1
|
Ayoup MS, ElShafey MM, Abdel-Hamid H, Ghareeb DA, Abu-Serie MM, Heikal LA, Teleb M. Repurposing 1,2,4-oxadiazoles as SARS-CoV-2 PLpro inhibitors and investigation of their possible viral entry blockade potential. Eur J Med Chem 2023; 252:115272. [PMID: 36966652 PMCID: PMC10008816 DOI: 10.1016/j.ejmech.2023.115272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Although vaccines are obviously mitigating the COVID-19 pandemic diffusion, efficient complementary antiviral agents are urgently needed to combat SARS-CoV-2. The viral papain-like protease (PLpro) is a promising therapeutic target being one of only two essential proteases crucial for viral replication. Nevertheless, it dysregulates the host immune sensing response. Here we report repositioning of the privileged 1,2,4-oxadiazole scaffold as promising SARS-CoV-2 PLpro inhibitor with potential viral entry inhibition profile. The design strategy relied on mimicking the general structural features of the lead benzamide PLpro inhibitor GRL0617 with isosteric replacement of its pharmacophoric amide backbone by 1,2,4-oxadiazole core. Inspired by the multitarget antiviral agents, the substitution pattern was rationalized to tune the scaffold's potency against other additional viral targets, especially the spike receptor binding domain (RBD) that is responsible for the viral invasion. The Adopted facial synthetic protocol allowed easy access to various rationally substituted derivatives. Among the evaluated series, the 2-[5-(pyridin-4-yl)-1,2,4-oxadiazol-3-yl]aniline (5) displayed the most balanced dual inhibitory potential against SARS-CoV-2 PLpro (IC50=7.197 μM) and spike protein RBD (IC50 = 8.673 μM), with acceptable ligand efficiency metrics, practical LogP (3.8) and safety profile on Wi-38 (CC50 = 51.78 μM) and LT-A549 (CC50 = 45.77 μM) lung cells. Docking simulations declared the possible structural determinants of activities and enriched the SAR data for further optimization studies.
Collapse
Affiliation(s)
- Mohammed Salah Ayoup
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt.
| | - Mariam M ElShafey
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt
| | - Hamida Abdel-Hamid
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt
| | - Doaa A Ghareeb
- Bio‑screening and preclinical trial lab, Biochemistry Department, Faculty of Science, Alexandria University, P.O. Box 21511, Alexandria, Egypt
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Egypt
| | - Lamia A Heikal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
2
|
Krivdin LB. Computational 1 H and 13 C NMR in structural and stereochemical studies. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:733-828. [PMID: 35182410 DOI: 10.1002/mrc.5260] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Present review outlines the advances and perspectives of computational 1 H and 13 C NMR applied to the stereochemical studies of inorganic, organic, and bioorganic compounds, involving in particular natural products, carbohydrates, and carbonium ions. The first part of the review briefly outlines theoretical background of the modern computational methods applied to the calculation of chemical shifts and spin-spin coupling constants at the DFT and the non-empirical levels. The second part of the review deals with the achievements of the computational 1 H and 13 C NMR in the stereochemical investigation of a variety of inorganic, organic, and bioorganic compounds, providing in an abridged form the material partly discussed by the author in a series of parent reviews. Major attention is focused herewith on the publications of the recent years, which were not reviewed elsewhere.
Collapse
Affiliation(s)
- Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
3
|
Afonin AV, Pavlov DV, Albanov AV, Mal'kina AG. Solvent-induced E/Z isomerization of 2-(furylmethylidene)-1-hydrazinecarbothioamide: The N–H⋅⋅⋅O intramolecular hydrogen bond as promoting factor. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
Ivanov AV, Martynovskaya SV, Shcherbakova VS, Ushakov IA, Borodina TN, Bobkov AS, Vitkovskaya NM. Ambient access to a new family of pyrrole-fused pyrazine nitrones via 2-carbonyl- N-allenylpyrroles. Org Chem Front 2020. [DOI: 10.1039/d0qo00762e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The chemo-, regio- and stereoselective synthesis of pyrrole-fused pyrazine nitrones via the direct reaction of 2-carbonyl-N-allenylpyrroles (readily accessible from the corresponding NH-pyrroles) with hydroxyl amine hydrochloride has been developed.
Collapse
Affiliation(s)
- Andrey V. Ivanov
- Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Svetlana V. Martynovskaya
- Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Victoria S. Shcherbakova
- Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Igor A. Ushakov
- Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Tatyana N. Borodina
- Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Alexander S. Bobkov
- Laboratory of Quantum Chemical Modeling of Molecular Systems
- Irkutsk State University
- 664003 Irkutsk
- Russian Federation
| | - Nadezhda M. Vitkovskaya
- Laboratory of Quantum Chemical Modeling of Molecular Systems
- Irkutsk State University
- 664003 Irkutsk
- Russian Federation
| |
Collapse
|
5
|
Kawakita K, Kakiuchi Y, Beaumier EP, Tonks IA, Tsurugi H, Mashima K. Synthesis of Pyridylimido Complexes of Tantalum and Niobium by Reductive Cleavage of the N═N Bond of 2,2'-Azopyridine: Precursors for Early-Late Heterobimetallic Complexes. Inorg Chem 2019; 58:15155-15165. [PMID: 31553585 PMCID: PMC7017918 DOI: 10.1021/acs.inorgchem.9b02043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the syntheses of 2-pyridylimido complexes of tantalum and niobium by N═N bond cleavage of 2,2'-azopyridine. Reaction of MCl5 (M = Ta and Nb) with 2,2'-azopyridine in the presence of 0.5 equiv of 1-methyl-3,6-bis(trimethylsilyl)-1,4-cyclohexadiene (abbreviated Si-Me-CHD) afforded a dark red solution (for Ta) and a dark blue solution (for Nb) with some insoluble precipitates. After removing the solids, another 0.5 equiv of Si-Me-CHD was added to each solution, giving [M(═Npy)Cl3]n (1a: M = Ta; 1b: M = Nb) through reductive cleavage of the N═N bond of 2,2'-azopyridine. The initial products of the above reactions were determined to be 2,2'-azopyridine-bridged dinuclear complexes, [(MCl4)2(μ-pyNNpy)] (2a: M = Ta; 2b: M = Nb), which were isolated by treating MCl5 with 2,2'-azopyridine and Si-Me-CHD in a 2:1:1 molar ratio. In 2a and 2b, the N═N bond was reduced to a single bond via two-electron reduction. Further reduction of complexes 2a and 2b with 1 equiv of Si-Me-CHD afforded complexes 1a and 1b. An anionic doubly μ-imido-bridged ditantalum complex, [nBu4N][Ta2(μ-Npy)2Cl7] (3a), was generated upon addition of nBu4NCl to complex 1a, while addition of nBu4NCl to niobium complex 1b gave a polymeric terminal imido complex, [nBu4N]n/2[{Nb(═Npy)Cl3}2(μ-Cl)]n/2 (3b). Complexations of 1a and 1b with 1 equiv of 2,2'-bipyridine resulted in the formation of mononuclear 2-pyridylimido complexes, M(═Npy)Cl3(bipy) (4a: M = Ta; 4b: M = Nb), whose main structural feature is intramolecular hydrogen bonding between the ortho hydrogen atom of 2,2'-bipyridine and the nitrogen atom of the pyridyl group on the imido ligand. Isolated 2-pyridylimido complexes 4a and 4b reacted with [RhCl(cod)]2 to produce the corresponding early-late heterobimetallic complexes, (bipy)MCl3(μ-Npy)RhCl(cod) (5a: M = Ta; 5b: M = Nb).
Collapse
Affiliation(s)
- Kento Kawakita
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Yuya Kakiuchi
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Evan P. Beaumier
- Department of Chemistry, University of Minnesota–Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Ian A. Tonks
- Department of Chemistry, University of Minnesota–Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Hayato Tsurugi
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kazushi Mashima
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
6
|
Baláž M, Kudličková Z, Vilková M, Imrich J, Balážová Ľ, Daneu N. Mechanochemical Synthesis and Isomerization of N-Substituted Indole-3-carboxaldehyde Oximes †. Molecules 2019; 24:molecules24183347. [PMID: 31540034 PMCID: PMC6766794 DOI: 10.3390/molecules24183347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/29/2019] [Accepted: 09/11/2019] [Indexed: 11/16/2022] Open
Abstract
Performing solution-phase oximation reactions with hydroxylamine hydrochloride (NH2OH·HCl) carries significant risk, especially in aqueous solutions. In the present study, four N-substituted indole-3-carboxaldehyde oximes were prepared from the corresponding aldehydes by solvent-free reaction with NH2OH·HCl and a base (NaOH or Na2CO3) using a mechanochemical approach, thus minimizing the possible risk. In all cases, the conversion to oximes was almost complete. The focus of this work is on 1-methoxyindole-3-carboxaldehyde oxime, a key intermediate in the production of indole phytoalexins with useful antimicrobial properties. Under optimized conditions, it was possible to reach almost 95% yield after 20 min of milling. Moreover, for the products containing electron-donating substituents (-CH3, -OCH3), the isomerization from the oxime anti to syn isomer under acidic conditions was discovered. For the 1-methoxy analog, the acidic isomerization of pure isomers in solution resulted in the formation of anti isomer, whereas the prevalence of syn isomer was observed in solid state. From NMR data the syn and anti structures of produced oximes were elucidated. This work shows an interesting and possibly scalable alternative to classical synthesis and underlines environmentally friendly and sustainable character of mechanochemistry.
Collapse
Affiliation(s)
- Matej Baláž
- Department of Mechanochemistry, Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia.
| | - Zuzana Kudličková
- Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia.
| | - Mária Vilková
- NMR Laboratory, Faculty of Science, P. J. Šafárik University, Moyzesova 11, 04001 Košice, Slovakia.
| | - Ján Imrich
- NMR Laboratory, Faculty of Science, P. J. Šafárik University, Moyzesova 11, 04001 Košice, Slovakia.
| | - Ľudmila Balážová
- Department of Pharmacognosy and Botany, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia.
| | - Nina Daneu
- Advanced Materials Department, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| |
Collapse
|
7
|
Adamovich SN. New atranes and similar ionic complexes. Synthesis, structure, properties. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4940] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sergey N. Adamovich
- A. E. Favorsky Irkutsk Institute of ChemistrySB RAS 1 Favorsky Street 664033 Irkutsk Russian Federation
| |
Collapse
|
8
|
Afonin AV, Pavlov DV, Vashchenko AV. Case study of 2-vinyloxypyridine: Quantitative assessment of the intramolecular C H⋯N hydrogen bond energy and its contribution to the one-bond 13C1H coupling constant. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.08.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Krivdin LB. Theoretical calculations of carbon-hydrogen spin-spin coupling constants. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 108:17-73. [PMID: 30538048 DOI: 10.1016/j.pnmrs.2018.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 06/09/2023]
Abstract
Structural applications of theoretical calculations of carbon-hydrogen spin-spin coupling constants are reviewed covering papers published mainly during the last 10-15 years with a special emphasis on the most notable studies of hybridization, substitution and stereoelectronic effects together with the investigation of hydrogen bonding and intermolecular interactions. The wide scope of different applications of calculated carbon-hydrogen couplings in the structural elucidation of particular classes of organic and bioorganic molecules is reviewed, concentrating mainly on saturated, unsaturated, aromatic and heteroaromatic compounds and their functional derivatives, as well as on natural compounds and carbohydrates. The review is dedicated to Professor Emeritus Michael Barfield in view of his invaluable pioneering contribution to this field.
Collapse
Affiliation(s)
- Leonid B Krivdin
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033 Irkutsk, Russia.
| |
Collapse
|
10
|
Afonin AV, Vashchenko AV, Sigalov MV. Estimating the energy of intramolecular hydrogen bonds from 1H NMR and QTAIM calculations. Org Biomol Chem 2018; 14:11199-11211. [PMID: 27841888 DOI: 10.1039/c6ob01604a] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The values of the downfield chemical shift of the bridge hydrogen atom were estimated for a series of compounds containing an intramolecular hydrogen bond O-HO, O-HN, O-HHal, N-HO, N-HN, C-HO, C-HN and C-HHal. Based on these values, the empirical estimation of the hydrogen bond energy was obtained by using known relationships. For the compounds containing an intramolecular hydrogen bond, the DFT B3LYP/6-311++G(d,p) method was used both for geometry optimization and for QTAIM calculations of the topological parameters (electron density ρBCP and the density of potential energy V in the critical point of the hydrogen bond). The calculated geometric and topological parameters of hydrogen bonds were also used to evaluate the energy of the hydrogen bond based on the equations from the literature. Comparison of calibrating energies from the 1H NMR data with the energies predicted by calculations showed that the most reliable are the linear dependence on the topological ρBCP and V parameters. However, the correct prediction of the hydrogen bond energy is determined by proper fitting of the linear regression coefficients. To obtain them, new linear relationships were found between the calculated ρBCP and V parameters and the hydrogen bond energies obtained from empirical 1H NMR data. These relationships allow the comparison of the energies of different types of hydrogen bonds for various molecules and biological ensembles.
Collapse
Affiliation(s)
- Andrei V Afonin
- Institute of Chemistry, Siberian Division of Russian Academy of Sciences, 664033 Irkutsk, Russia.
| | - Alexander V Vashchenko
- Institute of Chemistry, Siberian Division of Russian Academy of Sciences, 664033 Irkutsk, Russia.
| | - Mark V Sigalov
- Department of Chemistry, Ben-Gurion University of the Negev, 84104, Beer Sheva, Israel.
| |
Collapse
|
11
|
Krivdin LB. Calculation of 15N NMR chemical shifts: Recent advances and perspectives. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 102-103:98-119. [PMID: 29157495 DOI: 10.1016/j.pnmrs.2017.08.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
Recent advances in computation of 15N NMR chemical shifts are reviewed, concentrating mainly on practical aspects of computational protocols and accuracy factors. The review includes the discussion of the level of theory, the choice of density functionals and basis sets together with taking into account solvent effects, rovibrational corrections and relativistic effects. Computational aspects of 15N NMR are illustrated for the series of neutral and protonated open-chain nitrogen-containing compounds and nitrogen heterocycles, coordination and intermolecular complexes.
Collapse
Affiliation(s)
- Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033 Irkutsk, Russia.
| |
Collapse
|
12
|
Adamovich SN, Vchislo NV, Oborina EN, Ushakov IA, Rozentsveig IB. Novel α,β-unsaturated imine derivatives of 3-aminopropylsilatrane. MENDELEEV COMMUNICATIONS 2017. [DOI: 10.1016/j.mencom.2017.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Mikhaleva AI, Markova MV, Tatarinova IV, Morozova LV, Trofimov BA. Polymerization of N-vinylpyrroles: Recent achievements. POLYMER SCIENCE SERIES B 2014. [DOI: 10.1134/s1560090414040071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Afonin AV, Pavlov DV, Albanov AI, Tarasova OA, Nedolya NA. Experimental and theoretical study of the intramolecular C-H···N and C-H···S hydrogen bonding effects in the 1H and 13C NMR spectra of the 2-(alkylsulfanyl)-5-amino-1-vinylpyrroles: a particular state of amine nitrogen. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2013; 51:414-423. [PMID: 23695830 DOI: 10.1002/mrc.3967] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/21/2013] [Accepted: 04/22/2013] [Indexed: 06/02/2023]
Abstract
In the (1)H NMR spectra of the 1-vinylpyrroles with amino- and alkylsulfanyl groups in 5 and 2 positions, an extraordinarily large difference between resonance positions of the HA and HB terminal methylene protons of the vinyl group is discovered. Also, the one-bond (1)J(C(β),H(B)) coupling constant is surprisingly greater than the (1)J(C(β),H(A)) coupling constant in pyrroles under investigation, while in all known cases, there was a reverse relationship between these coupling constants. These spectral anomalies are substantiated by quantum chemical calculations. The calculations show that the amine nitrogen lone pair is removed from the conjugation with the π-system of the pyrrole ring so that it is directed toward the HB hydrogen. These factors are favorable to the emergence of the intramolecular C-HB •••N hydrogen bonding in the s-cis(N) conformation. On the other hand, the spatial proximity of the sulfur to the HB hydrogen provides an opportunity of the intramolecular C-HB •••S hydrogen bonding in the s-cis(S) conformation. Presence of the hydrogen bond critical points as well as ring critical point for corresponding chelate ring revealed by a quantum theory of atoms in molecules (QTAIM) approach confirms the existence of the weak intramolecular C-H•••N and C-H•••S hydrogen bonding. Therefore, an unusual high-frequency shift of the HB signal and the increase in the (1)J(C(β),H(B)) coupling constant can be explained by the effects of hydrogen bonding.
Collapse
Affiliation(s)
- Andrei V Afonin
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St 1, 664033, Irkutsk, Russia
| | | | | | | | | |
Collapse
|
15
|
Synthesis, NMR characterization, X-ray structural analysis and theoretical calculations of amide and ester derivatives of the coumarin scaffold. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Afonin AV, Ushakov IA, Pavlov DV, Schmidt EY, Dvorko MY. Structural peculiarities of configurational isomers of 1-styrylpyrroles according to 1Н, 13С and 15N NMR spectroscopy and density functional theory calculations: electronic and steric hindrance for planar structure. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2013; 51:339-349. [PMID: 23558848 DOI: 10.1002/mrc.3951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 03/01/2013] [Accepted: 03/05/2013] [Indexed: 06/02/2023]
Abstract
Comparative analysis of the (1)Н and (13)С NMR data for a series of the E and Z-1-styrylpyrroles, E and Z-1-(1-propenyl)pyrroles, 1-vinylpyrroles and styrene suggests that the conjugation between the unsaturated fragments in the former compounds is reduced. This is the result of the mutual influence of the donor p-π and π-π conjugation having opposite directions. According to the NMR data combined with the density functional theory calculations, the Z isomer of 1-styrylpyrrole has essentially a nonplanar structure because of the steric hindrance. However, the E isomer of 1-styrylpyrrole is also an out-of-plane structure despite the absence of a sterical barrier for the planar one. Deviation of the E isomer from the planar structure seems to be caused by an electronic hindrance produced by a mutual influence of the p-π and π-π conjugation. The structure of the E isomer of the 2-substituted 1-styrylpyrroles is similar to that of the 2-substituted 1-vinylpyrroles. The steric effects in the Z isomer of the 2-substituted 1-styrylpyrroles result in the large increase of the dihedral angle between planes of the pyrrole ring and double bond.
Collapse
Affiliation(s)
- Andrei V Afonin
- Institute of Chemistry, Siberian Branch of the Russian Academy of Science, Favorski St 1, 664033 Irkutsk, Russia
| | | | | | | | | |
Collapse
|
17
|
Rusakov YY, Krivdin LB. Modern quantum chemical methods for calculating spin–spin coupling constants: theoretical basis and structural applications in chemistry. RUSSIAN CHEMICAL REVIEWS 2013. [DOI: 10.1070/rc2013v082n02abeh004350] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
13C NMR chemical shifts of benzophenone azine as a benchmark for configurational assignment of azines with aromatic substituents. Russ Chem Bull 2013. [DOI: 10.1007/s11172-012-0151-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Structural studies of meso-CF3-3(5)-aryl(hetaryl)- and 3,5-diaryl(dihetaryl)-BODIPY dyes by 1H, 13C and 19F NMR spectroscopy and DFT calculations. J Fluor Chem 2013. [DOI: 10.1016/j.jfluchem.2012.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Afonin AV, Pavlov DV, Ushakov IA, Keiko NA. Stereospecificity of (1) H, (13) C and (15) N shielding constants in the isomers of methylglyoxal bisdimethylhydrazone: problem with configurational assignment based on (1) H chemical shifts. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2012; 50:502-510. [PMID: 22615146 DOI: 10.1002/mrc.3828] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/02/2012] [Accepted: 04/26/2012] [Indexed: 06/01/2023]
Abstract
In the (13) C NMR spectra of methylglyoxal bisdimethylhydrazone, the (13) C-5 signal is shifted to higher frequencies, while the (13) C-6 signal is shifted to lower frequencies on going from the EE to ZE isomer following the trend found previously. Surprisingly, the (1) H-6 chemical shift and (1) J(C-6,H-6) coupling constant are noticeably larger in the ZE isomer than in the EE isomer, although the configuration around the -CH═N- bond does not change. This paradox can be rationalized by the C-H⋯N intramolecular hydrogen bond in the ZE isomer, which is found from the quantum-chemical calculations including Bader's quantum theory of atoms in molecules analysis. This hydrogen bond results in the increase of δ((1) H-6) and (1) J(C-6,H-6) parameters. The effect of the C-H⋯N hydrogen bond on the (1) H shielding and one-bond (13) C-(1) H coupling complicates the configurational assignment of the considered compound because of these spectral parameters. The (1) H, (13) C and (15) N chemical shifts of the 2- and 8-(CH(3) )(2) N groups attached to the -C(CH(3) )═N- and -CH═N- moieties, respectively, reveal pronounced difference. The ab initio calculations show that the 8-(CH(3) )(2) N group conjugate effectively with the π-framework, and the 2-(CH(3) )(2) N group twisted out from the plane of the backbone and loses conjugation. As a result, the degree of charge transfer from the N-2- and N-8- nitrogen lone pairs to the π-framework varies, which affects the (1) H, (13) C and (15) N shieldings.
Collapse
Affiliation(s)
- Andrei V Afonin
- Institute of Chemistry, Siberian Branch of the Russian Academy of Science, Favorski St 1, 664033, Irkutsk, Russia
| | | | | | | |
Collapse
|
21
|
Afonin AV. Intramolecular hydrogen bonds C-H⋯N in bisheterocyclic compounds according to 1H and 13C NMR data. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2012. [DOI: 10.1134/s1070428012050089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Afonin AV, Pavlov DV, Ushakov IA, Levanova EP, Levkovskaya GG. Stereospecificity of 13C shielding constants in acetone azine as a tool for configurational assignment of ketone azines. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2012. [DOI: 10.1134/s1070428012030037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Aliev AE, Mia ZA, Khaneja HS, King FD. Structures in Solutions from Joint Experimental-Computational Analysis: Applications to Cyclic Molecules and Studies of Noncovalent Interactions. J Phys Chem A 2012; 116:1093-109. [DOI: 10.1021/jp211083f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Abil E. Aliev
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Zakirin A. Mia
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Harmeet S. Khaneja
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Frank D. King
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| |
Collapse
|
24
|
Afonin AV, Pavlov DV, Albanov AI, Levanova EP, Levkovskaya GG. Study of stereospecificity of 1H, 13C, 15N and 77Se shielding constants in the configurational isomers of the selenophene-2-carbaldehyde azine by NMR spectroscopy and MP2-GIAO calculations. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2011; 49:740-748. [PMID: 22002712 DOI: 10.1002/mrc.2824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/10/2011] [Accepted: 08/21/2011] [Indexed: 05/31/2023]
Abstract
In the (1)H and (13)C NMR spectra of selenophene-2-carbaldehyde azine, the (1)H-5, (13)C-3 and (13)C-5 signals of the selenophene ring are shifted to higher frequencies, whereas those of the (1)H-1, (13)C-1, (13)C-2 and (13)C-4 are shifted to lower frequencies on going from the EE to ZZ isomer or from the E moiety to the Z moiety of EZ isomer. The (15)N chemical shift is significantly larger in the EE isomer relative to the ZZ isomer and in the E moiety relative to the Z moiety of EZ isomer. A very pronounced difference (60-65 mg/g) between the (77)Se resonance positions is revealed in the studied azine isomers, the (77)Se peak being shifted to higher frequencies in the ZZ isomer and in the Z moiety of EZ isomer. The trends in the changes of the measured chemical shifts are reasonably reproduced by the GIAO calculations at the MP2 level of the (1)H, (13)C, (15)N and (77)Se shielding constants in the energy-favorable conformation with the syn orientation of both selenophene rings relative to the C = N groups. The NBO analysis suggests that such an arrangement of the selenophene rings may take place because of a higher energy of some intramolecular interactions.
Collapse
Affiliation(s)
- Andrei V Afonin
- Institute of Chemistry, Siberian Branch of the Russian Academy of Science, Favorski St 1, 664033 Irkutsk, Russia
| | | | | | | | | |
Collapse
|
25
|
Horowitz S, Yesselman JD, Al-Hashimi HM, Trievel RC. Direct evidence for methyl group coordination by carbon-oxygen hydrogen bonds in the lysine methyltransferase SET7/9. J Biol Chem 2011; 286:18658-63. [PMID: 21454678 PMCID: PMC3099682 DOI: 10.1074/jbc.m111.232876] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 03/17/2011] [Indexed: 12/27/2022] Open
Abstract
SET domain lysine methyltransferases (KMTs) are S-adenosylmethionine (AdoMet)-dependent enzymes that catalyze the site-specific methylation of lysyl residues in histone and non-histone proteins. Based on crystallographic and cofactor binding studies, carbon-oxygen (CH · · · O) hydrogen bonds have been proposed to coordinate the methyl groups of AdoMet and methyllysine within the SET domain active site. However, the presence of these hydrogen bonds has only been inferred due to the uncertainty of hydrogen atom positions in x-ray crystal structures. To experimentally resolve the positions of the methyl hydrogen atoms, we used NMR (1)H chemical shift coupled with quantum mechanics calculations to examine the interactions of the AdoMet methyl group in the active site of the human KMT SET7/9. Our results indicated that at least two of the three hydrogens in the AdoMet methyl group engage in CH · · · O hydrogen bonding. These findings represent direct, quantitative evidence of CH · · · O hydrogen bond formation in the SET domain active site and suggest a role for these interactions in catalysis. Furthermore, thermodynamic analysis of AdoMet binding indicated that these interactions are important for cofactor binding across SET domain enzymes.
Collapse
Affiliation(s)
- Scott Horowitz
- Chemistry, and Biophysics, University of Michigan, Ann Arbor, Michigan 48109
| | - Joseph D. Yesselman
- Chemistry, and Biophysics, University of Michigan, Ann Arbor, Michigan 48109
| | | | | |
Collapse
|
26
|
Afonin AV. Effect of aromatic ring anisotropy on the 1H NMR shielding constants and conformational equilibrium of sterically strained aryl vinyl ethers. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2011. [DOI: 10.1134/s107042801104004x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Walton I, Davis M, Yang L, Zhang Y, Tillman D, Jarrett WL, Huggins MT, Wallace KJ. Conformational and configurational analysis of an N,N carbonyl dipyrrinone-derived oximate and nitrone by NMR and quantum chemical calculations. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2011; 49:205-212. [PMID: 21400587 DOI: 10.1002/mrc.2728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 12/16/2010] [Accepted: 12/21/2010] [Indexed: 05/30/2023]
Abstract
The geometries and relative energies of new N,N carbonyl dipyrrinone-derived oxime molecules (E/Z-s-cis 4a and E/Z-s-cis 4b) have been investigated. The calculated energies, molecular geometries, and (1) H/(13) C NMR chemical shifts agree with experimental data, and the results are presented herein. The E-s-cis conformations of 4a and 4b and the Z-s-cis conformation of 5b were found to be the thermodynamically most stable isomers with the oxime hydrogen atom or the methyl functional group adopting an anti-orientation with respect to the dipyrrinone group. This conformation was unambiguously supported by a number of 2D NMR experiments.
Collapse
Affiliation(s)
- Ian Walton
- Department of Chemistry, University of West Florida, Pensacola, FL, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Chernyshev KA, Krivdin LB. Quantum-chemical calculations of NMR chemical shifts of organic molecules: II. Influence of medium, relativistic effects, and vibrational corrections on phosphorus magnetic shielding constants in the simplest phosphines and phosphine chalcogenides. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2011. [DOI: 10.1134/s1070428011030043] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Liu X, Huang XS, Sin N, Venables BL, Roongta V. 15N chemical shifts of a series of isatin oxime ethers and their corresponding nitrone isomers. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2010; 48:873-876. [PMID: 20818803 DOI: 10.1002/mrc.2680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In this article, we describe the characteristic (15)N chemical shifts of isatin oxime ethers and their isomer nitrone. These oxime ethers and nitrones are the alkylation reaction products of isatin oximes. In our study, the (15)N chemical shifts observed in these oxime ethers were in the 402-408 (or 22-28) ppm range, although those for their corresponding nitrone series were in the 280-320 (or -100 to -60) ppm range. This remarkable difference in (15)N NMR chemical shift values could potentially be used to determine the O- versus N-alkylation of oximes, even when only one isomer is available. In this paper, the differences in (15)N NMR chemical shifts serve as the basis for a discussion about how to distinguish both regioisomers derived from the oximes alkylation.
Collapse
Affiliation(s)
- Xiaohong Liu
- Department of Drug Metabolism, Covance Company, 3301 Kinsman Boulevard, Madison, WI 53704, USA
| | | | | | | | | |
Collapse
|
30
|
Afonin AV, Ushakov IA, Pavlov DV, Ivanov AV, Mikhaleva AI. Study of conformations and hydrogen bonds in the configurational isomers of pyrrole-2-carbaldehyde oxime by 1H, 13C and 15N NMR spectroscopy combined with MP2 and DFT calculations and NBO analysis. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2010; 48:685-692. [PMID: 20623827 DOI: 10.1002/mrc.2650] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The (1)H, (13)C and (15)N NMR studies have shown that the E and Z isomers of pyrrole-2-carbaldehyde oxime adopt preferable conformation with the syn orientation of the oxime group with respect to the pyrrole ring. The syn conformation of E and Z isomers of pyrrole-2-carbaldehyde oxime is stabilized by the N-H...N and N-H...O intramolecular hydrogen bonds, respectively. The N-H...N hydrogen bond in the E isomer causes the high-frequency shift of the bridge proton signal by about 1 ppm and increase the (1)J(N, H) coupling by approximately 3 Hz. The bridge proton shows further deshielding and higher increase of the (1)J(N, H) coupling constant due to the strengthening of the N-H...O hydrogen bond in the Z isomer. The MP2 calculations indicate that the syn conformation of E and Z isomers is by approximately 3.5 kcal/mol energetically less favorable than the anti conformation. The calculations of (1)H shielding and (1)J(N, H) coupling in the syn and anti conformations allow the contribution to these constants from the N-H...N and N-H...O hydrogen bondings to be estimated. The NBO analysis suggests that the N-H...N hydrogen bond in the E isomer is a pure electrostatic interaction while the charge transfer from the oxygen lone pair to the antibonding orbital of the N-H bond through the N-H...O hydrogen bond occurs in the Z isomer.
Collapse
Affiliation(s)
- Andrei V Afonin
- Institute of Chemistry, Siberian Branch of the Russian Academy of Science, Favorski St 1, 664033 Irkutsk, Russia
| | | | | | | | | |
Collapse
|
31
|
Chernyshev KA, Krivdin LB. Quantum-chemical calculations of NMR chemical shifts of organic molecules: I. Phosphines, phosphine oxides, and phosphine sulfides. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2010. [DOI: 10.1134/s1070428010060023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
DFT prediction of anomalously large blue shift of the C–H stretching frequency in 2-vinyloxypyridine and -quinoline due to the intramolecular C–H···N hydrogen bonding. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.theochem.2009.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Afonin AV, Pavlov DV, Ushakov IA, Schmidt EY, Mikhaleva AI. Pronounced stereospecificity of (1)H, (13)C, (15)N and (77)Se shielding constants in the selenophenyl oximes as shown by NMR spectroscopy and GIAO calculations. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2009; 47:879-884. [PMID: 19582802 DOI: 10.1002/mrc.2471] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In the (1)H and (13)C NMR spectra of 1-(2-selenophenyl)-1-alkanone oximes, the (1)H, the (13)C-3 and (13)C-5 signals of the selenophene ring are shifted by 0.1-0.4, 2.5-3.0 and 5.5-6.0 ppm, respectively, to higher frequencies, whereas those of the (13)C-1, (13)C-2 and (13)C-4 carbons are shifted by 4-5, approximately 11 and approximately 1.7 ppm to lower frequencies on going from the E to Z isomer. The (15)N chemical shift of the oximic nitrogen is larger by 13-16 ppm in the E isomer relative to the Z isomer. An extraordinarily large difference (above 90 ppm) between the (77)Se resonance positions is revealed in the studied oxime isomers, the (77)Se peak being shifted to higher frequencies in the Z isomer. The trends in the changes of the measured chemical shifts are well reproduced by the GIAO calculations of the (1)H, (13)C, (15)N and (77)Se shielding constants in the energy-favorable conformation with the syn orientation of the-C=N-O-H group relative to the selenophene ring.
Collapse
|
34
|
Afonin AV, Pavlov DV, Mareev AV, Simonenko DE, Ushakov IA. Comparative analysis of 13C shielding constants stereospecificity in the silicon and germanium derivatives of acetylenic aldehyde and ketone oximes based on the 13C NMR spectroscopy and GIAO calculations. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2009; 47:601-604. [PMID: 19437455 DOI: 10.1002/mrc.2435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In the acetylenic aldehyde oximes with substituents containing silicon and germanium, the (13)C NMR signal of the C-2 carbon of triple bond is shifted by 3.5 ppm to lower frequency and that of the C-3 carbon is moved by 7 ppm to higher frequency on going from E to Z isomer. A greater low-frequency effect of 5.5 ppm on the C-2 carbon signal and a greater high-frequency effect of 11 ppm on the C-3 carbon signal are observed in the analogous acetylenic ketone oximes. The carbon chemical shift of the C=N bond is larger by 4 ppm in E isomer relative to Z isomer for the aldehyde and ketone oximes. The (29)Si chemical shifts in the silicon containing acetylenic aldehyde and ketone oximes are almost the same for the diverse isomers. The trends in changes of the measured chemical shifts are well reproduced by the gauge-including atomic orbital (GIAO) calculations of the (13)C and (29)Si shielding constants.
Collapse
Affiliation(s)
- Andrei V Afonin
- Irkutsk Institute of Chemistry, Favorsky St. 1, 664033 Irkutsk, Russia
| | | | | | | | | |
Collapse
|