.mie.2018.08.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reverse micelle (RM) encapsulation of proteins for NMR spectroscopy has many advantages over standard NMR methods such as enhanced tumbling and improved sensitivity. It has opened many otherwise difficult lines of investigation including the study of membrane-associated proteins, large soluble proteins, unstable protein states, and the study of protein surface hydration dynamics. Recent technological developments have extended the ability of RM encapsulation with high structural fidelity for nearly all proteins and thereby allow high-quality state-of-the-art NMR spectroscopy. Optimal conditions are achieved using a streamlined screening protocol, which is described here. Commonly studied proteins spanning a range of molecular weights are used as examples. Very low-viscosity alkane solvents, such as propane or ethane, are useful for studying very large proteins but require the use of specialized equipment to permit preparation and maintenance of well-behaved solutions under elevated pressure. The procedures for the preparation and use of solutions of RMs in liquefied ethane and propane are described. The focus of this chapter is to provide procedures to optimally encapsulate proteins in reverse micelles for modern NMR applications.
Collapse
Affiliation(s)
- Brian Fuglestad
- Johnson Research Foundation and Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Bryan S Marques
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Christine Jorge
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nicole E Kerstetter
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kathleen G Valentine
- Johnson Research Foundation and Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - A Joshua Wand
- Johnson Research Foundation and Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
27
|
Oliver RC, Naing SH, Weiss KL, Pingali SV, Lieberman RL, Urban VS. Contrast-Matching Detergent in Small-Angle Neutron Scattering Experiments for Membrane Protein Structural Analysis and Ab Initio Modeling. J Vis Exp 2018:57901. [PMID: 30394373 PMCID: PMC6235576 DOI: 10.3791/57901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The biological small-angle neutron scattering instrument at the High-Flux Isotope Reactor of Oak Ridge National Laboratory is dedicated to the investigation of biological materials, biofuel processing, and bio-inspired materials covering nanometer to micrometer length scales. The methods presented here for investigating physical properties (i.e., size and shape) of membrane proteins (here, MmIAP, an intramembrane aspartyl protease from Methanoculleus marisnigri) in solutions of micelle-forming detergents are well-suited for this small-angle neutron scattering instrument, among others. Other biophysical characterization techniques are hindered by their inability to address the detergent contributions in a protein-detergent complex structure. Additionally, access to the Bio-Deuteration Lab provides unique capabilities for preparing large-scale cultivations and expressing deuterium-labeled proteins for enhanced scattering signal from the protein. While this technique does not provide structural details at high-resolution, the structural knowledge gap for membrane proteins contains many addressable areas of research without requiring near-atomic resolution. For example, these areas include determination of oligomeric states, complex formation, conformational changes during perturbation, and folding/unfolding events. These investigations can be readily accomplished through applications of this method.
Collapse
Affiliation(s)
- Ryan C Oliver
- Neutron Scattering Division, Oak Ridge National Laboratory
| | - Swe-Htet Naing
- School of Chemistry and Biochemistry, Georgia Institute of Technology
| | - Kevin L Weiss
- Neutron Scattering Division, Oak Ridge National Laboratory
| | | | | | - Volker S Urban
- Neutron Scattering Division, Oak Ridge National Laboratory;
| |
Collapse
|
28
|
Kot EF, Arseniev AS, Mineev KS. Behavior of Most Widely Spread Lipids in Isotropic Bicelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8302-8313. [PMID: 29924628 DOI: 10.1021/acs.langmuir.8b01454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Isotropic bicelles are a widely used membrane mimetic for structural studies of membrane proteins and their transmembrane domains. Simple and cheap in preparation, they contain a patch of lipid bilayer that reproduces the native environment of membrane proteins. Despite the obvious power of bicelles in reproducing the various kinds of environments, the vast majority of structural studies employ the single lipid/detergent system. On the other hand, even if the alternative bicelle composition is used, the properties of mixtures are not characterized, and the mere presence of lipid bilayer and discoidal shape of bicelle particles is not confirmed. Here we present an extensive investigation of various bicellar mixtures and describe the behavior of bicelles with lipids other than classical DMPC, namely sphingomyelins (SM), phosphatidylethanolamines (PE), phosphatidylglycerols (PG), phosphatidylserines (PS), and cholesterol. These lipids are rarely used in modern structural biology, but can help a lot in understanding the influence of the membrane composition on the properties of both integral and peripheral membrane proteins. Additionally, the ability of diheptanoylphosphatidylcholine (DH7PC) to serve as a rim-forming agent was investigated. We followed the phase transitions as revealed by 31P NMR and size of particles measured by 1H NMR diffusion as the criteria of the proper morphology and structure of bicelles. As an outcome, we state that SM exclusively, and PG/PS in mixtures with zwitterionic lipids can form small isotropic bicelles, which reproduce the key features of lipid behavior in bilayers. Mixtures, containing exclusively the anionic lipids, fail to reveal the lipid phase transition and do not follow the size predicted for the ideal bicelle particles. PE and DH7PC are the unwanted components of bicellar mixtures, and cholesterol can be added to bicelles, however, with certain precautions. In combination with our several most recent works, this study provides a practical guide for the preparation of small isotropic bicelles.
Collapse
Affiliation(s)
- E F Kot
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Sciences RAS, str. Miklukho-Maklaya 16/10 , Moscow 117997, Russian Federation
- Moscow Institute of Physics and Technology , Institutsky per., 9 , Dolgoprudnyi 141700 , Russian Federation
| | - A S Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Sciences RAS, str. Miklukho-Maklaya 16/10 , Moscow 117997, Russian Federation
- Moscow Institute of Physics and Technology , Institutsky per., 9 , Dolgoprudnyi 141700 , Russian Federation
| | - K S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Sciences RAS, str. Miklukho-Maklaya 16/10 , Moscow 117997, Russian Federation
- Moscow Institute of Physics and Technology , Institutsky per., 9 , Dolgoprudnyi 141700 , Russian Federation
| |
Collapse
|
29
|
Michurin OM, Tolmachova K, Afonin S, Babii O, Grage SL, Ulrich AS, Komarov IV, Radchenko DS. Conformationally Constrained Mono-Fluorinated Arginine as a Cationic Label for Solid-State 19
F NMR Analysis of Membrane-Bound Peptides. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Kateryna Tolmachova
- Enamine Ltd.; vul. Chervonotkatska 78 02094 Kyiv Ukraine
- Institute of Bioorganic Chemistry and Petrochemistry; National Academy of Sciences of Ukraine; vul. Murmanska 1 02660 Kyiv Ukraine
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2); Karlsruhe Institute of Technology (KIT); POB 3640 76021 Karlsruhe Germany
| | - Oleg Babii
- Institute of Organic Chemistry (IOC); KIT; Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Stephan L. Grage
- Institute of Biological Interfaces (IBG-2); Karlsruhe Institute of Technology (KIT); POB 3640 76021 Karlsruhe Germany
| | - Anne S. Ulrich
- Institute of Biological Interfaces (IBG-2); Karlsruhe Institute of Technology (KIT); POB 3640 76021 Karlsruhe Germany
- Institute of Organic Chemistry (IOC); KIT; Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Igor V. Komarov
- Taras Shevchenko National University of Kyiv; Taras Shevchenko National University of Kyiv; vul. Volodymyrska 60 01601 Kyiv Ukraine
| | - Dmytro S. Radchenko
- Enamine Ltd.; vul. Chervonotkatska 78 02094 Kyiv Ukraine
- Taras Shevchenko National University of Kyiv; Taras Shevchenko National University of Kyiv; vul. Volodymyrska 60 01601 Kyiv Ukraine
| |
Collapse
|
30
|
Setiawan D, Brender J, Zhang Y. Recent advances in automated protein design and its future challenges. Expert Opin Drug Discov 2018; 13:587-604. [PMID: 29695210 DOI: 10.1080/17460441.2018.1465922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Protein function is determined by protein structure which is in turn determined by the corresponding protein sequence. If the rules that cause a protein to adopt a particular structure are understood, it should be possible to refine or even redefine the function of a protein by working backwards from the desired structure to the sequence. Automated protein design attempts to calculate the effects of mutations computationally with the goal of more radical or complex transformations than are accessible by experimental techniques. Areas covered: The authors give a brief overview of the recent methodological advances in computer-aided protein design, showing how methodological choices affect final design and how automated protein design can be used to address problems considered beyond traditional protein engineering, including the creation of novel protein scaffolds for drug development. Also, the authors address specifically the future challenges in the development of automated protein design. Expert opinion: Automated protein design holds potential as a protein engineering technique, particularly in cases where screening by combinatorial mutagenesis is problematic. Considering solubility and immunogenicity issues, automated protein design is initially more likely to make an impact as a research tool for exploring basic biology in drug discovery than in the design of protein biologics.
Collapse
Affiliation(s)
- Dani Setiawan
- a Department of Computational Medicine and Bioinformatics , University of Michigan , Ann Arbor , MI , USA
| | - Jeffrey Brender
- b Radiation Biology Branch , Center for Cancer Research, National Cancer Institute - NIH , Bethesda , MD , USA
| | - Yang Zhang
- a Department of Computational Medicine and Bioinformatics , University of Michigan , Ann Arbor , MI , USA.,c Department of Biological Chemistry , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
31
|
Xia Y, Fischer AW, Teixeira P, Weiner B, Meiler J. Integrated Structural Biology for α-Helical Membrane Protein Structure Determination. Structure 2018; 26:657-666.e2. [PMID: 29526436 PMCID: PMC5884713 DOI: 10.1016/j.str.2018.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/14/2017] [Accepted: 02/05/2018] [Indexed: 01/12/2023]
Abstract
While great progress has been made, only 10% of the nearly 1,000 integral, α-helical, multi-span membrane protein families are represented by at least one experimentally determined structure in the PDB. Previously, we developed the algorithm BCL::MP-Fold, which samples the large conformational space of membrane proteins de novo by assembling predicted secondary structure elements guided by knowledge-based potentials. Here, we present a case study of rhodopsin fold determination by integrating sparse and/or low-resolution restraints from multiple experimental techniques including electron microscopy, electron paramagnetic resonance spectroscopy, and nuclear magnetic resonance spectroscopy. Simultaneous incorporation of orthogonal experimental restraints not only significantly improved the sampling accuracy but also allowed identification of the correct fold, which is demonstrated by a protein size-normalized transmembrane root-mean-square deviation as low as 1.2 Å. The protocol developed in this case study can be used for the determination of unknown membrane protein folds when limited experimental restraints are available.
Collapse
Affiliation(s)
- Yan Xia
- Department of Chemistry, Vanderbilt University, Stevenson Center, Station B 351822, Room 7330, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Axel W Fischer
- Department of Chemistry, Vanderbilt University, Stevenson Center, Station B 351822, Room 7330, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Pedro Teixeira
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Brian Weiner
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Stevenson Center, Station B 351822, Room 7330, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
32
|
Zamora-Carreras H, Maestro B, Strandberg E, Ulrich AS, Sanz JM, Jiménez MÁ. Roles of Amphipathicity and Hydrophobicity in the Micelle-Driven Structural Switch of a 14-mer Peptide Core from a Choline-Binding Repeat. Chemistry 2018; 24:5825-5839. [PMID: 29369425 DOI: 10.1002/chem.201704802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Indexed: 01/16/2023]
Abstract
Choline-binding repeats (CBRs) are ubiquitous sequences with a β-hairpin core that are found in the surface proteins of several microorganisms such as S. pneumoniae (pneumococcus). Previous studies on a 14-mer CBR sequence derived from the pneumoccal LytA autolysin (LytA239-252 peptide) have demonstrated a switch behaviour for this peptide, so that it acquires a stable, native-like β-hairpin conformation in aqueous solution but is reversibly transformed into an amphipathic α-helix in the presence of detergent micelles. With the aim of understanding the factors responsible for this unusual β-hairpin to α-helix transition, and to specifically assess the role of peptide hydrophobicity and helical amphipathicity in the process, we designed a series of LytA239-252 variants affecting these two parameters and studied their interaction with dodecylphosphocholine (DPC) micelles by solution NMR, circular dichroism and fluorescence spectroscopies. Our results indicate that stabilising cross-strand interactions become essential for β-hairpin stability in the absence of optimal turn sequences. Moreover, both amphipathicity and hydrophobicity display comparable importance for helix stabilisation of CBR-derived peptides in micelles, indicating that these sequences represent a novel class of micelle/membrane-interacting peptides.
Collapse
Affiliation(s)
- Héctor Zamora-Carreras
- Instituto de Química Física Rocasolano (IQFR), Consejo Superior de Investigaciones Científicas (CSIC), Serrano 119, 28006, Madrid, Spain
| | - Beatriz Maestro
- Instituto de Biología MolecularyCelular, Universidad Miguel Hernández, Elche, 03202, Alicante, Spain
| | - Erik Strandberg
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany.,Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Jesús M Sanz
- Instituto de Biología MolecularyCelular, Universidad Miguel Hernández, Elche, 03202, Alicante, Spain.,Biological Research Centre (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - M Ángeles Jiménez
- Instituto de Química Física Rocasolano (IQFR), Consejo Superior de Investigaciones Científicas (CSIC), Serrano 119, 28006, Madrid, Spain
| |
Collapse
|
33
|
Duran AM, Meiler J. Computational design of membrane proteins using RosettaMembrane. Protein Sci 2018; 27:341-355. [PMID: 29090504 PMCID: PMC5734395 DOI: 10.1002/pro.3335] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 11/11/2022]
Abstract
Computational membrane protein design is challenging due to the small number of high-resolution structures available to elucidate the physical basis of membrane protein structure, multiple functionally important conformational states, and a limited number of high-throughput biophysical assays to monitor function. However, structural determination of membrane proteins has made tremendous progress in the past years. Concurrently the field of soluble computational design has made impressive inroads. These developments allow us to tackle the formidable challenge of designing functional membrane proteins. Herein, Rosetta is benchmarked for membrane protein design. We evaluate strategies to cope with the often reduced quality of experimental membrane protein structures. Further, we test the usage of symmetry in design protocols, which is particularly important as many membrane proteins exist as homo-oligomers. We compare a soluble scoring function with a scoring function optimized for membrane proteins, RosettaMembrane. Both scoring functions recovered around half of the native sequence when completely redesigning membrane proteins. However, RosettaMembrane recovered the most native-like amino acid property composition. While leucine was overrepresented in the inner and outer-hydrophobic regions of RosettaMembrane designs, it resulted in a native-like surface hydrophobicity indicating that it is currently the best option for designing membrane proteins with Rosetta.
Collapse
Affiliation(s)
- Amanda M. Duran
- Department of ChemistryVanderbilt UniversityNashvilleTennessee37235
- Center for Structural BiologyVanderbilt UniversityNashvilleTennessee37240
| | - Jens Meiler
- Department of ChemistryVanderbilt UniversityNashvilleTennessee37235
- Center for Structural BiologyVanderbilt UniversityNashvilleTennessee37240
| |
Collapse
|
34
|
Abstract
Conditionally disordered proteins are either ordered or disordered depending on the environmental context. The substrates of the mitochondrial intermembrane space (IMS) oxidoreductase Mia40 are synthesized on cytosolic ribosomes and diffuse as intrinsically disordered proteins to the IMS, where they fold into their functional conformations; behaving thus as conditionally disordered proteins. It is not clear how the sequences of these polypeptides encode at the same time for their ability to adopt a folded structure and to remain unfolded. Here we characterize the disorder-to-order transition of a Mia40 substrate, the human small copper chaperone Cox17. Using an integrated real-time approach, including chromatography, fluorescence, CD, FTIR, SAXS, NMR, and MS analysis, we demonstrate that in this mitochondrial protein, the conformational switch between disordered and folded states is controlled by the formation of a single disulfide bond, both in the presence and in the absence of Mia40. We provide molecular details on how the folding of a conditionally disordered protein is tightly regulated in time and space, in such a way that the same sequence is competent for protein translocation and activity.
Collapse
|
35
|
Fraga H, Pujols J, Gil-Garcia M, Roque A, Bernardo-Seisdedos G, Santambrogio C, Bech-Serra JJ, Canals F, Bernadó P, Grandori R, Millet O, Ventura S. Disulfide driven folding for a conditionally disordered protein. Sci Rep 2017; 7:16994. [PMID: 29208936 PMCID: PMC5717278 DOI: 10.1038/s41598-017-17259-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 11/23/2017] [Indexed: 11/09/2022] Open
Abstract
Conditionally disordered proteins are either ordered or disordered depending on the environmental context. The substrates of the mitochondrial intermembrane space (IMS) oxidoreductase Mia40 are synthesized on cytosolic ribosomes and diffuse as intrinsically disordered proteins to the IMS, where they fold into their functional conformations; behaving thus as conditionally disordered proteins. It is not clear how the sequences of these polypeptides encode at the same time for their ability to adopt a folded structure and to remain unfolded. Here we characterize the disorder-to-order transition of a Mia40 substrate, the human small copper chaperone Cox17. Using an integrated real-time approach, including chromatography, fluorescence, CD, FTIR, SAXS, NMR, and MS analysis, we demonstrate that in this mitochondrial protein, the conformational switch between disordered and folded states is controlled by the formation of a single disulfide bond, both in the presence and in the absence of Mia40. We provide molecular details on how the folding of a conditionally disordered protein is tightly regulated in time and space, in such a way that the same sequence is competent for protein translocation and activity.
Collapse
Affiliation(s)
- Hugo Fraga
- Institut de Biotecnologia i Biomedicina. Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Departamento de Bioquimica, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Jordi Pujols
- Institut de Biotecnologia i Biomedicina. Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Marcos Gil-Garcia
- Institut de Biotecnologia i Biomedicina. Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Alicia Roque
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | | | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | | | - Francesc Canals
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Pau Bernadó
- Centre de Biochimie Structurale, INSERM-U1054, CNRS UMR-5048, Université de Montpellier, 29, rue de Navacelles, 34090, Montpellier, France
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Oscar Millet
- Protein Stability and Inherited Diseases Laboratory, CIC bioGUNE, 48160, Derio, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina. Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain. .,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
36
|
Koehler Leman J, D'Avino AR, Bhatnagar Y, Gray JJ. Comparison of NMR and crystal structures of membrane proteins and computational refinement to improve model quality. Proteins 2017; 86:57-74. [PMID: 29044728 DOI: 10.1002/prot.25402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/27/2017] [Accepted: 10/11/2017] [Indexed: 12/29/2022]
Abstract
Membrane proteins are challenging to study and restraints for structure determination are typically sparse or of low resolution because the membrane environment that surrounds them leads to a variety of experimental challenges. When membrane protein structures are determined by different techniques in different environments, a natural question is "which structure is most biologically relevant?" Towards answering this question, we compiled a dataset of membrane proteins with known structures determined by both solution NMR and X-ray crystallography. By investigating differences between the structures, we found that RMSDs between crystal and NMR structures are below 5 Å in the membrane region, NMR ensembles have a higher convergence in the membrane region, crystal structures typically have a straighter transmembrane region, have higher stereo-chemical correctness, and are more tightly packed. After quantifying these differences, we used high-resolution refinement of the NMR structures to mitigate them, which paves the way for identifying and improving the structural quality of membrane proteins.
Collapse
Affiliation(s)
- Julia Koehler Leman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland.,Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, New York
| | - Andrew R D'Avino
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland.,Department of Biology, Johns Hopkins University, Baltimore, Maryland
| | - Yash Bhatnagar
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Jeffrey J Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
37
|
Li Y, Kang C. Solution NMR Spectroscopy in Target-Based Drug Discovery. Molecules 2017; 22:E1399. [PMID: 28832542 PMCID: PMC6151424 DOI: 10.3390/molecules22091399] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 12/14/2022] Open
Abstract
Solution NMR spectroscopy is a powerful tool to study protein structures and dynamics under physiological conditions. This technique is particularly useful in target-based drug discovery projects as it provides protein-ligand binding information in solution. Accumulated studies have shown that NMR will play more and more important roles in multiple steps of the drug discovery process. In a fragment-based drug discovery process, ligand-observed and protein-observed NMR spectroscopy can be applied to screen fragments with low binding affinities. The screened fragments can be further optimized into drug-like molecules. In combination with other biophysical techniques, NMR will guide structure-based drug discovery. In this review, we describe the possible roles of NMR spectroscopy in drug discovery. We also illustrate the challenges encountered in the drug discovery process. We include several examples demonstrating the roles of NMR in target-based drug discoveries such as hit identification, ranking ligand binding affinities, and mapping the ligand binding site. We also speculate the possible roles of NMR in target engagement based on recent processes in in-cell NMR spectroscopy.
Collapse
Affiliation(s)
- Yan Li
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, #03-01, Singapore 138669, Singapore.
| | - Congbao Kang
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, #03-01, Singapore 138669, Singapore.
| |
Collapse
|
38
|
Sim DW, Lu Z, Won HS, Lee SN, Seo MD, Lee BJ, Kim JH. Application of Solution NMR to Structural Studies on α-Helical Integral Membrane Proteins. Molecules 2017; 22:molecules22081347. [PMID: 28809779 PMCID: PMC6152068 DOI: 10.3390/molecules22081347] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/10/2017] [Accepted: 08/12/2017] [Indexed: 02/05/2023] Open
Abstract
A large portion of proteins in living organisms are membrane proteins which play critical roles in the biology of the cell, from maintenance of the biological membrane integrity to communication of cells with their surroundings. To understand their mechanism of action, structural information is essential. Nevertheless, structure determination of transmembrane proteins is still a challenging area, even though recently the number of deposited structures of membrane proteins in the PDB has rapidly increased thanks to the efforts using X-ray crystallography, electron microscopy, and solid and solution nuclear magnetic resonance (NMR) technology. Among these technologies, solution NMR is a powerful tool for studying protein-protein, protein-ligand interactions and protein dynamics at a wide range of time scales as well as structure determination of membrane proteins. This review provides general and useful guideline for membrane protein sample preparation and the choice of membrane-mimetic media, which are the key step for successful structural analysis. Furthermore, this review provides an opportunity to look at recent applications of solution NMR to structural studies on α-helical membrane proteins through some success stories.
Collapse
Affiliation(s)
- Dae-Won Sim
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungbuk 27478, Korea.
| | - Zhenwei Lu
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37204, USA.
| | - Hyung-Sik Won
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungbuk 27478, Korea.
| | - Seu-Na Lee
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungbuk 27478, Korea.
| | - Min-Duk Seo
- Department of Molecular Science and Technology & College of Pharmacy, Ajou University, Suwon 16499, Korea.
| | - Bong-Jin Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Korea.
| | - Ji-Hun Kim
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Chungbuk, Korea.
| |
Collapse
|
39
|
Backbone assignment of perdeuterated proteins by solid-state NMR using proton detection and ultrafast magic-angle spinning. Nat Protoc 2017; 12:764-782. [PMID: 28277547 DOI: 10.1038/nprot.2016.190] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Solid-state NMR (ssNMR) is a technique that allows the study of protein structure and dynamics at atomic detail. In contrast to X-ray crystallography and cryo-electron microscopy, proteins can be studied under physiological conditions-for example, in a lipid bilayer and at room temperature (0-35 °C). However, ssNMR requires considerable amounts (milligram quantities) of isotopically labeled samples. In recent years, 1H-detection of perdeuterated protein samples has been proposed as a method of alleviating the sensitivity issue. Such methods are, however, substantially more demanding to the spectroscopist, as compared with traditional 13C-detected approaches. As a guide, this protocol describes a procedure for the chemical shift assignment of the backbone atoms of proteins in the solid state by 1H-detected ssNMR. It requires a perdeuterated, uniformly 13C- and 15N-labeled protein sample with subsequent proton back-exchange to the labile sites. The sample needs to be spun at a minimum of 40 kHz in the NMR spectrometer. With a minimal set of five 3D NMR spectra, the protein backbone and some of the side-chain atoms can be completely assigned. These spectra correlate resonances within one amino acid residue and between neighboring residues; taken together, these correlations allow for complete chemical shift assignment via a 'backbone walk'. This results in a backbone chemical shift table, which is the basis for further analysis of the protein structure and/or dynamics by ssNMR. Depending on the spectral quality and complexity of the protein, data acquisition and analysis are possible within 2 months.
Collapse
|
40
|
Beaugrand M, Arnold AA, Juneau A, Gambaro AB, Warschawski DE, Williamson PTF, Marcotte I. Magnetically Oriented Bicelles with Monoalkylphosphocholines: Versatile Membrane Mimetics for Nuclear Magnetic Resonance Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:13244-13251. [PMID: 27951690 DOI: 10.1021/acs.langmuir.6b03099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bicelles (bilayered micelles) are model membranes used in the study of peptide structure and membrane interactions. They are traditionally made of long- and short-chain phospholipids, usually dimyristoylphosphatidylcholine (D14PC) and dihexanoyl-PC (D6PC). They are attractive membrane mimetics because their composition and planar surface are similar to the native membrane environment. In this work, to improve the solubilization of membrane proteins and allow their study in bicellar systems, D6PC was replaced by detergents from the monoalkylphosphocholine (MAPCHO) family, of which dodecylphosphocholine (12PC) is known for its ability to solubilize membrane proteins. More specifically 12PC, tetradecyl- (14PC), and hexadecyl-PC (16PC) have been employed. To verify the possibility of making bicelles with different hydrophobic thicknesses to better accommodate membrane proteins, D14PC was also replaced by phospholipids with different alkyl chain lengths: dilauroyl-PC (D12PC), dipalmitoyl-PC (D16PC), distearoyl-PC (D18PC), and diarachidoyl-PC (D20PC). Results obtained by 31P solid-state nuclear magnetic resonance (NMR) and isothermal titration calorimetry (ITC) at several lipid-to-detergent molar ratios (q) and temperatures indicate that these new MAPCHO bicelles can be formed under a variety of conditions. The quality of their alignment is similar to that of classical bicelles, and the low critical micelle concentration (CMC) of the surfactants and their miscibility with phospholipids are likely to be advantageous for the reconstitution of membrane proteins.
Collapse
Affiliation(s)
- Maïwenn Beaugrand
- Département de Chimie, Université du Québec à Montréal , P.O. Box 8888, Downtown Station, Montreal H3C 3P8, Canada
| | - Alexandre A Arnold
- Département de Chimie, Université du Québec à Montréal , P.O. Box 8888, Downtown Station, Montreal H3C 3P8, Canada
| | - Antoine Juneau
- Département de Chimie, Université du Québec à Montréal , P.O. Box 8888, Downtown Station, Montreal H3C 3P8, Canada
| | - Aline Balieiro Gambaro
- Département de Chimie, Université du Québec à Montréal , P.O. Box 8888, Downtown Station, Montreal H3C 3P8, Canada
| | - Dror E Warschawski
- Département de Chimie, Université du Québec à Montréal , P.O. Box 8888, Downtown Station, Montreal H3C 3P8, Canada
- UMR 7099, CNRS - Université Paris Diderot, IBPC, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Philip T F Williamson
- Centre for Biological Sciences/Institute of Life Sciences, Highfield Campus, University of Southampton , Southampton SO17 1BJ, United Kingdom
| | - Isabelle Marcotte
- Département de Chimie, Université du Québec à Montréal , P.O. Box 8888, Downtown Station, Montreal H3C 3P8, Canada
| |
Collapse
|
41
|
Abstract
Preparation and storage of functional membrane proteins such as G-protein-coupled receptors (GPCRs) are crucial to the processes of drug delivery and discovery. Here, we describe a method of preparing powdered GPCRs using rhodopsin as the prototype. We purified rhodopsin in CHAPS detergent with low detergent to protein ratio so the bulk of the sample represented protein (ca. 72% w/w). Our new method for generating powders of membrane proteins followed by rehydration paves the way for conducting functional and biophysical experiments. As an illustrative application, powdered rhodopsin was prepared with and without the cofactor 11-cis-retinal to enable partial rehydration of the protein with D2O in a controlled manner. Quasi-elastic neutron scattering studies using both spatial motion and energy landscape models form the basis for crucial insights into structural fluctuations and thermodynamics of GPCR activation.
Collapse
Affiliation(s)
| | - Udeep Chawla
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Michael F. Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
- Department of Physics, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
42
|
Koeda S, Suzuki T, Noji T, Kawakami K, Itoh S, Dewa T, Kamiya N, Mizuno T. Rational design of novel high molecular weight solubilization surfactants for membrane proteins from the peptide gemini surfactants (PG-surfactants). Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.09.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
43
|
From Nanodiscs to Isotropic Bicelles: A Procedure for Solution Nuclear Magnetic Resonance Studies of Detergent-Sensitive Integral Membrane Proteins. Structure 2016; 24:1830-1841. [PMID: 27618661 DOI: 10.1016/j.str.2016.07.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/25/2016] [Accepted: 07/25/2016] [Indexed: 01/04/2023]
Abstract
Nanodiscs and isotropic bicelles are promising membrane mimetics in the field of solution nuclear magnetic resonance (NMR) spectroscopy of integral membrane proteins (IMPs). Despite varied challenges to solution NMR studies of IMPs, we attribute the paucity of solution NMR structures in these environments to the inability of diverse IMPs to withstand detergent treatment during standard nanodisc and bicelle preparations. Here, we present a strategy that creates small isotropic bicelles from IMPs co-translationally embedded in large nanodiscs using cell-free expression. Our results demonstrate appreciable gains in NMR spectral quality while preserving lipid-IMP contacts. We validate the approach on the detergent-sensitive LspA, which finally allowed us to perform high-quality triple-resonance NMR experiments for structural studies. Our strategy of producing bicelles from nanodiscs comprehensively avoids detergent during expression and preparation and is suitable for solution NMR spectroscopy of lipid-IMP complexes.
Collapse
|
44
|
Aβ42 assembles into specific β-barrel pore-forming oligomers in membrane-mimicking environments. Proc Natl Acad Sci U S A 2016; 113:10866-71. [PMID: 27621459 DOI: 10.1073/pnas.1605104113] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The formation of amyloid-β peptide (Aβ) oligomers at the cellular membrane is considered to be a crucial process underlying neurotoxicity in Alzheimer's disease (AD). Therefore, it is critical to characterize the oligomers that form within a membrane environment. To contribute to this characterization, we have applied strategies widely used to examine the structure of membrane proteins to study the two major Aβ variants, Aβ40 and Aβ42. Accordingly, various types of detergent micelles were extensively screened to identify one that preserved the properties of Aβ in lipid environments-namely the formation of oligomers that function as pores. Remarkably, under the optimized detergent micelle conditions, Aβ40 and Aβ42 showed different behavior. Aβ40 aggregated into amyloid fibrils, whereas Aβ42 assembled into oligomers that inserted into lipid bilayers as well-defined pores and adopted a specific structure with characteristics of a β-barrel arrangement that we named β-barrel pore-forming Aβ42 oligomers (βPFOsAβ42). Because Aβ42, relative to Aβ40, has a more prominent role in AD, the higher propensity of Aβ42 to form βPFOs constitutes an indication of their relevance in AD. Moreover, because βPFOsAβ42 adopt a specific structure, this property offers an unprecedented opportunity for testing a hypothesis regarding the involvement of βPFOs and, more generally, membrane-associated Aβ oligomers in AD.
Collapse
|
45
|
Naranjo AN, McNeely PM, Katsaras J, Robinson AS. Impact of purification conditions and history on A2A adenosine receptor activity: The role of CHAPS and lipids. Protein Expr Purif 2016; 124:62-7. [PMID: 27241126 DOI: 10.1016/j.pep.2016.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/23/2016] [Accepted: 05/26/2016] [Indexed: 02/08/2023]
Abstract
The adenosine A2A receptor (A2AR) is a much-studied class A G protein-coupled receptor (GPCR). For biophysical studies, A2AR is commonly purified in a detergent mixture of dodecylmaltoside (DDM), 3-(3-cholamidopropyl) dimethylammoniopropane sulfonate (CHAPS), and cholesteryl hemisuccinate (CHS). Here we studied the effects of CHAPS on the ligand binding activity and stability of wild type, full-length human A2AR. We also tested the cholesterol requirement for maintaining the active conformation of the receptor when solubilized in detergent micelles. To this end, the receptor was purified using DDM, DDM/CHAPS, or the short hydrocarbon chain lipid 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC, di-6:0PC). After solubilization in DDM, DDM/CHAPS, or DHPC micelles, although A2AR was found to retain its native-like fold, its binding ability was significantly compromised compared to DDM or DDM/CHAPS with CHS. It therefore appears that although cholesterol is not needed for A2AR to retain a native-like, α-helical conformation, it may be a critical component for high affinity ligand binding. Further, this result suggests that the conformational differences between the active and inactive protein may be so subtle that commonly used spectroscopic methods are unable to differentiate between the two forms, highlighting the need for activity measurements. The studies presented in this paper also underline the importance of the protein's purification history; i.e., detergents that interact with the protein during purification affect the ligand binding properties of the receptor in an irreversible manner.
Collapse
Affiliation(s)
- Andrea N Naranjo
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, United States
| | - Patrick M McNeely
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, United States
| | - John Katsaras
- Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6100, United States; Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN 37996-1200, United States; Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6453, United States
| | - Anne Skaja Robinson
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, United States; Department of Chemical and Biomolecular Engineering, 300 Lindy Boggs Laboratory, Tulane University, New Orleans, LA 70118, United States.
| |
Collapse
|
46
|
Lubecka EA, Sikorska E, Sobolewski D, Prahl A, Slaninová J, Ciarkowski J. Potent antidiuretic agonists, deamino-vasopressin and desmopressin, and their inverso analogs: NMR structure and interactions with micellar and liposomic models of cell membrane. Biopolymers 2016; 106:245-59. [PMID: 26916937 DOI: 10.1002/bip.22825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 02/11/2016] [Accepted: 02/13/2016] [Indexed: 11/08/2022]
Abstract
Deamination of vasopressin (AVP) enhances its antidiuretic activity. Moreover, introduction of D-Arg8 instead of its L enantiomer in deamino-vasopressin (dAVP) results in an extremely potent and selective antidiuretic agonist - desmopressin (dDAVP). In this study we describe the synthesis, pharmacological properties and structures of these two potent antidiuretic agonists, and their inverso analogs. The structures of the peptides are studied in micellar and liposomic models of cell membrane using CD spectroscopy. Additionally, three-dimensional structures in mixed anionic-zwitterionic micelles are obtained using NMR spectroscopy supported by molecular dynamics simulations. Our conformational studies have shown that desmopressin in a membrane mimicking environment adopts one of the characteristic for vasopressin-like peptides β-turn - in position 3,4. Furthermore, dDAVP shows the tendency to create a β-turn in the Cys6-Gly9 C-tail, considered to be important for the antidiuretic activity, and also some tendency to adopt a 5,6 β-turn. In desmopressin, in contrast to the native vasopressin, deamino-vasopressin and [D-Arg8]-vasopressin (DAVP), the Arg8 side chain, crucial for the pressor and antidiuretic activities, is very well exposed for interaction with the receptor, whereas Gly9, crucial for the pressor and uterotonic activities, is situated together with the C-terminal amide group very close to the tocin ring. The arrangements of the Gln4 and Asn5 side chains, being crucial for OT activity, also differ in desmopressin as compared to those of AVP, dAVP and DAVP. These differences in arrangement of the important for activities side chains are likely to explain extremely potent and selective antidiuretic activities of desmopressin. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 245-259, 2016.
Collapse
Affiliation(s)
- Emilia A Lubecka
- Faculty of Chemistry, University of Gdańsk, Gdańsk, 80-308, Poland
| | - Emilia Sikorska
- Faculty of Chemistry, University of Gdańsk, Gdańsk, 80-308, Poland
| | | | - Adam Prahl
- Faculty of Chemistry, University of Gdańsk, Gdańsk, 80-308, Poland
| | - Jiřina Slaninová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10 Prague, Czech Republic
| | - Jerzy Ciarkowski
- Faculty of Chemistry, University of Gdańsk, Gdańsk, 80-308, Poland
| |
Collapse
|
47
|
Furman GB, Goren SD, Meerovich VM, Sokolovsky VL. Anisotropy of spin-spin and spin-lattice relaxation times in liquids entrapped in nanocavities: Application to MRI study of biological systems. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 263:71-78. [PMID: 26773529 DOI: 10.1016/j.jmr.2015.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/15/2015] [Accepted: 12/23/2015] [Indexed: 06/05/2023]
Abstract
Spin-spin and spin-lattice relaxations in liquid or gas entrapped in nanosized ellipsoidal cavities with different orientation ordering are theoretically investigated. The model is flexible in order to be applied to explain experimental results in cavities with various forms, from very prolate up to oblate ones, and different degree of ordering of nanocavities. In the framework of the considered model, the dipole-dipole interaction is determined by a single coupling constant, which depends on the form, size, and orientation of the cavity and number of nuclear spins in the cavity. It was shown that the transverse and longitudinal relaxation rates differently depend on the angle between the external magnetic field and cavity main axis. The calculation results for the local dipolar field, transverse and longitudinal relaxation times explain the angular dependencies observed in MRI experiments with biological objects: cartilage and tendon. Microstructure of these tissues can be characterized by the standard deviation of the Gaussian distribution of fibril orientations. The comparison of the theoretical and experimental results shows that the value of the standard deviation obtained at the matching of the calculation to experimental results can be used as a parameter characterizing the disorder in the biological sample.
Collapse
Affiliation(s)
- Gregory B Furman
- Physics Department, Ben Gurion University of the Negev, Beer Sheva 84105, Israel.
| | - Shaul D Goren
- Physics Department, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Victor M Meerovich
- Physics Department, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | | |
Collapse
|
48
|
Cheng X, Kim JK, Kim Y, Bowie JU, Im W. Molecular dynamics simulation strategies for protein-micelle complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:1566-72. [PMID: 26679426 DOI: 10.1016/j.bbamem.2015.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/25/2015] [Accepted: 12/03/2015] [Indexed: 01/27/2023]
Abstract
The structure and stability of membrane proteins can vary widely in different detergents and this variability has great practical consequences for working with membrane proteins. Nevertheless, the mechanisms that operate to alter the behavior of proteins in micelles are poorly understood and not predictable. Atomic simulations could provide considerable insight into these mechanisms. Building protein-micelle complexes for simulation is fraught with uncertainty, however, in part because it is often unknown how many detergent molecules are present in the complex. Here, we describe several convenient ways to employ Micelle Builder in CHARMM-GUI to rapidly construct protein-micelle complexes and performed simulations of the isolated voltage-sensor domain of voltage-dependent potassium-selective channel and an antimicrobial peptide papiliocin with varying numbers of detergents. We found that once the detergent number exceeds a threshold, protein-detergent interactions change very little and remain very consistent with experimental observations. Our results provide a platform for future studies of the interplays between protein structure and detergent properties at the atomic level. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Jin-Kyoung Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - James U Bowie
- Department of Chemistry and Biochemistry, UCLA, 611 Charles E. Young Dr. E, Los Angeles, CA 90095-1570, USA
| | - Wonpil Im
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA.
| |
Collapse
|
49
|
Furman GB, Goren SD, Meerovich VM, Sokolovsky VL. Nuclear spin-lattice relaxation in nanofluids with paramagnetic impurities. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 261:175-180. [PMID: 26583530 DOI: 10.1016/j.jmr.2015.10.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/22/2015] [Indexed: 06/05/2023]
Abstract
We study the spin-lattice relaxation of the nuclear spins in a liquid or a gas entrapped in nanosized ellipsoidal cavities with paramagnetic impurities. Two cases are considered where the major axes of cavities are in orientational order and isotropically disordered. The evolution equation and analytical expression for spin lattice relaxation time are obtained which give the dependence of the relaxation time on the structural parameters of a nanocavity and the characteristics of a gas or a liquid confined in nanocavities. For the case of orientationally ordered cavities, the relaxation process is exponential. When the nanocavities are isotropically disordered, the time dependence of the magnetization is significantly non-exponential. As shown for this case, the relaxation process is characterized by two time constants. The measurements of the relaxation time, along with the information about the cavity size, allow determining the shape and orientation of the nanocavity and concentration of the paramagnetic impurities.
Collapse
Affiliation(s)
- Gregory B Furman
- Physics Department, Ben Gurion University of the Negev, Beer Sheva 84105, Israel.
| | - Shaul D Goren
- Physics Department, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Victor M Meerovich
- Physics Department, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | | |
Collapse
|
50
|
Analysing DHPC/DMPC bicelles by diffusion NMR and multivariate decomposition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2910-7. [DOI: 10.1016/j.bbamem.2015.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/06/2015] [Accepted: 09/01/2015] [Indexed: 12/16/2022]
|